Hematopoietic stem and progenitor cells are a distinct HIV reservoir that contributes to persistent viremia in suppressed patients

Thomas D. Zaikos
Valeri H. Terry
Nadia T. Sebastian Ketinger
Jay Lubow
Mark M. Painter

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/infectiousdiseases_articles

Recommended Citation

This Article is brought to you for free and open access by the Infectious Diseases at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Infectious Diseases Articles by an authorized administrator of Henry Ford Health System Scholarly Commons.
Hematopoietic Stem and Progenitor Cells Are a Distinct HIV Reservoir that Contributes to Persistent Viremia in Suppressed Patients

Highlights
- Hematopoietic stem and progenitor cells can serve as long-term reservoirs of HIV
- HSPCs harbor both infectious and defective proviral genomes
- HSPCs are an important source of residual plasma virus in treated people
- Clonally amplified HIV proviruses contribute to residual plasma virus

In Brief
HIV causes an infection that persists even when optimal therapy is used. Zaikos et al. provide evidence that HIV-infected progenitor cells from the bone marrow can amplify virus through normal cellular growth pathways in some treated people.
Hematopoietic Stem and Progenitor Cells Are a Distinct HIV Reservoir that Contributes to Persistent Viremia in Suppressed Patients

Thomas D. Zaikos, Valeri H. Terry, Nadia T. Sebastian Kettinger, Jay Lubow, Mark M. Painter, Maria C. Virgilio, Andrew Neevel, Frances Taschuk, Adewunmi Onafuwa-Nuga, Lucy A. McNamara, James Riddell IV, Dale Bixby, Norman Markowitz, and Kathleen L. Collins

SUMMARY

Long-lived reservoirs of persistent HIV are a major barrier to a cure. CD4+ hematopoietic stem and progenitor cells (HSPCs) have the capacity for lifelong survival, self-renewal, and the generation of daughter cells. Recent evidence shows that they are also susceptible to HIV infection in vitro and in vivo. Whether HSPCs harbor infectious virus or contribute to plasma virus (PV) is unknown. Here, we provide strong evidence that clusters of identical proviruses from HSPCs and their likely progeny often match residual PV. A higher proportion of these sequences match residual PV than proviral genomes from bone marrow and peripheral blood mononuclear cells that are observed only once. Furthermore, an analysis of near-full-length genomes isolated from HSPCs provides evidence that HSPCs harbor functional HIV proviral genomes that often match residual PV. These results support the conclusion that HIV-infected HSPCs form a distinct and functionally significant reservoir of persistent HIV in infected people.

INTRODUCTION

Combination anti-retroviral therapy (cART) efficiently blocks HIV replication in vivo. However, the virus is able to persist within infected individuals and rebound viremia frequently occurs if cART is interrupted (Davey et al., 1999). Failure of cART is thought to result from persistent long-lived cells that harbor integrated HIV genomes that are unaffected by anti-retroviral therapy. Resting memory CD4+ T cells are a well-characterized HIV reservoir (Chun et al., 1997; Finzi et al., 1997, 1999). In addition, emerging data support the possibility that non-CD4+ T cells may also form persistent HIV reservoirs (Arañega et al., 2017; Avalos et al., 2016; Honeycutt et al., 2017; Sundstrom et al., 2007; Zhu et al., 2002). In particular, hematopoietic stem and progenitor cells (HSPCs) are a long-lived cell type that has been shown to be infected in vivo and is capable of propagating integrated provirus to CD4+ and CD4- progeny (Carter et al., 2010; Sebastian et al., 2017). Moreover, infected HSPCs can produce virions upon latency reversal in vitro (Zaikos et al., 2018). Therefore, it is possible that HSPCs could contribute to persistent and rebound viremia directly or by serving as a source of infected daughter cells that can be activated to produce virus.

Residual plasma virus (PV), defined here as a PV level of less than 48 copies per mL, can be detected in treated people by ultra-sensitive techniques even when virus is undetectable by standard clinical tests. Sequence analysis of residual PV and rebounding PV in HIV-infected people indicates that virions likely come from the activation of latent provirus that had been archived since before the initiation of therapy rather than from low-level replication and spread of cART-resistant virus (Eisele and Siliciano, 2012; Kearney et al., 2014).

The cellular source of residual virus remains poorly understood. A number of studies have shown that proviral DNA from CD4+ T cells and other peripheral blood mononuclear cells (PBMCs) frequently does not match residual PV (Bailey et al., 2006; Brennan et al., 2009; Buzon et al., 2014; Chun et al., 2000; Sahu et al., 2009). One small study of two donors found that virus induced ex vivo from a subset of activated T cells matched residual PV, leading the authors to conclude that it is
Figure 1. A Signature Deletion Marks a Clonal, HSPC-Associated-Proviral Genome that Releases Non-infectious Clonal Virus In Vivo and Ex Vivo

(A) HIV genome map and identical viral sequences from indicated tissue source from donor 436000. The solid bars indicate fully sequenced, genetically intact amplicons. The black and white hatched bars indicate the location of a signature deletion with nucleotide sequence shown in the figure insert. The solid red bar indicates sequenced human chromosome 9:HIV integration site, with nucleotide sequence shown in figure insert. The thin line connecting gag and env amplicons indicates sequences that originated from the same first-round reaction performed at limiting dilution. The number of times a sequence was observed is indicated by a separate rectangle or by a number (x n).

(B) Maximum-likelihood phylogenetic trees of gag and env HIV sequences from the indicated tissue sources. Identical sequence groups are designated with a red bar, and the number of symbols represents the number of times the sequence was observed. Identical sequence groups depicted in (A) are marked with the circled asterisk. Scale indicates nucleotide substitutions per site.

(C) Summary graph of HIV mRNA abundance in supernatant from a viral outgrowth assay using CD4+ cells isolated from donor 436000 BMMCs. Cells were stimulated with PMA and ionomycin or matched DMSO solvent control. The dashed line indicates limit of detection for the assay. The viral outgrowth assay was performed once with all samples analyzed in duplicate in the qPCR assay.

(legend continued on next page)
possible that residual PV may originate from a minor population of circulating CD4+ T cells (Anderson et al., 2011). Whether HSPCs contribute to residual PV is unknown.

Genetic characterization of provirus from CD4+ T cells has demonstrated that many are defective and that defective proviruses rapidly accumulate (Bruner et al., 2016; Hiener et al., 2017; Imamichi et al., 2016). Analyses of near-full-length proviral genomes indicate that 2%–12% of CD4+ T cell-derived HIV proviral genomes have full open reading frames (Bruner et al., 2016; Hiener et al., 2017; Ho et al., 2013). Whether provirus from HPSCs is defective has not previously been examined.

A determination that proviral genomes from HSPCs contain open reading frames that match residual PV would provide evidence that HSPC-derived genomes are indeed functional. Here, we examine provirus and residual PV from HSPCs and other cell types from a cohort of 24 donors, providing evidence in support of this conclusion.

RESULTS

Single-Genome Amplification of Proviral DNA from HSPCs and Other Cellular Subsets

We recruited 53 HIV-infected donors on cART with viral loads <48 copies per mL. We obtained samples of blood and bone marrow from each donor. Ten donors were excluded for insufficient sample size or suboptimal HSPC sort purity. Table S1 summarizes the characteristics of the included donors. Ten donors contributed samples more than once over periods spanning 4 months to nearly 5 years (Table S1). For each included donor, we isolated two different types of HSPCs in sequential sorts (CD133+ [sort 1] or CD34+CD133– [sort 2]). Each sort was analyzed individually for purity. We excluded any individual HSPC sort that were <80% HSPCs or >1% CD3+ cells (Figure S1A). In most cases, included samples were well within these criteria, with mean purity 90% or higher and mean CD3+ T cell contamination rates less than 0.4% (Table S2).

To determine whether HSPCs serve as a source of PV, we amplified individual HIV proviral genome sequences from highly purified HSPCs, HSPC-depleted bone marrow mononuclear cells (BMMCs), and PBMCs. For this analysis, we used a highly sensitive multiplex PCR protocol that was performed at limiting dilution to amplify individual gag or env sequences in separate second-round reactions (Sebastian et al., 2017). This protocol was applied to DNA from both HSPC populations (CD133+ [sort 1] and CD34+CD133– [sort 2]), providing four assays for each donor’s progenitor cells (gag and env PCRs using samples from sort 1 and sort 2). Based on the sort purity and the frequency of HIV provirus in CD3+ samples, we performed a statistical analysis to determine the likelihood that provirus was amplified from contaminating CD3+ cells rather than an HSPC (McNamara et al., 2013; Sebastian et al., 2017). Only samples that yielded HIV proviral DNA that was unlikely to be due to T cell contamination were included in our final analyses (Figure S1B). Figure S1C summarizes the proportion of donors who had positive results in each of the four assays.

Additionally, all viral sequences were compared phylogenetically to every previously acquired sequence and lab strain to rule out cross-contamination. All included donor sequences clustered appropriately except for outliers that contained frameshifts.

We determined that 25 of the 43 included donors had detectable provirus in HSPC DNA. Sort purity and CD3+ T cell contamination levels were very similar between the donors who had detectable HIV provirus in HSPC DNA and those that did not (Table S2). However, we did note a trend toward a lower yield of HSPCs available to screen for the negative donors (Table S2).

Isolation and Characterization of Residual PV

For each donor, we also harvested plasma from which we isolated residual PV. Purified viral RNA was converted to cDNA, and HIV sequences were amplified using the multiplex PCR described above. We successfully detected residual PV in samples from 24 out of 25 donors who had provirus isolated from HSPC DNA, including one donor who initiated cART during the acute phase (donor 503501; Table S1).

To identify potential cellular sources of residual PV, we compared all PV sequences to all proviral DNA sequences. As expected, some of the PV matched provirus from PBMCs and BMMCs, a large percentage of which are T cells. However, phylogenetic analysis revealed that proviral sequences isolated from highly purified HSPCs exactly matched amplified residual PV in 8 of 24 donors. We noted significantly higher mean CD4 counts at the time of sampling and a greater number of PV amplicons recovered per donor in the 8 donors with matching HSPC and PV sequences (p = 0.0005 and p = 0.04, respectively; Table S3). The phylogenetic analysis for these sequences for each of the 8 donors is shown in Figures 1, 2, 3, and 4, and Figures S2, S3, S4, and S5. An analysis of genetic diversity based on average pairwise genetic distance (APD) indicated that donors with matching HSPC proviral DNA and PV had a similar degree of genetic diversity as those that did not (Table S4). The mean APD for provirus was >1% and the mean APD for PV was >0.5% for both groups. As expected, env sequences were significantly more diverse than gag sequences (p < 0.05). Based on the APD, the length of the amplicons and the number of observed versus expected identical sequences, the probability the observed...
Figure 2. HSPC-Associated Sequences Match PV and Can Be Recovered from Two Donations Separated by 10 Months
(A) HIV genome map and identical viral sequences from the indicated tissue source from donor 435412406. Boxes indicate fully sequenced, genetically intact amplicons. The number of times a sequence was observed is indicated by a separate rectangle or by a number (x n).

(B) HSPC
- HSPC
- BMMC
- PBM C
- CD4+ PBM C
- Residual plasma virus

* Time between 1st and 3rd donations: 10 months

(legend continued on next page)
identities across these amplicons occurred by chance sampling from the population was very low \((p < 10^{-6}; \text{Table S5}) \) (Bui et al., 2017).

Sequence identity across entire amplicons is suggestive that PV was derived from the matching proviral genome. The likelihood that sequences identical over the C2-V3 env region represent identity over the entire HIV genome can be estimated at 83% using a previously published clonal prediction score (Laskey et al., 2016). In some cases, the multiplex single-genome amplification (SGA) PCR generated both an ~828-bp fragment from the 5’ long terminal repeat (LTR) into the gag open reading frame as well as ~429 bp of env C2-V3 allowing us to link two amplicons to the same genome (Figures 1, 3, 4, and S4). Linkage between the two loci was also achieved by the isolation of ~9,000-bp near-full-length genomes (Figure 3). When matching was achieved at both locations, the likelihood that the genomes were clonal was even higher. Our findings of sequence identity across multiple locations within the HIV proviral genome strongly support the conclusion that PV sequences were derived from matching proviral genomes and are consistent with our analysis showing that these identities were unlikely to have occurred by chance (Table S5).

Evidence that Residual PV Is Derived from Clusters of HSPC-Associated Identical Proviral Genomes

It was relatively common in our cohort for PV to exactly match proviral sequences from HSPCs; across the 24 donors analyzed, when unique sequences were compared, a higher proportion of proviral genomes from HSPCs matched PV (9% of gag and 13% of env amplicons) than genomes derived from PBMC or BMMC (3% gag and 4% env; \(p < 0.05 \)) (Figure 5A). All of the HSPC-associated proviral genome sequences that matched PV also matched identical clusters of proviral genomes from PBMCs or BMMC (Figure 5B). When these identical sequences include at least four proviral amplicons from non-HSPC cells, we refer to them as clusters of HSPC-associated identical proviruses (CHIPs). Remarkably, approximately 50% of CHIPs could be matched to PV (Figure 5B).

The impact of CHIPs is apparent when comparing Figure 5A (unique sequences only) to Figure 5C (all sequences). Because CHIPs commonly match PV, when all identical copies of provirus from BMMCs and PBMCs were included in the analysis, significant differences observed in Figure 5A were lost. These results suggest that clonally amplified sequences make important contributions to residual PV.

To further examine the relationship between clonally amplified sequences and PV, we examined a sub-group of 16 donors that had (1) clonal proviral sequences that matched an HSPC-derived provirus and (2) clonal proviral sequences for which we did not identify an HSPC match. We found that both types of “clonal” proviral sequences more frequently matched PV than sequences that were only isolated once (2% total versus 0.3% for non-clonal sequences; Figure 5D). Proviral sequences matching HSPC-derived provirus were prominent among PV-matching clonal sequences, contributing about one-half of the total clonal proviruses matching PV, despite contributing a smaller fraction of total proviruses (3% versus 9%; Figure 5D).

To avoid potential clustering effects of individual participants, we also analyzed the data by determining the proportion of residual PV matching provirus within each donor rather than pooling sequences across all donors. This analysis, shown in Figure 6A, similarly demonstrated that clonal sequences more frequently contributed to PV. Notably, the differences were most significant for sequences that were likely to be both clonal and derived from HSPCs \((p < 0.001) \). These results identify a unique relationship between clonally amplified proviral genomes and residual PV. They also suggest that HSPCs are important for generating some of these clusters of amplified sequences in some donors.

Evidence that Virions Matching CHIPs Are Often Predominant in the Plasma

Five donors (434423, 436000, 449000, 454304, and 458311) had large groups of identical residual PV sequences that qualify as predominant plasma clones (PPCs). A PPC is a single sequence representing more than 50% of a large sample of independent plasma sequences from a given patient (Bailey et al., 2006). For two donors (434423 and 436000), these sequences matched CHIPs. In the remaining three donors, no cellular source of PPCs was identified (Figures 6B and 6C). Thus, CHIPs account for PPCs in at least a subset of donors.

A Signature Deletion Found in Both a CHIP and a PPC Supports HSPCs as an Original Source of Viremia

While exact matches over gag and env C2-V3 regions provide strong evidence that genomes are clonal, it remains theoretically possible that sequence differences are present elsewhere in the genome. This is an important consideration as infection by genetically similar viruses could mimic clonality that arises by cellular proliferation and expansion of genetically identical viruses. We were able to exclude coincidental infection as an explanation in one donor (Figure 1). In this donor, proviral genomes from multiple cellular sources, including HSPCs, contained a signature deletion. This deletion, which likely occurred at the time of reverse transcription, eliminated the tRNA(Lys3) primer binding site \((pbs) \), the major splice donor, the dimerization initiation site, and the first two packaging stem loops. Due to the loss of the \(pbs \) and the major splice donor, virus generated from this proviral genome cannot initiate reverse transcription or produce Env and is thus noninfectious. However, the defects harbored by the provirus are not expected to block transcription or eliminate packaging of the RNA genome as SL3 is sufficient for RNA genome packaging (Abbnink and Berkhout, 2008). Consistent with this, we identified 23 clonal...
Figure 3. A Near-Full-Length Proviral Genome with Intact Open Reading Frames from HSPCs Matches PV Detected in Two Donations Separated by 3.8 Years

(A) HIV genome map and identical viral sequences from indicated tissue sources from donor 454304. The solid bars indicate fully sequenced, genetically intact amplicons. The thin line connecting gag and env amplicons indicates sequences that originated from the same first-round reaction performed at limiting dilution. The number of times a sequence was observed is indicated by a separate rectangle or by a number (x n).

* Time between donations: 4 years

(legend continued on next page)
copies of residual PV harboring the deletion (Figure 1). Additionally, a viral outgrowth assay performed using CD4+ T cells isolated from BMMCs activated with phorbol 12-myristate 13-acetate (PMA) and ionomycin ex vivo, yielded virions containing genomic RNA with the identical signature deletion in the LTR/gag amplicon plus the identical C2/V3 env region (Figures 1A–1C). The deleted RNA was a major component of total released viral RNA sequences (~80%). The isolated genomes were derived from RNA as we obtained no sequences when reverse transcriptase was omitted (Figure 1C). This evidence supports the conclusion that the deleted virus is packaged and released from cells.

To verify this conclusion, we sub-cloned the deletion into an HIV reporter construct that requires gag in trans for virion production (Figure S6). Wild-type reporter virus was released into the supernatant 335-fold more efficiently when Gag was provided in trans (Figure S6B). The deletion found in the donor 436000-derived provirus, which removes the portion of the packaging signals contained in stem loops 1 and 2, resulted in a 4-fold reduction in packaging efficiency compared to wild-type, but still packaged over 80-fold more efficiently than wild-type reporter virus in the absence of Gag, demonstrating that genomic RNA containing this deletion was specifically released in Gag-containing particles (Figure 1D). A positive result in this assay depended on the addition of HIV template and reverse transcriptase, confirming that the positive signal did not originate from contamination or residual HIV DNA (Figure S6). Contaminating DNA was eliminated by the addition of DNase prior to reverse transcription, which we show efficiently eliminated signal from an HIV DNA control (Figure S6). Thus, the deleted proviral genome from donor 436000 retained the capacity to produce virions containing HIV genomic RNA.

Although the genomic RNA was packaged, it was unlikely to be infectious due to the loss of the primer binding site as well as the major splice donor. To confirm this, we measured cellular HIV mRNA and expression of the Env-GFP fusion protein expressed by this reporter construct (Figure S6). We detected HIV mRNA in cells expressing both wild-type and deleted reporter constructs (Figure S6), but only the wild-type version produced Env-GFP in transfected cells (Figure 1E). Supernatants containing virions with the deleted viral genome did not infect a CD4+ T cell line, whereas control supernatants containing equal copy numbers of wild-type viral genomes were infectious in our assay (Figure 1E). These results confirm that the deleted provirus is non-infectious and that spread to multiple cells in vivo must have occurred by cellular proliferation of an infected progenitor cell or its progeny. To provide further proof of this conclusion, we used an established protocol to isolate HIV integration sites. We identified an integration site on chromosome 9 associated with the signature deletion. We then used chromosome 9-specific primers to confirm the location of the integration site. Using SGA PCR, we isolated multiple clonally amplified copies of the identical integration site associated with the same signature deletion (Figures 1A and S7).

HSPCs Harbor Intact, Near-Full-Length HIV Genomes

To determine whether provirus from HSPCs was infectious, we amplified near-full-length proviral genomes from HSPCs isolated from 28 donors. For this assay, we used first-round PCR primers within the viral LTRs and screened these products for near-full-length genomes using primers that amplified a ~400-bp env fragment in a second-round reaction. Positive first-round reactions were amplified with nested internal LTR primers and sequenced to determine whether or not each individual near-full-length genome was functional. In all, we identified 21 near-full-length genomes from 10 donors. Twenty amplicons from 9 donors were unlikely to have been due to T cell contamination of our HSPC samples based on the analysis described in Figure S1. We obtained PCR products sufficient to assess the integrity of 18 HIV genomes and fully sequenced 9. Five of 18 genomes, or 28%, had open reading frames for all 9 HIV genes (Figures 7A and 7B). Four near-full-length genomes contained intact cis elements in the 3’ LTR. One proviral genome from donor 409000 was missing the tRNA(Lys3) pbs (Figures 7A and S2). The four proviral genomes with intact LTR sequences were further tested to assess LTR function. As shown in Figure 7C, the reconstructed LTRs were functional based on expression of a downstream marker gene and their expression was, as expected, Tat responsive. To provide further evidence that these proviral genomes were infectious, we reconstructed the provirus isolated from HSPCs from donor 454304 and demonstrated that it produced fully infectious virus in vitro (Figures 7D–7F).

Strikingly, of the 5 genomes with intact open reading frames, 3 (60%) exactly matched residual PV sequences as well as proviral genomes from PBMC and BMMC. This includes the infectious proviral genome from donor 454304 in which both env and gag were identical to residual PV (Figures 3 and 7A). Donor 409000 produced 2 intact genomes, one of which had identity to a PV env amplicon (Figures 7A and S2). From donor 421, we found an HSPC-derived near-full-length sequence that was identical to a PV env amplicon (Figures 7A and S3). These intact genomes account for 10%–14% of unique residual PVs found in these donors. Moreover, sequence identity to proviral genomes from PBMCs and BMMCs provides evidence that these genomes can clonally expand in vivo (Figure 7).

Virions Matching HSPC Proviral Genomes Are Persistently Present in Plasma

Three of the 8 donors with identical PV and HSPC-derived viral sequences provided tissue samples on more than one occasion (435412406, 454304, and 434423). For each of these donors, we...
were able to demonstrate persistent matching between PV and HSPC proviral genomes over time. Donor 435412406 contributed blood and bone marrow three times over 10 months, and we were able to detect unique proviral genomes in HSPCs from all three donations. Of note, a CHIP from the first donation matched sequences found in PV from the third donation. Conversely, a CHIP from the third donation was identical to PV from the first donation (Figure 2).

Donor 454304 had a suppressed viral load for 3.3 years at the time of the first donation and provided tissue again almost 4 years later. Described as donor 304000 in an earlier study, HSPCs from this donor’s first donation had detectable HIV

Figure 4. Multiple (gag and env) HSPC-Associated HIV Sequences Matching a Predominant Plasma Clone Are Detectable in Two Donations Separated by 4 Months

(A) HIV genome map and identical viral sequences from the indicated tissue source from donor 434423. The solid bars indicate fully sequenced, genetically intact amplicons. The thin lines connecting gag and env amplicons indicate sequences that originated from the same first-round reaction performed at limiting dilution. The number of times a sequence was observed is indicated by a separate rectangle or by a number (x n).

(B) Maximum-likelihood phylogenetic trees of gag and env HIV sequences from indicated tissue sources. Identical sequence groups are designated with a red bar, and the number of symbols represents the number of times the sequence was observed. Identical sequence groups depicted in (A) are marked with the circled asterisk. Scale indicates nucleotide substitutions per site. Sequences from the first and second donations are represented by symbols that are empty and filled, respectively.

See also Tables S1–S5 and Figure S1.
provirus by a LTR/gag qPCR assay (McNamara et al., 2013). Using our multiplex SGA, we isolated residual PV from both donations that generated env amplicons identical to an infectious genome (Figures 7D–7F). Two gag amplicons derived from residual PV from the second donation also exactly matched the functional proviral genome (Figure 3).

Donor 434423 provided blood and bone marrow twice over 4 months. A CHIP from the second donation, 434, matched large clonal clusters of residual PV for both gag and env amplicons (Figure 4). Among the reactions that were performed at limiting dilution, 2 PV PCRs produced both gag and env that were identical to HSPC-derived gag and env amplicons (Figure 4A). As discussed above, the presence of matching gag and env sequences from multiplex SGA reactions for both HSPC and PV strongly supports identity across the entire genome. These examples provide strong support for the conclusion that HSPC-associated genomes contribute to persistent residual viremia.

DISCUSSION

Here, we confirm a prior study providing evidence that HSPCs propagate HIV proviruses by cellular proliferation (Sebastian et al., 2017) and provide evidence that clonally expanded
proviruses from HSPC progeny contribute to residual PV. Proviral genome sequences from HSPCs were often identical to sequences isolated from PBMCs and BMMCs. In two donors, predominant plasma viral clones exactly matched HSPC-associated sequences. Based on these studies, we propose that HSPCs and their daughter cells containing clonal genomes are capable of producing clonal virus that can predominate in the plasma. Determining the exact identity of the infected daughter cells will require additional studies. In a prior investigation, we found that HSPCs could pass genomes to both CD4-positive and CD4-negative progeny in some donors (Sebastian et al., 2017). These relatively rare occurrences are consistent with our model that HSPCs can spread HIV genomes by cell division and differentiation.

Although viremia is relatively low during cART, it likely requires substantial HIV production from infected cells. Thus, it is unlikely that HSPCs alone, which represent ~1% of BMMCs, are directly responsible for this virus production. Rather, we propose that a subset of PV is derived from clonal proviral sequences found in both HSPCs and PBMC/BMMC populations (clusters of HSPC-associated identical proviruses [CHIPs]). In this model, HSPCs themselves remain latently infected, preserving their longevity and ensuring viral persistence. HSPCs contribute to residual PV indirectly via the generation of progeny containing clonal proviral genomes that become activated to produce PV. Consistent with this, most HSPCs are maintained in a quiescent state in vivo, which we have shown is associated with viral latency in vitro (Painter et al., 2017).

Although HSPCs represent a small population of cells, in a subset of donors, HSPC-associated proviral genomes were a quantitatively more important source of residual PV than proviral genomes that were not associated with HSPCs. Future studies are needed to understand the mechanism behind this observation. It could reflect lower cytopathicity of the virus in HSPCs compared to T cells. Unlike T cell models of latency, latency in HSPCs is immediately established upon integration (Carter et al., 2010, 2011; McNamara et al., 2012; Painter et al., 2017; Sebastian et al., 2017; Zaikos et al., 2018). This mechanism avoids cytotoxicity due to transient viral protein expression. In contrast, most T cell models require a period of active viral expression followed by the establishment of latency with return of the T cell to a quiescent state (Bosque and Planelles, 2009; Kim et al., 2014). Another possibility is that most virus-producing T cells are non-circulating, hence untested here. However, if that were the case, we would expect to have detected a greater variety of viruses in the plasma. For example, the CHIP containing a deleted primer binding site was one of 8 gag PV sequences isolated and represented 51% of the gag amplicons we obtained (23 of 45 gag amplicons). For env amplicons, this clone was one of 4 env PV sequences and represented 67% of env amplicons (31 of 45 amplicons). Bailey et al. (2006)

Figure 6. Proviral Genomes that Are Likely Clonal More Frequently Match Residual PV, and Predominant Plasma Clones that Can Be Attributed to a Cellular Source Often Match CHIPs

(A) Graphical analysis showing the relationship between PBMC and BMMC proviral genomes that are identical to other sequences (non-HSPC or HSPC proviral genomes) and PV. Data were derived from donors described in Figure 5D who had both types of proviral identities (HSPC and non-HSPC; N = 16). Individual donors with non-zero values are indicated by colored symbols. Only unique gag and env sequences were included. p values were determined using two-tailed Wilcoxon matched pairs signed-rank test.

(B and C) Bar graphs showing number of (B) gag and (C) env PV amplicons that matched amplicons from the indicated groups of cellular proviruses from the 5 donors from whom we identified predominant plasma clones (PPCs). Groups of identical PV sequences are indicated by horizontal bars within each stacked bar graph. Groups of PPCs are indicated with an asterisk. Number of proviral sequences analyzed is shown below x axis donor labels. See also Tables S1–S5 and Figures S2–S5.
similarly observed dominant viral clones for most patients they examined on long-term cART. More recently, Wang et al. (2018) performed longitudinal sampling of residual PV env amplicons. In four of eight individuals, they observed dominant PV populations. The evidence showing only a few latently infected clones (or progeny thereof) contributing to the bulk of residual viremia in some donors supports the conclusion that amplified clonal populations are an important source of residual PV.

Clonally expanded T cells have been described, and it is important to consider these cells as a potential source of clonal residual PV whether or not they are progeny of an infected HSPC (Bruner et al., 2016; Hiener et al., 2017; Lee et al., 2017; Maldarelli et al., 2014; Simonetti et al., 2016; Sun et al., 2015; Wagner et al., 2014). Interestingly, a recent study suggests that these clonal populations can wax and wane over time (Wang et al., 2018). In several publications, expansion of clonal T cell populations was explained by insertion of the provirus into genes that regulate growth and/or by antigenic stimulation of the T cell receptor (Cohn et al., 2015; Maldarelli et al., 2014; Simonetti et al., 2016). We report a clonally amplified provirus that likely originated from an HSPC. This proviral genome was integrated into a region of chromosome 9 that is devoid of known genes (Figures 1 and S7). Amplification of this provirus by cellular proliferation is unlikely to be due to insertion into genes that regulate growth. Thus, we provide an example of clonal expansion of
an HIV-infected cell due to the innate proliferative capacity of the infected cell(s).

To the best of our knowledge, the frequency with which clonally expanded populations contribute to residual PV has not been reported. In our study, a significantly higher frequency of clonally expanded proviral genomes matched residual PV, and this difference was most significant when the clonally expanded proviral populations were likely derived from an HSPC. The evidence from our cohort supports the conclusion that HSPC-derived clonal populations are an important source of PV, at least in some donors, but are unlikely to be the only source of PV.

We also provide evidence that HSPC-associated HIV genomes are functional. A relatively high percentage of proviral genomes isolated from HSPCs contained complete open reading frames for all 9 viral genes (28%). This compares to 2%-12% for CD4+ T cells (Bruner et al., 2016; Hiener et al., 2017; Ho et al., 2013). All of the intact proviral genomes tested had LTRs that were functional in vitro. Moreover, we confirmed that one of these genomes was infectious by showing that the fully reconstructed provirus encoded infectious virus when tested in vitro. Remarkably, HSPC-derived near-full-length genomes often matched PV (60%). This “in vivo outgrowth assay” provides strong evidence that HSPCs can harbor infectious HIV.

The relative paucity of HSPC-derived HIV sequences compared to those of PBMCs and BMMCs may have led to under-sampling of the genomes harbored within HSPCs. Given this, it is even more remarkable that HSPC-associated genomes matched PV more frequently than unique genomes for transcriptional silencing of murine leukemia viruses (MLVs) that have integrated into genomes of embryonic stem cells. The repression is largely mediated by trans-acting factors that recognize the primer binding site (Wolf and Goff, 2007, 2008, 2009; Wolf et al., 2008a, 2008b). Whether a related trans-acting factor might similarly regulate HIV gene expression via the HIV tRNA binding site in cells with stem cell-like characteristics is not yet known. Here, we report that PMA and ionomycin treatment is required for release of the deleted virus from donor CD4+ T cells cultured ex vivo. The apparent absence of viral gene expression by unstimulated cells cultured ex vivo is discordant with the relatively high level of gene expression observed in vivo. The explanation for this intriguing observation remains elusive and will require further study. It is possible that tissue-resident progeny not sampled in this study maintain a different level of HIV gene expression than circulating CD4+ T cells.

In summary, our work provides evidence that HSPCs are a functionally significant reservoir of persistent HIV infection. Proviral genomes from HSPCs are associated with expanded clonal HIV proviral genomes found in peripheral blood and bone marrow that contribute to residual PV. These studies shed light on how the latent reservoir is maintained in vivo and suggest a need for novel therapeutic options. Selective targeting of HIV-infected progenitor cells may reduce the number of clonally expanded HIV proviral genomes, promote a reduction of the HIV reservoir, and limit residual and rebound PV.

Multiple defects are present in the non-infectious genome shown in Figure 1 (loss of the primer binding site, the major splice donor, and two stem loops). However, our evidence indicates deletion of the primer binding site, which is needed for reverse transcription, is the dominant mechanism for loss of infectivity. Deletion of two stem loops reduced but did not prevent viral genome packaging and virion release. Loss of the major splice donor did not prevent in vivo expression or detection of viral RNA in ex vivo outgrowth assays. The absence of the splice donor element is expected to affect expression of factors (Tat and Rev) that are needed for optimal expression of Gag and the packaged genome. Residual expression could occur from low-level Tat and Rev-independent transcription and nuclear export. It is also possible that alternative splice donor sites present in the proviral genome or in nearby genomic sequences rescue Tat and Rev expression. Importantly, the virus remained defective for infection even when Tat and Rev were provided in trans. Thus, the primer binding site defect is sufficient to render the virus non-infectious. The presence of this defective proviral genome in multiple cells provides strong evidence for spread of HIV genomes via cellular proliferation from an infected progenitor. The isolation of multiple copies of identical integration sites containing this signature deletion confirms our conclusion.

Loss of the tRNA binding site sequence by a genome that is producing large amounts of virus raises the possibility that this genetic element could regulate viral gene expression. Interestingly, a number of studies have shown that transcriptional repressors utilize tRNA binding sites in other retroviruses to restrict viral transcription. Specifically, this element is required for transcriptional silencing of murine leukemia viruses (MLVs) that have integrated into genomes of embryonic stem cells. The repression is largely mediated by trans-acting factors that recognize the primer binding site (Wolf and Goff, 2007, 2008, 2009; Wolf et al., 2008a, 2008b). Whether a related trans-acting factor might similarly regulate HIV gene expression via the HIV tRNA binding site in cells with stem cell-like characteristics is not yet known. Here, we report that PMA and ionomycin treatment is required for release of the deleted virus from donor CD4+ T cells cultured ex vivo. The apparent absence of viral gene expression by unstimulated cells cultured ex vivo is discordant with the relatively high level of gene expression observed in vivo. The explanation for this intriguing observation remains elusive and will require further study. It is possible that tissue-resident progeny not sampled in this study maintain a different level of HIV gene expression than circulating CD4+ T cells.

In summary, our work provides evidence that HSPCs are a functionally significant reservoir of persistent HIV infection. Proviral genomes from HSPCs are associated with expanded clonal HIV proviral genomes found in peripheral blood and bone marrow that contribute to residual PV. These studies shed light on how the latent reservoir is maintained in vivo and suggest a need for novel therapeutic options. Selective targeting of HIV-infected progenitor cells may reduce the number of clonally expanded HIV proviral genomes, promote a reduction of the HIV reservoir, and limit residual and rebound PV.
SUPPLEMENTAL INFORMATION
Supplemental Information includes seven figures and seven tables and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.11.104.

ACKNOWLEDGMENTS
This research was supported by the NIH (R01AI096962 to K.L.C., T32GM007863 to N.T.S.K., T32AI007413 to M.M.P., and T32GM007315 to N.T.S.K. and M.C.V.), National Center for Research Resources (UL1RR024986 to A.O.-N.), National Science Foundation (DGE 0718128 to N.T.S.K. and M.C.V.), National Center for Research Resources T32GM007863 to N.T.S.K., T32AI007413 to M.M.P., and T32GM007315 to L.A.M.), and The Burroughs Wellcome Fund (to K.L.C.). T.D.Z. was supported by a fellowship from HHMI. Cores we used also were supported by (CTSA grant 2UL1TR000433-06). We are grateful to Mary Reyes, Lisa Adams, Heather Fox and Henry Ford Hospital physicians for the bone marrow aspirations, and we especially thank the donors themselves. We thank the University of Michigan Clinical Research Unit. We thank Ryan Yucha and Steve King for technical assistance and John Moran for helpful scientific discussions.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES

latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573.

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD133 monoclonal antibody, phycoerythrin conjugated</td>
<td>Miltenyi Biotec</td>
<td>Cat# 130-090-853, clone 293C3; RRID:AB_244346</td>
</tr>
<tr>
<td>CD133 monoclonal antibody, biotin conjugated</td>
<td>eBioscience</td>
<td>Cat# 13-1338-80, clone AC133; RRID:AB_1210585</td>
</tr>
<tr>
<td>CD34 monoclonal antibody, fluorescein isothiocyanate conjugated</td>
<td>BD Biosciences</td>
<td>Cat# 555821, clone 581; RRID:AB_396150</td>
</tr>
<tr>
<td>CD3 monoclonal antibody, allophycocyanine conjugated</td>
<td>eBioscience</td>
<td>Cat# 17-0037, clone OKT3; RRID:AB_1907373</td>
</tr>
<tr>
<td>CD3 monoclonal antibody, phycoerythrin conjugated</td>
<td>eBioscience</td>
<td>Cat# 12-0037-42, clone OKT3; RRID:AB_1272078</td>
</tr>
<tr>
<td>CD3 monoclonal antibody, Pacific Blue conjugated</td>
<td>BioLegend</td>
<td>Cat# 317314, clone OKT3; RRID:AB_571909</td>
</tr>
<tr>
<td>HIV gag, PE (RD-1) conjugate</td>
<td>Beckman Coulter</td>
<td>Cat# 6604667, clone KC57</td>
</tr>
<tr>
<td>HIV gag ELISA capture antibody</td>
<td>NIH AIDS Reagent Program</td>
<td>Cat# 3537, clone 183-H12-5C</td>
</tr>
<tr>
<td>HIV gag ELISA detection antibody, purified from hybridoma ascites</td>
<td>ATCC</td>
<td>Cat# HB-9725, clone 31-90-25</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli Stbl2</td>
<td>Fisher</td>
<td>Cat# 10268019</td>
</tr>
<tr>
<td>Biological Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetal bovine serum, qualified, non-US origin, USDA-approved regions</td>
<td>GIBCO</td>
<td>Cat#10437028</td>
</tr>
<tr>
<td>Human AB serum</td>
<td>Fisher</td>
<td>Cat# BP2525-100</td>
</tr>
<tr>
<td>Total Control RNA (from Raji cell line)</td>
<td>Invitrogen</td>
<td>Cat# 4307281</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficoll-Paque PLUS media</td>
<td>GE Healthcare</td>
<td>Cat# 17-1440-02</td>
</tr>
<tr>
<td>StemSpan SFEM</td>
<td>StemCell Technologies</td>
<td>Cat# 09650</td>
</tr>
<tr>
<td>Hybri-Max dimethyl sulfoxide</td>
<td>Millipore Sigma</td>
<td>Cat# D2650-100ML</td>
</tr>
<tr>
<td>Tumor necrosis factor alpha (TNFα)</td>
<td>R&D Systems</td>
<td>Cat# 210-TA-005</td>
</tr>
<tr>
<td>Streptavidin, Pacific Blue conjugated</td>
<td>Invitrogen</td>
<td>Cat# S-1122</td>
</tr>
<tr>
<td>Trizol Reagent</td>
<td>Invitrogen</td>
<td>Cat# 15596026</td>
</tr>
<tr>
<td>DNase I, Amp grade</td>
<td>Invitrogen</td>
<td>Cat# 18068015</td>
</tr>
<tr>
<td>Phorbol 12-myristate 13-acetate (PMA)</td>
<td>Sigma-Aldrich</td>
<td>Cat# P1585-1MG</td>
</tr>
<tr>
<td>Ionomycin calcium</td>
<td>Sigma-Aldrich</td>
<td>Cat# 10634-1MG</td>
</tr>
<tr>
<td>Trizol LS Reagent</td>
<td>Invitrogen</td>
<td>Cat# 10296028</td>
</tr>
<tr>
<td>qScript Flex cDNA Synthesis kit</td>
<td>Quanta Biosciences</td>
<td>Cat# 101414-112</td>
</tr>
<tr>
<td>qScript cDNA Supermix</td>
<td>Quanta Biosciences</td>
<td>Cat# 101414-108</td>
</tr>
<tr>
<td>Phusion Hot Start II High Fidelity DNA polymerase</td>
<td>Fisher</td>
<td>Cat# F549L</td>
</tr>
<tr>
<td>GelRed nucleic acid gel stain, 10,000X in water</td>
<td>Biotium</td>
<td>Cat# 41003</td>
</tr>
<tr>
<td>TaqMan Gene Expression MasterMix</td>
<td>Applied Biosystems</td>
<td>Cat# 4369016</td>
</tr>
<tr>
<td>TaqMan Fast Advanced MasterMix</td>
<td>Applied Biosystems</td>
<td>Cat# 444557</td>
</tr>
<tr>
<td>Polyethyleneimine</td>
<td>Polysciences Incorporated</td>
<td>Cat# 23966-2</td>
</tr>
<tr>
<td>Plasmocin</td>
<td>InvivoGen</td>
<td>Cat# anti-mpt</td>
</tr>
<tr>
<td>Nunc Immuno Maxi-Sorp 96 well plate</td>
<td>Fisher</td>
<td>Cat# 12-565-135</td>
</tr>
<tr>
<td>Streptavidin Poly-HRP40</td>
<td>Fitzgerald Industries International</td>
<td>Cat# 65R-S104PHRP</td>
</tr>
<tr>
<td>HIV-1 p24 core antigen, ELISA standard</td>
<td>ViroGen</td>
<td>Cat# 00177-V</td>
</tr>
</tbody>
</table>

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>Reagent or Resource</th>
<th>Source</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD133 MicroBead Kit - Hematopoietic Tissue, Human</td>
<td>Miltenyi Biotec</td>
<td>Cat# 130-100-830</td>
</tr>
<tr>
<td>StemSep CD34 Positive Selection Cocktail</td>
<td>StemCell Technologies</td>
<td>Cat# 14756</td>
</tr>
<tr>
<td>CD4 MicroBead sort kit, untouched</td>
<td>Miltenyi Biotec</td>
<td>Cat# 130-096-533</td>
</tr>
<tr>
<td>CD4 MicroBeads</td>
<td>Miltenyi Biotec</td>
<td>Cat# 130-045-101</td>
</tr>
<tr>
<td>ACTB TaqMan Gene Expression assay, FAM-MGB</td>
<td>Applied Biosystems</td>
<td>assay ID Hs99999903_m1</td>
</tr>
<tr>
<td>PoloR2A TaqMan Gene Expression assay, FAM-MGB</td>
<td>Applied Biosystems</td>
<td>assay ID Hs00172178_m1</td>
</tr>
<tr>
<td>pcDNA3.1/V5-His-TOPO kit</td>
<td>Invitrogen</td>
<td>Cat# K480001SC</td>
</tr>
<tr>
<td>Pierce EZ-Link Micro Sulfo-NHS-Biotinylation Kit</td>
<td>Fisher</td>
<td>Cat# PI-21925</td>
</tr>
<tr>
<td>Deposited Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence files</td>
<td>GenBank</td>
<td>MH895379-MH897920</td>
</tr>
<tr>
<td>Experimental Models: Cell Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACH-2</td>
<td>NIH AIDS Reagent Program</td>
<td>Cat# 349; RRID:CVCL_0138</td>
</tr>
<tr>
<td>293T</td>
<td>ATCC</td>
<td>Cat# CRL-3216; RRID:CVCL_0063</td>
</tr>
<tr>
<td>CEM-SS</td>
<td>NIH AIDS Reagent Program</td>
<td>Cat# 776</td>
</tr>
<tr>
<td>MOLT4-R5</td>
<td>NIH AIDS Reagent Program</td>
<td>Cat# 4984</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Table S7 for PCR primers</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVQA</td>
<td>NIH AIDS Reagent Program</td>
<td>Cat# 12666</td>
</tr>
<tr>
<td>pNL4-3-ΔGPE-GFP</td>
<td>McNamara et al., 2012</td>
<td>N/A</td>
</tr>
<tr>
<td>p436-5LTRdel</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pCMV-HIV-1</td>
<td>S.-J.-K. Yee (City of Hope National Medical Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>pVSV-G</td>
<td>Nancy Hopkins (Massachusetts Institute of Technology)</td>
<td>N/A</td>
</tr>
<tr>
<td>p409HX-gagGFP</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>p421HX-gagGFP</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>p439BX-gagGFP</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>p454BX-gagGFP</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pHIV454304</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>p89.6</td>
<td>R.G. Collman (University of Pennsylvania)</td>
<td>NIH AIDS Reagent Program Cat# 3552</td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlowJo</td>
<td>https://www.flowjo.com; RRID:SCR_008520</td>
<td></td>
</tr>
<tr>
<td>LaserGene suite (SeqMan, SeqBuilder)</td>
<td>DNAStar</td>
<td>V10.1.1; RRID:SCR_000291</td>
</tr>
<tr>
<td>MEGA7</td>
<td>(Kumar et al., 2016)</td>
<td>https://www.megasoftware.net</td>
</tr>
<tr>
<td>Poisson distribution calculator</td>
<td>https://keisan.casio.com/exec/system/1180573179</td>
<td></td>
</tr>
<tr>
<td>HIVAlign</td>
<td>Los Alamos National Laboratory</td>
<td>https://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html</td>
</tr>
<tr>
<td>HyperMut</td>
<td>Los Alamos National Laboratory</td>
<td>https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html; RRID:SCR_014933</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 μm nylon cell strainer, sterile</td>
<td>Falcon</td>
<td>Cat# 352360</td>
</tr>
<tr>
<td>MACS MS columns</td>
<td>Miltenyi Biotec</td>
<td>Cat# 130-042-201</td>
</tr>
<tr>
<td>MACS LS columns</td>
<td>Miltenyi Biotec</td>
<td>Cat# 130-042-401</td>
</tr>
<tr>
<td>MiniMACS Separator</td>
<td>Miltenyi Biotec</td>
<td>Cat# 130-042-102</td>
</tr>
</tbody>
</table>

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kathleen Collins (klcollin@med.umich.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Fifty-three HIV-infected individuals were recruited through the University of Michigan HIV-AIDS Treatment Program and the Henry Ford Health System. Written informed consent was obtained according to a protocol approved by the University of Michigan Institutional Review Board and Henry Ford Institutional Review Board (U-M IRB number HUM00004959 and HFH IRB number 7403). Donors were between 21 and 69 years old (Table S1), with normal white blood cell counts and plasma viral loads < 48 copies/mL for at least 6 months on antiretroviral therapy (Table S1). We obtained 100 mL of peripheral blood and 20 mL of bone marrow from most donors. The 43 donors who met the sample inclusion criteria were comprised of 38 males and 5 females (Table S1). We did not note sex differences in our ability to detect provirus in donor HSPCs or in the detection of residual PV that matched HSPC provirus. However, this study was not designed to detect such differences. The smaller number of females than males recruited to the study greatly limits this analysis. 41 subjects initiated therapy in chronic phase of HIV-1 infection, two males began therapy in the acute/early stage.

All collected samples were coded and anonymized. A sample size of approximately 50 subjects was chosen based on a power calculation that assumed half the HSPC samples would be positive. We estimated that with a sample size of 50 subjects we could be 95% certain that our estimate of the prevalence of HSPC harboring infectious provirus would be accurate to within 7%.

Cell lines
293T cells were authenticated by genotyping performed by the Duke DNA Analysis Facility and grown in DMEM. CEM-SS cells were genotyped but not authenticated as a genotyped comparison cell line was not available to Duke DNA Analysis Facility. CEM-SS, MOLT4-R5 and ACH2 cells were grown in RPMI-1640 plus 10 mM HEPES. All cells were grown in medium supplemented with 100 Units/mL penicillin, 100 μg/mL streptomycin, 2 mM glutamine, 10 mM HEPES and 10% fetal bovine serum. All cell lines were maintained at 37°C/5% CO₂ humidified atmosphere.

METHOD DETAILS

Donor cell isolation and fractionation

Isolation of bone marrow mononuclear cells (BMMC)

Bone marrow was aspirated from the posterior iliac crest into 10 cc syringes containing 0.5 mL heparin. Cell and plasma isolations were performed in a dedicated clean room distinct from PCR set up and product gel analysis areas to minimize potential contamination. Marrow was expelled into a 50 mL conical tube and diluted with one volume bone marrow wash buffer (BM Wash), which was composed of phosphate buffered saline [PBS (Invitrogen)], 10% FBS and 2 mM EDTA (Lonza). The diluted marrow was passed through a 100 μm nylon cell strainer by gravity flow. The marrow was further diluted and overlayed on Ficoll-Paque for gradient separation at 720 x g for 30 min at 25°C, acceleration setting 2, deceleration setting 2. After the separation, bone marrow plasma in the upper layer was carefully removed and filtered through a 0.2 μm pore to remove cells and stored at −80°C. Bone marrow mononuclear cells (BMMC) at the plasma/Ficoll interface were pooled, washed with BM Wash, and incubated in 20 mL StemSpan SFEM in a prone T75 culture flask for 1.5 – 2 hours at 37°C in 5% CO₂. Non-adherent cells were removed by gently rolling the flask and pipetting. Flasks were rinsed with 5 mL cold MACS Buffer (2% FBS, 2 mM EDTA in PBS) and detached cells were pooled with non-adherent cells.
Purification of CD133+ cells (sort 1)

CD133+ BMMCs were purified using the CD133 MicroBead Kit – (Hematopoietic Tissue, Human) according to the manufacturer’s protocol for maximal purity with the following modifications: for donations 453000 and onward, we used 1.5 times the recommended bead to cell ratio to increase CD133+ cell recovery. MACS MS columns in a MiniMACS magnetic separator or MACS LS columns in a MidiMACS Separator on a MACS MultiStand (Miltenyi Biotec) were prepared, depending on the number of cells to be sorted. A 30 μm pore Pre-Separation filter was placed over the first of the two columns used in maximal purity protocol, and columns and filter were equilibrated with MACS Buffer before applying cell samples. Each column was washed twice. Sort purity was ascertained at each step by analyzing an aliquot for CD133, CD34, and CD3 expression by flow cytometry (see below).

Isolation of CD34+ cells (sort 2)

The flow through cells from the first column were used for the second sort in which CD133-depleted CD34+ HSPCs were isolated. For CD34+ cell isolation, flow through cells were concentrated to 200 million cells/mL in MACS Buffer then the StemSep CD34 Positive Selection kit was applied and incubated according to the manufacturer’s instructions for maximal purity. MACS Buffer and columns were substituted for washes and magnetic separation as described for the CD133 sort (sort 1). Sort purity was ascertained at each step by analyzing an aliquot for CD133, CD34, and CD3 expression by flow cytometry (see below).

Following purification, HSPCs and matching numbers of flow through cells were washed with 4 mL of StemSpan medium and divided into equal aliquots for DNA extraction on a MagNAPure Compact Nucleic Acid Isolation unit and cryogenic preservation in 10% Hybrid-Max DMSO in FBS. The bulk flow through of the second sort was viably frozen and served as a source of non-divided into equal aliquots for DNA extraction on a MagNAPure Compact Nucleic Acid Isolation unit.

Isolation of BMMC CD4+ cells for viral outgrowth assay

Bulk flow through cells described above were quick-thawed at 37°C and washed twice with R10 medium supplemented with 40 U/mL DNase I (Sigma). CD4+ cells were isolated by negative selection with the CD4 MicroBead Sort Kit, Untouched, according to the manufacturer’s protocol.

Plasma virus and peripheral blood mononuclear cell (PBMC) isolation

100 mL of peripheral blood was collected into 10 mL purple top ethylenediaminetetraacetic acid dipotassium salt vacutainer tubes (BD) on the same day as the bone marrow aspirate. The blood was diluted with PBS, then overlayed onto Ficoll-Paque. Gradient separation was performed as described for bone marrow samples. Following the centrifugation, plasma was filtered through a 0.2 μm pore to remove cells. Virus was pelleted at 112,400xg for 1.5 – 2 h at 4°C. Viral pellets were resuspended with 1 mL TRIzol Reagent and stored at −80°C until RNA extraction. Mononuclear cells at the plasma:Ficoll interface were washed twice with PBS before extracting DNA from two aliquots of 10⁸ cells and viably freezing the remainder.

CD4+ cells were positively selected from thawed PBMC by incubation with CD4 MicroBeads at a 50% higher bead:cell ratio than in the product insert and sequential isolation over two MACS MS columns. Bead bound CD4+ cells were depleted of adherent cells overnight at 37°C in R10 medium in a tissue culture treated well plate. DNA was extracted from one million cells with a MagNAPure Compact Nucleic Acid Isolation unit.

Flow cytometry and antibodies

All cell samples were fixed with 2% paraformaldehyde (Sigma) in FACS Buffer (2% FBS, 1% human AB serum, 2 mM HEPES, 0.025% sodium azide (Sigma) in PBS without calcium or magnesium) for 30 minutes at room temperature before acquisition on a BD Biosciences FACSCanto cytometer or FACScan cytometer with Cytek 6-color upgrade.

Flow cytometric analysis of cell purity

BMMCs aliquots removed for purity assessment were stored at 4-8°C overnight before staining. The purity of the recovered HSPC populations was measured for expression of the following human proteins: CD133 [phycoerythrin (PE) conjugated or biotin-conjugated with streptavidin-Pacific blue], CD34 [conjugated with fluorescein isothiocyanate (FITC)], CD3 [conjugated with allophycocyanine (APC), PE, or Pacific Blue]. Nonviable cells were identified and excluded from analyses by staining with 1 μg/mL 7-aminoactinomycin D (7-AAD, Sigma) or 40 ng/mL 4,6-Diamidino-2-phenylindole (DAPI, Pierce) in FACS Buffer. An unstained pre-adherence depletion cell sample, isotype controls and single-color compensation controls using OneComp eBeads (eBioscience) were processed in parallel to aid acquisition and compensation settings.

Flow cytometric analysis of GFP expression by transfected and transduced cells

Transfected 293T cells were washed once in PBS, detached from the plate with 0.05% trypsin EDTA (GIBCO), and fixed with 2% paraformaldehyde for 30 minutes at room temperature. Transduced suspension cells were fixed as described for 293T cells. Expression of GFP was assessed on viable cells gated by light scatter.

Flow cytometric analysis of intracellular Gag stain to measure infection

Cells treated with virus were fixed in 2% paraformaldehyde for 30 minutes at room temperature, permeabilized in 0.1% Triton X-100 (Fisher) at room temperature for 5 minutes, and stained with PE-conjugated anti-Gag antibody at room temperature for 20 min. Fluorescence was measured on a BD FACScan cytometer with Cytek 6-color upgrade. Cells were gated by forward scatter versus side scatter, and infected cells were gated by Gag-PE versus side scatter using mock infected cells to set the Gag+ gate.
DNA extraction
Cellular DNA was prepared using a MagNA Pure Compact System in room one of the two dedicated PCR clean rooms described below. Cell suspensions in PBS were extracted with program “DNA Blood 100_400” and with the “Cultured cells” setting.

RNA isolation
RNA was prepared in room one of the two dedicated PCR clean rooms described below. In addition, work space, pipets and equipment surfaces were wiped down with RNase Away (Invitrogen) to reduce RNase transfer before handling samples and reagents.

Plasma virus RNA isolation
Frozen samples in TRizol were thawed at room temperature. Two micrograms of control human Raji cell line RNA were spiked into donor TRizol samples prior to organic extraction to serve as carrier for improved RNA recovery as well as a means to monitor RNA extraction and reverse transcription efficiency. A separate tube of TRizol and Raji RNA was prepared as a reagent only control. A fresh aliquot of chloroform was prepared daily and the organic extraction was performed according to the manufacturer’s directions. The aqueous phase of the TRizol suspensions was further purified with the RNaseasy Micro kit (QIAGEN). Samples were divided into two aliquots and processed according to the manufacturer’s protocol except that the DNase step was performed after RNA elution as described below as we found this achieved a higher yield. RNA was eluted with 20 μL of RNase-free water.

DNase treatment was performed immediately before reverse transcription. Enzyme reactions were prepared on ice or in a cooler rack. RNA samples were divided into two 20 μL reactions containing 2U of Amp Grade DNaseI and 10 μL RNA following the manufacturer’s protocol.

Viral outgrowth supernatants
For RNA isolation from viral supernatants, we harvested supernatants from 5 million CD4+ cells cultured in 1mL of R10 medium supplemented with: 0.3% DMSO solvent control or 50 ng/mL PMA and 1 μM ionomycin incubated at 37°C in 5% CO2 for 48 hours. Culture supernatants were centrifuged at 700xg for 5 minutes to remove cells and debris, and were processed as previously published (Laird et al., 2015) using TRizol LS reagent according to the manufacturer’s protocol with the modification that 1 μg of Raji RNA was added to the TRizol LS to allow for quantification of the efficiency of RNA recovery. RNA was dissolved in 10 μL RNase-free water.

Cellular RNA extraction
Cellular RNA was extracted using the QIAGEN RNeasy kit according to the manufacturer’s protocol. Samples were frozen at –80°C after homogenization with QIAGEN Qiashredders and thawed at room temperature to complete sample binding, on-column DNase digestion with QIAGEN RNase-free DNase set, and elution in 22 μL water.

Reverse transcription
Reactions were performed for each sample as described below. RNA samples were treated with DNase prior to reverse transcription and/or a reverse transcriptase leave-out was performed to avoid and/or detect contaminating HIV DNA contributing to the downstream qPCR signal. In all samples tested, reverse transcriptase leave-out controls were negative. Control samples indicated that DNase treatment was fully effective.

Plasma virus RNA
Plasma virus cDNA synthesis with oligo dT priming was performed using the qScript Flex cDNA Kit scaled up from the manufacturer’s protocol to 200 μL final reaction volumes incubated in 50 μL aliquots. cDNA was pooled and transferred to a low retention 1.5 mL snap cap tube and stored at –20°C.

CD4+ T cell supernatants (VOA)
RNA was reverse transcribed with qScript cDNA SuperMix per manufacturer’s instructions scaled up to 200 μL reactions. cDNA was pooled and concentrated to 30 μL in Buffer EB with the QIAQuick PCR Purification kit (QIAGEN) according to the kit protocol.

Cell-associated RNA
cDNA was generated from cell-associated RNA as described for the viral outgrowth assay, but in 50 μL reactions per sample which were tested without volume reduction.

PCR contamination control procedures
To minimize carryover and cross contamination with lab strains, three separate work rooms were used for cell and nucleic acid isolation, PCR reaction set up, and amplified product analysis. Work flow proceeded unidirectionally each day. The first room was for tissue preparation and nucleic acid extraction, as described above. The PCR set-up room (room 2) utilized a dedicated still air hood for reagents and unamplified templates and a separate hood for adding first round PCR products to reactions. Hoods were wiped down with 10% bleach and 70% ethanol before commencing any work. The entire interior of each hood was decontaminated with 10% bleach and UV irradiation monthly. Reactions were assembled and stock tubes removed before tubes containing DNA were opened. Gloves were changed after handling template and before touching refrigerator or freezer handles. First round PCR products were added to second round reactions while wearing disposable sleeve protectors. Second round products were never opened in the reaction set-up room. Tubes containing stock solutions were not opened after handling amplified DNA. Gel loading and DNA extraction from gel bands occurred in the third room.
SGA
Cellular genomic DNA or cDNA prepared from plasma were used in a two-step, limiting dilution SGA reaction. The cut off for limiting dilution was 30% positive reactions in the donor samples. ACH2 cells, which stably harbor one copy of the HIV genome were used for this as a positive control. PBMC DNA from each donor was used to select optimal primers for detection of HIV from that donor. All PCRs were 50 μL reactions containing 1X Phusion Buffer HF, 200 nM dNTP (from 100 mM dNTP set, Roche), 500 nM each primer, and 1 U Hot Start II High Fidelity DNA Polymerase. First round reactions received 5 μL DNA or cDNA template, second round reactions amplified 1-2 μL of the first-round reaction. Primer sequences and sources are listed in Table S7.

Gag/env multiplex SGA PCR
First round reactions were multiplexed for LTR/gag with 5’ LTR forward primer U5-557.9662-f and either tagD4.6b-p24R1d or long1316-D4.6b Dengue-tagged gag reverse primer, and env C2-V3 with forward primer C2F2 and reverse primer C4R1. Reactions were denatured at 98 °C for 30 s, followed by 35 cycles of 98 °C for 10 s, 68 °C for 10 s, and 72 °C for 25 s, with a final extension at 72 °C for 5 minutes. For some donors, alternative primers were used because of sequence variation. If first round primers extending from vif (5036d) or tat (5956d) to the 3’ LTR (LTR-pA-R) were used instead, the 72 °C extension time per cycle was 2 minutes and the final extension was for 10 minutes. For full length envelope amplification, first round primers were 5036d and LTR-pA-R.

Second round LTR-gag PCR were performed with primers 626 s and Dengue tag D4.6b and incubated at 98 °C for 30 s, followed by 35 cycles of 98 °C for 10 s, 70 °C for 10 s, and 72 °C for 40 s and a final extension at 72 °C for 10 minutes. Second round env C2-V3 reactions consisting of forward primer env1n5 and reverse primer env1n3 were incubated at 98 °C for 30 s and were cycled 40 times at 98 °C for 10 s, 56 °C for 10 s, and 72 °C for 15 s, concluding with a 5 minute extension at 72 °C. Cycling conditions for second round reactions spanning full length env (primers 5956d and LTR-pA-R) began with denaturation at 98 °C for 30 s, followed by 35 cycles of 98 °C for 10 s, 71 °C for 10 s, and 72 °C for 2 minutes, with a final incubation at 72 °C for 10 minutes. Some donor viruses required an alternative semi-nested LTR-gag primer set U5-577.9662-f and 1294r, and were incubated at 98 °C for 30 s with 35 cycles of 98 °C for 10 s, 64 °C for 10 s, and 72 °C for 40 s, and a final extension at 72 °C for 5 minutes.

Optimal amplification of env C2-V3 from donors 409000, 415000, 421000 and 432000 required donor specific primers which were designed for compatibility with the cycling conditions described for primer sets C2F2/C4R1 and env1n5/env1n3.

Near full length genome PCR
For detection of intact near full length proviral genomes, first round reactions performed at limiting dilution (fewer than 30% positive reactions) for the amplification of single genomes. Reactions contained primers U5-577.9662-f and a Dengue-tagged version of LTR-pA-R (Sebastian et al., 2017). The incubation conditions were 98 °C for 40 s, followed by 35 cycles of 98 °C for 10 s, 64 °C for 10 s, and 72 °C for 4 minutes, followed by 72 °C for 10 minutes. First round reactions were screened for the presence of env C2-V3. Only reactions with open reading frames were further amplified to generate a near full-length second round product of approximately 9 kilobase pairs (kbp) and/or three overlapping sub-genomic regions. The semi-nested reaction contained forward primer 626 s and either LTR-pA-R or tag primer D4.6b and was incubated at 98 °C for 10 minutes. Some donor viruses required an alternative semi-nested LTR-gag primer set U5-577.9662-f and 1294r, and were incubated at 98 °C for 30 s with 35 cycles of 98 °C for 10 s, 64 °C for 10 s, and 72 °C for 40 s, and a final extension at 72 °C for 5 minutes.

In some cases, we also amplified overlapping subgenomic fragments consisting of a ~700 bp gag product (from U5-577.9662-f and 1294r primers), a 3.7 kbp fragment (from 5956d in vif and LTR-pA-R through the poly A addition site), and a 5.3 kbp fragment (from the 3’ end of gag to 5’ end of env amplified with primers 1204s and E30HX rc). The three overlapping fragments have exactly matching overlaps ranging from 67-461 base pairs.

The cycling conditions for the 3.7 kbp and 700 bp fragments are described above. The cycling conditions for the 5.3 kbp fragment were 98 °C for 30 s, followed by 35 cycles of 98 °C for 10 s, 66 °C for 10 s, and 72 °C for 2 minutes 40 s, and ended with 10 minutes at 72 °C. All reactions were amplified in a BioRad C1000 thermocycler.

PCR amplification of integration sites
Amplification of integration sites used a modification of an assay that was previously published (Liu et al., 2006). The assay was modified by the design of new primers that allowed the inclusion of the 5’ deleted region described in Figure 1 along with the integration site. To improve restriction digestion and ligation efficiency, MagNA Pure DNA elution buffer was removed by ethanol precipitation and the DNA was resuspended to the original volume with QIAGEN Buffer EB (10 mM Tris). Recovered DNA was digested in 50 μL with PstI at 37 °C x 5 hours followed by an incubation at 80 °C x 30 minutes, then applied to a 200 μL ligation reaction containing 1X Ligation Buffer with 2 μM ATP and 3200 units T4 DNA Ligase (New England Biolabs). Ligation reactions were divided into 50 μL aliquots and incubated at 16 °C for 15 hours followed by 80 °C for 30 minutes. 5 μL of ligation reaction was added to 50 μL PCR for a total of 80 reactions. First round cycling was performed using primers outer LTR3 and outer gag at 98 °C for 30 s for an initial cycle followed by 35 cycles of 98 °C for 10 s, 63 °C for 10 s, and 72 °C for 2 minutes. A final incubation was performed at 72 °C for 5 minutes. Second round PCR was performed with primers inner LTR3 and inner gag at 98 °C for 30 s for the initial cycle followed by 30 cycles of 98 °C for 10 s, 66 °C for 10 s, and 72 °C for 2 minutes. A final incubation was performed at 72 °C for 5 minutes. Potential integration sites were purified from gel bands and sequenced.

Once the integration site was identified and sequenced, we designed primers outer Chr9 and inner Chr9 to amplify additional copies. These primers were used with HIV inner LTR3 reverse primer to generate amplicons. Five μL of genomic DNA were added neat to 80 - 50 μL first round PCR reactions and incubated at 98 °C for 30 s on the initial cycle followed by 35 cycles of 98 °C for 10 s, 70 °C for 10 s, and 72 °C for 40 s. We also included a final incubation of 72 °C for 10 minutes. One μL of first round product was added to second round reactions, which were cycled under the same conditions as the first round.
Gel extraction of DNA fragments

Amplicons were purified from TAE (40 mM Tris, 20 mM acetate, 1 mM disodium EDTA; Fisher)/agarose (Fisher) gels containing 1X GelRed with the QIAquick Gel Extraction kit (QIAGEN) according to the manufacturer’s instructions. Nucleospin Gel and PCR Clean-up Columns were substituted for kit columns and maximum sample and wash volumes were reduced to 650 µL. Buffer PE wash and Buffer EB elutions were incubated for 4 minutes at room temperature before centrifugation through the column membrane. Eluates were sequenced directly in both directions by the Sanger method at the University of Michigan DNA Sequencing Core.

Quantitative reverse transcription PCR (qRT-PCR)

All qRT-PCR reactions were cycled on an Applied Biosystems 7300 thermocycler, with the following conditions: 50°C for 2 minutes, then 95°C for 10 minutes, followed by 45 cycles of 95°C for 15 s and 60°C for 60 s.

Viral supernatants

Plasma and supernatant cDNA yields were determined by quantitative real-time RT-PCR for β-actin mRNA (ACTB). cDNAs were diluted 1:10 and assayed with TaqMan Gene Expression MasterMix or Taqman Fast Advanced Gene Expression MasterMix as previously described (Laird et al., 2015). A cDNA synthesis reaction performed on 500 ng of direct input Raji RNA was serially diluted to generate a standard curve.

HIV mRNA was quantified with primers forward 9501 mRNA-F, reverse 9629-polyA-R and 0.25 µM probe L9531FM as previously described (Bullen et al., 2014) with either Taqman FAST Gene Expression MasterMix or Taqman Gene Expression MasterMix. HIV mRNA was assayed on the same plate as the no reverse transcriptase and β-actin reactions. Standard curves were generated by serial dilution of the pVQA HIV plasmid down to 10 HIV copies.

Cellular RNA

Levels of HIV mRNA in VOA and 436 5’LTR deletion cell-assocciated RNA were quantified as for supernatants. RNA input was normalized for POLR2A levels. A standard curve was prepared by serially diluting one sample from neat to 10,000-fold diluted, while all experimental samples were diluted 10-fold for comparison to the standard curve.

Construction of reporter constructs and infectious proviral genomes

Generation of reporter construct containing the deletion identified in donor 436000 (p436-5LTRdel)

A 2238 bp DNA fragment containing the donor 436000 5LTR deletion identified in donor 436000 (p436-5LTRdel) was synthesized by GenScript with flanking 5′ Sall and 3′ XbaI restriction sites and cloned by GenScript into the multiple cloning cassette of pUC18, the same vector as the parental viral plasmid for NL4-3-LTR deletion cell-associated RNA.

Synthesis of LTR reporter constructs from donor LTR sequences

To test the activity of LTR sequences from intact near full length HSPC provirus recovered from donors 409000, 421000, 439000 and 454304, LTR-driven Gag-EGFP (GenBank: LC311024.1) fusion inserts were synthesized by Thermo to provide reporter constructs and cloning intermediates for 454304 reconstruction. Because of problems with PCR amplifying duplicated sequences, HIV near full-length PCR does not completely regenerate full LTRs at each end. For synthetic reconstruction, full LTR sequences were inferred from the available donor derived sequences for all but 89 (409000, 421000, 454304) or 108 bp (439000). This small gap was filled in with NL4-3 sequence. In some cases, additional gag sequence was also included to allow for the possibility of full genomic reconstruction in the future. This resulted in some variation in the resultant Gag-GFP fusion protein. The synthetic constructs were provided in Thermo’s pMK (p421HX-gagGFP, p439BX-gagGFP, p454BX-gagGFP) or pMS (p409HX-gagGFP) plasmids along with quality control sequence verification. LTR-gag regions were independently confirmed by sequencing.

Reconstruction of donor proviral genomes to produce infectious virus

The donor 454304 near full length genome amplicon generated by PCR with primers U5-577.9662-f and LTR-pA-R was gel purified and TOPO cloned with the pcDNA3.1/V5-His-TOPO kit. To accomplish this, the PCR product was desalted with the QIAquick PCR Purification kit according to QIAGEN’s protocol. An A-overhang was added with Taq DNA polymerase (New England Biolabs) and 1 mM ATP (Roche) at 70°C for 20 minutes before combining with salt solution and vector provided in the TOPO kit in proportions recommended for chemical transformation. The TOPO product was transformed into competent Stbl2 cells according to the manufacturer’s instructions and DNA minipreps were screened with SbfI and KpnI (New England Biolabs). Potentially intact clones were regrown for larger scale plasmid isolation to completely sequence the HIV insert.

The whole genome for the near full-length genome isolated from donor 454304 DNA was reconstructed by inserting the BshHII-XhoI fragment from the TOPO-cloned PCR product into the corresponding LTR vector using a three-way ligation strategy using fragments generated with XhoI, FspI and BssHII digestions. Transformed Stbl2 cultures were grown at 30°C to minimize deletions. Colonies were screened for the correctly ligated product by digesting individually with HindIII-HF, XhoI, FspI, and BssHII (all from New England Biolabs). The properly reconstructed plasmid, pHIV454304, lacked the GFP reporter and contained the complete, fully infectious HIV genome.
Transfections and virus production

HEK293T cells were seeded to provide 50%–75% confluence at the time of transfection. 24 hours post-seeding, cells were transfected using a 1:4 mass ratio of DNA:polyethylenimine in 150 mM NaCl. Where pCMV-HIV-1 and pVSV-G plasmids were included, they were added in equal mass ratios with ΔNL4-3-ΔGPE-GFP or LTR construct plasmids. DNA and polyethylenimine were gently vortexed for 10 s and incubated at room temperature for 15 minutes. The transfection solution was then added to the plate drop-wise while agitating, and the cells were maintained at 37 °C, 5% CO2. 48 hours post-transfection, viral supernatants were collected and clarified by pelleting cell debris at 500-1,000xg for 5-15 minutes, aliquoted and stored at −80 °C. To achieve higher viral titers, equal copy numbers of HIV RNA from the wild-type NL4-3-ΔGPE-GFP or LTR-deleted viral supernatants were concentrated by ultracentrifugation at an average RCF of 50,000xg for 2 hours. Viral pellets were resuspended in D10 medium with 56 μg/mL plasmocin and used for transductions.

HIV p24 ELISA

Gag p24 capture antibody was diluted to 1 μg/ml in carbonate coating buffer (100 mM NaHCO3, 32.35 mM Na2CO3 in water). 100 μL of the antibody mixture was applied per well of Nunc Immuno Maxi-Sorp 96 well plates and incubated at 4 °C for at least 16 hours. Antibody coated plates were used within 2 weeks of coating. Before use, each well was washed 3 times with wash buffer [200 mM NaCl, 0.05% Tween-20 (both from Fisher) in PBS] and blocked with blocking buffer [1% casein (Sigma) in PBS] for 45 min. Supernatant from HIV transfected or infected cultures was clarified at 6000xg for 5 minutes and serially diluted in ELISA lysis buffer (0.05% Tween-20, 0.5% Triton X-100, 0.5% casein in PBS) to produce readings within the dynamic range of the standard curve. HIV p24 core antigen was also diluted in lysis buffer to generate a standard curve from 1.5625 to 100 ng/mL. Plain lysis buffer was used to blank absorbance readings. 100 μL were applied per well and incubated for 2 hours at room temperature. The plates were then washed four times with a 1 minute incubation per wash. Anti-p24 detection antibody was biotinylated using EZ-Link Micro Sulfo-NHS-Biotinylation kit per manufacturers protocol. 0.5 μg/mL biotinylated antibody in diluent buffer (0.5% casein, 0.5% Tween-20 in PBS) was applied to each well, incubated at room temperature for 1 hour then washed before addition of 1 μg/mL strepavidin-horse radish peroxidase (Streptavidin Poly-HRP40). The plates were incubated for 30 minutes, washed, and developed with TMB substrate (3, 3′, 5′, 5′-tetramethylenbenzidine, Sigma) for 20 minutes. The reaction was stopped by adding 1/4 volume of 0.5M sulfuric acid (Malinkroltet) and mixing gently. Absorbance was read at 450 and 650 nm. Peroxidase activity was calculated as A450 minus A650 and p24 concentration interpolated from the standard curve.

HIV transduction and infection of T cell lines

Transduction of CEM-SS cells and infection of MOLT4-R5 cells were by spin inoculation at 1050-1400xg for 2 hours at 25 °C.

QUANTIFICATION AND STATISTICAL ANALYSIS

Donor and sample exclusion criteria

Ten donors were excluded due to lack of sufficient volume of bone marrow, HSPC sort purity below 80% CD133+ (sort 1) and CD34+ (sort 2), > 1% CD3+ cells, or inability to assess CD3+ T cell content in HSPC population at any donation time point. For the included donors, there were instances where one sort had adequate purity, but the other did not. These exclusions are summarized in Figure S1A. Proviral sequences from HSPC samples were subjected to a statistical test for likelihood that they were contributed by contaminating T cells (see legend for Figure S1). Hypermutated sequences were not excluded from phylogenetic trees but were excluded from the average pairwise distance calculation presented in Table S4 as is standard.

Phylogenetic Analysis

Condensed consensus Maximum Likelihood phylogenetic trees of all gag and env C2-V3 amplicons were estimated for appropriate clustering. Individual donor phylogenetic trees were inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model (Hasegawa et al., 1985). Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites [5 categories (+G, parameter values as noted)]. Codon positions included were 1st+2nd+3rd+Noncoding. All positions with less than 95% site coverage were eliminated. HIV sequence database tools on the Los Alamos National Laboratory website were used to translate HIV genes (HIVAlign) and determine if sequences were hypermutated (HyperMut).

Statistical analyses

Statistical details of experiments can be found in Figure legends. All results are expressed as the mean ± SD unless otherwise specified. Comparison of proportions of sequence populations was performed using online calculators for two-tailed Z-test comparison of 1 or 2 sample proportions (https://www.socscistatistics.com/tests/ztest). P values were determined using two-tailed
Wilcoxon matched pairs signed rank test except for Table S3, which utilized two-tailed student’s t-test. All experiments were repeated in at least two independent experiments unless otherwise indicated in the figure legend.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the HIV sequences from donor cells and tissues reported in this paper are Genbank: MH895359-Genbank: MH897920.