Gleason Grade Group Prediction for Prostate Cancer Patients with MR Images Using Convolutional Neural Network

Joon K. Lee
Henry Ford Health System

WeiWei Zong
Henry Ford Health System

Milan Pantelic
Henry Ford Health System

Ning Wen
Henry Ford Health System

Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019basicsci

Recommended Citation

Lee, Joon K.; Zong, WeiWei; Pantelic, Milan; and Wen, Ning, "Gleason Grade Group Prediction for Prostate Cancer Patients with MR Images Using Convolutional Neural Network" (2019). *Basic Science Research*. 5.
https://scholarlycommons.henryford.com/merf2019basicsci/5
Gleason Grade Group Prediction for Prostate Cancer Patients with MR Images Using Convolutional Neural Network

Joon Lee, MD¹, Weiwei Zong, PhD¹, Milan Pantelic, MD², Ning Wen, PhD¹

¹Department of Radiation Oncology
²Department of Radiology
Henry Ford Cancer Institute
Introduction

- Prostate CA is the most common malignancy in men.
 - An accurate diagnosis requires a **tissue biopsy**.
- Can we eliminate this need?
 - Differentiating prostate CA from benign tissue on imaging:
 - Literature: AUC of **0.87**. Our experience: AUC of **0.90**.
- Can we predict the Gleason grade group?
 - Literature: AUC of **0.50**.
 - **Can we improve upon this?**
Objective

- To predict Gleason grade grouping from publicly available prostate MRIs using a convolutional neural network (CNN).
- A CNN is a machine learning algorithm that mimics the function of the human visual cortex.
- To design software that emulates the role of a fellowship-trained radiologist.
The **Big** Challenge

- **Paucity of publicly available data:**
 - Natural image datasets: 1,000,000+ images.
 - NIH dataset of CXRs: 100,000+ images.
 - SPIE Prostate Classification Challenge: ~200 MRIs and ~100 delineated lesions.
Solutions: Increasing the Available Data

- **Data augmentation**: Methods to *artificially* increase data size.
 - Rotation, flipping, scaling, shifting, adding noise, etc.

- **Transfer learning**: Applying solutions for one problem to a related problem.
 - Does not work well for unrelated image sets (domain shift).
 - Requires a **pre-trained model** (not available for prostate MRIs).
Step 1: Data Pre-Processing and Augmentation

Registration
- Rigid-body alignment
- Resampling

Patch Generation
- Region localization
- Cropping the region of interest (ROI)
- Augmentation: Rotation
- Intra Image Normalization [0, 1]

Validation
- 10-fold cross validation
- Channel composition

Data Set:
- DWI(D), ADC(A), Ktrans(K), T2WI (T)
Step 2: Training
Step 3: Transfer Learning

Feature Extraction

Weighted Kernel Classifier
Step 4: Feature Visualization

Model looks at the right place!
SOTA Results

Figure: t-SNE Plot Showing Data’s tendency to become more separable as Layer Propagates for Pre-trained CNN.

Table: Average cross validation results showed combining low and high level features demonstrated the best feature representation for GGG prediction task.

<table>
<thead>
<tr>
<th>GG 1 vs. 23 vs. 45 3-fold CV AVG</th>
<th>Features From C1</th>
<th>Features From C4</th>
<th>Features From FC1</th>
<th>Final Result of the CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG 1 Accuracy</td>
<td>0.41</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>GG 2&3 Accuracy</td>
<td>0.59</td>
<td>0.68</td>
<td>0.70</td>
<td>0.68</td>
</tr>
<tr>
<td>GG 4&5 Accuracy</td>
<td>0.27</td>
<td>0.80</td>
<td>0.80</td>
<td>0.87</td>
</tr>
<tr>
<td>G-mean</td>
<td>0.24</td>
<td>0.71</td>
<td>0.73</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Conclusions

- Data heterogeneity and small sample size present big challenges to accurate Gleason grade prediction for prostate CA.

- We overcame these challenges and trained a convolutional neural network using data augmentation and transfer learning.

- The accuracy of our model ranged between 0.68-1.00 across different Gleason grade groups, with an overall performance of 0.76 (G-mean).
Thank You!

- **Acknowledgements:**
 - Weiwei Zong, PhD
 - Milan Pantelic, MD
 - Ning Wen, PhD

- **Contact information:**
 - Joon Lee, MD (jlee17@hfhs.org)