Importance of Radar Gun Inclusion During Return-to-Throwing Rehabilitation Following Ulnar Collateral Ligament Reconstruction in Baseball Pitchers: A Simulation Study

Vincent A Lizzio
Henry Ford Health System, vlizzio1@hfhs.org

Grace Smith
Henry Ford Health System

Toufic R Jildeh
Henry Ford Health System, tjildeh1@hfhs.org

Caleb Gulledge
Henry Ford Health System, cgulled2@hfhs.org

Alexander Swantek
Henry Ford Health System, aswante1@hfhs.org

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019clinres

Recommended Citation
Lizzio, Vincent A; Smith, Grace; Jildeh, Toufic R; Gulledge, Caleb; Swantek, Alexander; Stephens, Jeffrey P; Schulz, Brian; and Makhni, Eric C, "Importance of Radar Gun Inclusion During Return-to-Throwing Rehabilitation Following Ulnar Collateral Ligament Reconstruction in Baseball Pitchers: A Simulation Study" (2019). Clinical Research. 20.

This Poster is brought to you for free and open access by the Medical Education Research Forum 2019 at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Clinical Research by an authorized administrator of Henry Ford Health System Scholarly Commons. For more information, please contact acabrer4@hfhs.org.
IMPORTANCE OF RADAR GUN INCLUSION DURING RETURN-TO-THROWING REHABILITATION FOLLOWING ULNAR COLLATERAL LIGAMENT RECONSTRUCTION IN BASEBALL PITCHERS: A SIMULATION STUDY

VINCENT LIZZIO MD, GRACE SMITH BS, TOUFIC JILDEH MD, CALEB GULLEDGE BS, ALEXANDER SWANTEK BS, JEFFREY STEPHENS PhD, BRIAN SCHULZ MD, ERIC MAKHNI MD MBA
BACKGROUND

• Ulnar collateral ligament reconstruction rehab protocols instruct pitchers to throw with increasing effort, such that they begin throwing at 50% effort and ultimately advance to maximum effort.

• There is little evidence to suggest whether or not pitchers can adequately control pitch velocity to established guidelines, such as those requiring 50% partial effort or 75% partial effort.

• Some coaches and trainers have recommended using radar guns during rehabilitation in order to gain a more objective and reliable assessment of partial throwing effort.
PURPOSE

• To determine the medial elbow torque associated with pitches at various effort levels.

• To determine if radar gun assistance improves players’ abilities to accurately match partial effort pitches with true references based on maximum pitch velocity.
Methods

- Motus Baseball Sleeve
 - Validated against the gold-standard of high-speed motion analysis
 - Precise
 - Used in several recent biomechanical analysis studies
Step 1: Warm-up Routine
Stretching, jogging, practice throws

Step 2: Sequence of Self-Perceived Effort Pitches
Five throws of 50E, 75E, and 100E pitches

Step 3: Determining Maximum Velocity
Average velocity calculated for 100E pitches

Step 4: Sequence of Velocity-Controlled Pitches
Five throws that qualify as 50V and 75V pitches, as guided by radar gun measurements
Results

<table>
<thead>
<tr>
<th></th>
<th>Mean (SE)</th>
<th>Range (Min - Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>16.4 (0.4)</td>
<td>14 - 21</td>
</tr>
<tr>
<td>Height, cm</td>
<td>178 (1.6)</td>
<td>152 - 196</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>72.3 (2.6)</td>
<td>40.8 - 113.4</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>22.6 (0.6)</td>
<td>17.0 - 29.5</td>
</tr>
<tr>
<td>Forearm length, cm</td>
<td>42.8 (0.5)</td>
<td>35.5 - 51.4</td>
</tr>
<tr>
<td>Upper arm length, cm</td>
<td>35.8 (0.4)</td>
<td>30.5 - 40.5</td>
</tr>
<tr>
<td>Total arm length, cm</td>
<td>77.1 (0.7)</td>
<td>67.3 - 88.5</td>
</tr>
<tr>
<td>Elbow joint circumference, cm</td>
<td>26.2 (0.3)</td>
<td>22.4 - 30.1</td>
</tr>
</tbody>
</table>

37 total participants
RESULTS

Ball Velocity

- **Graph:** Shows percent of maximum ball velocity (%) against partial effort (%).
- **Data Points:** Representative data for subjective effort pitches and velocity-controlled pitches.

Elbow Torque

- **Graph:** Shows percent of maximum elbow torque (%) against partial effort (%).
- **Data Points:** Representative data for subjective effort pitches and velocity-controlled pitches.
Results

<table>
<thead>
<tr>
<th>Pitch Type</th>
<th>Velocity, mph (Percent of Maximum Velocity)</th>
<th>Torque, Nm (Percent of Maximum Torque)</th>
<th>Ability to Maintain Throwing Mechanics, VAS (Percent of Maximum Score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Effort</td>
<td>70.8 ± 1.4<sup>a</sup> (reference)</td>
<td>48.9 ± 1.8<sup>a</sup> (reference)</td>
<td>76.8 ± 3.1<sup>a</sup> (reference)</td>
</tr>
<tr>
<td>75% Effort</td>
<td>62.6 ± 1.3<sup>b</sup> (88.5%)</td>
<td>43.3 ± 1.7<sup>ab</sup> (88.6%)</td>
<td>66.9 ± 2.5<sup>a</sup> (87%)</td>
</tr>
<tr>
<td>50% Effort</td>
<td>56.1 ± 1.3<sup>c</sup> (79.4%)</td>
<td>37.1 ± 1.8<sup>bc</sup> (76.3%)</td>
<td>36.3 ± 3.4<sup>c</sup> (47%)</td>
</tr>
<tr>
<td>75% Velocity</td>
<td>52.8 ± 1.0<sup>c</sup> (74.7%)</td>
<td>34.9 ± 1.6<sup>c</sup> (71.3%)</td>
<td>53.2 ± 2.8<sup>b</sup> (69%)</td>
</tr>
<tr>
<td>50% Velocity</td>
<td>37.3 ± 0.7<sup>d</sup> (52.2%)</td>
<td>19.2 ± 0.9<sup>d</sup> (39%)</td>
<td>22.9 ± 2.8<sup>d</sup> (30%)</td>
</tr>
</tbody>
</table>
RESULTS
CONCLUSIONS

• Pitchers generate higher-than-intended forces when throwing at 50% and 75% effort during a subjective partial effort throwing protocol.

• A decrease in pitching velocity results in a more proportional and appropriate decrease in medial elbow torque than a reduction of perceived effort.

• Use of a radar gun to guide partial effort throwing during throwing rehabilitation programs may protect the reconstructed elbow from excess medial torque.