
Henry Ford Health Henry Ford Health 

Henry Ford Health Scholarly Commons Henry Ford Health Scholarly Commons 

Rheumatology Articles Rheumatology 

6-16-2022 

Hypomethylation of miR-17-92 cluster in lupus T cells and no Hypomethylation of miR-17-92 cluster in lupus T cells and no 

significant role for genetic factors in the lupus-associated DNA significant role for genetic factors in the lupus-associated DNA 

methylation signature methylation signature 

Patrick Coit 

Xiavan Roopnarinesingh 

Lourdes Ortiz-Fernández 

Kathleen Maksimowicz-McKinnon 
Henry Ford Health, kmckinn2@hfhs.org 

Emily E. Lewis 

See next page for additional authors 

Follow this and additional works at: https://scholarlycommons.henryford.com/rheumatology_articles 

Recommended Citation Recommended Citation 
Coit P, Roopnarinesingh X, Ortiz-Fernández L, McKinnon-Maksimowicz K, Lewis EE, Merrill JT, McCune WJ, 
Wren JD, and Sawalha AH. Hypomethylation of miR-17-92 cluster in lupus T cells and no significant role 
for genetic factors in the lupus-associated DNA methylation signature. Ann Rheum Dis 2022. 

This Article is brought to you for free and open access by the Rheumatology at Henry Ford Health Scholarly 
Commons. It has been accepted for inclusion in Rheumatology Articles by an authorized administrator of Henry 
Ford Health Scholarly Commons. 

https://scholarlycommons.henryford.com/
https://scholarlycommons.henryford.com/rheumatology_articles
https://scholarlycommons.henryford.com/rheumatology
https://scholarlycommons.henryford.com/rheumatology_articles?utm_source=scholarlycommons.henryford.com%2Frheumatology_articles%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Patrick Coit, Xiavan Roopnarinesingh, Lourdes Ortiz-Fernández, Kathleen Maksimowicz-McKinnon, Emily 
E. Lewis, Joan T. Merrill, W. Joseph McCune, Jonathan D. Wren, and Amr H. Sawalha 

This article is available at Henry Ford Health Scholarly Commons: https://scholarlycommons.henryford.com/
rheumatology_articles/27 

https://scholarlycommons.henryford.com/rheumatology_articles/27
https://scholarlycommons.henryford.com/rheumatology_articles/27


  1Coit P, et al. Ann Rheum Dis 2022;0:1–10. doi:10.1136/annrheumdis-2022-222656

Systemic lupus erythematosus

TRANSLATIONAL SCIENCE
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ABSTRACT
Objectives Lupus T cells demonstrate aberrant DNA 
methylation patterns dominated by hypomethylation 
of interferon- regulated genes. The objective of this 
study was to identify additional lupus- associated 
DNA methylation changes and determine the genetic 
contribution to epigenetic changes characteristic of 
lupus.
Methods Genome- wide DNA methylation was assessed 
in naïve CD4+ T cells from 74 patients with lupus and 74 
age- matched, sex- matched and race- matched healthy 
controls. We applied a trend deviation analysis approach, 
comparing methylation data in our cohort with over 16 
500 samples. Methylation quantitative trait loci (meQTL) 
analysis was performed by integrating methylation 
profiles with genome- wide genotyping data.
Results In addition to the previously reported 
epigenetic signature in interferon- regulated genes, we 
observed hypomethylation in the promoter region of 
the miR- 17- 92 cluster in patients with lupus. Members 
of this microRNA cluster play an important role in 
regulating T cell proliferation and differentiation. 
Expression of two microRNAs in this cluster, miR- 19b1 
and miR- 18a, showed a significant positive correlation 
with lupus disease activity. Among miR- 18a target genes, 
TNFAIP3, which encodes a negative regulator of nuclear 
factor kappa B, was downregulated in lupus CD4+ T 
cells. MeQTL identified in lupus patients showed overlap 
with genetic risk loci for lupus, including CFB and IRF7. 
The lupus risk allele in IRF7 (rs1131665) was associated 
with significant IRF7 hypomethylation. However, <1% of 
differentially methylated CpG sites in patients with lupus 
were associated with an meQTL, suggesting minimal 
genetic contribution to lupus- associated epigenotypes.
Conclusion The lupus defining epigenetic signature, 
characterised by robust hypomethylation of interferon- 
regulated genes, does not appear to be determined 
by genetic factors. Hypomethylation of the miR- 17- 92 
cluster that plays an important role in T cell activation is 
a novel epigenetic locus for lupus.

INTRODUCTION
Systemic lupus erythematosus (lupus or SLE) is a 
heterogeneous autoimmune disease of incompletely 
understood aetiology. The disease is characterised 
by a loss of immunotolerance and the develop-
ment of autoantibodies against nuclear antigens. 
Severe manifestations of lupus have significant 

impact on quality of life and can lead to organ 
damage and mortality in affected patients, partic-
ularly among patients of non- European genetic 
ancestry.1 2 Genetic risk contributes to the develop-
ment of lupus, but the estimated heritability of lupus 
is ~30%.3–5 Indeed, monozygotic twin studies in 
lupus suggest a substantial non- genetic contribution 
to the aetiology of lupus.6 Environmental exposures 
across the lifespan that can directly impact epigen-
etic regulation and cellular function are suggested 
to be involved in the pathogenesis of lupus.7 8

DNA methylation is an epigenetic mechanism 
that regulates gene expression through the enzyme- 
mediated addition of a methyl group to the cytosine 
bases in the genome. DNA methylation is heritable 
across cell generations and can promote gene 
silencing, making it an important component in 
regulating the plasticity of immune cell identity and 
function.9 Early work demonstrated that adoptive 
transfer of CD4+ T cells treated ex vivo with DNA 
methyltransferase (DNMT) inhibitors was sufficient 
to cause lupus- like disease in mice,10 mimicking the 
DNA methylation inhibition in patients with drug- 
induced lupus.11 Since then, other studies have 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Lupus is characterised by robust DNA 
hypomethylation in interferon- regulated genes; 
however, the genetic contribution to the lupus- 
associated epigenotype is unknown.

WHAT THIS STUDY ADDS
 ⇒ Our results suggest that genetic factors do not 
significantly contribute to the lupus- associated 
DNA methylation profiles.

 ⇒ We also report a novel epigenetic locus for 
lupus in a microRNA cluster involved in T cell 
function.

 ⇒ Furthermore, we provide a prototype example 
showing how a lupus risk genetic variant might 
mediate functional pathogenic effects through 
altering DNA methylation levels.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE AND/OR POLICY

 ⇒ This study highlights the importance of non- 
genetic factors in determining epigenetic 
changes characteristic of lupus.
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observed that CD4+ T cells of patients with lupus show a distinct 
shift in global DNA methylation compared with healthy indi-
viduals, potentially in part due to defective MEK/ERK signal-
ling, suppressing DNA methyltransferase 1 (DNMT1) activity in 
CD4+ T cells, and leading to hypomethylation and overexpres-
sion of costimulatory genes.12–16

We have previously observed a robust hypomethylation 
signature in interferon- regulated genes defining patients with 
lupus.17 18 Our initial findings in CD4+ T cells were subse-
quently confirmed and expanded to other cell types by our 
group and others.19–21 In CD4+ T cells, we observed hypometh-
ylation in interferon- regulated genes at the naïve CD4+ T cell 
stage, preceding transcriptional activity. This epigenetic ‘poising’ 
or ‘priming’ of interferon- regulated genes was independent 
of disease activity.18 The genetic contribution to this lupus- 
associated epigenotype is currently unknown.

Methylation quantitative trait loci (meQTL) are genetic poly-
morphisms that are associated with the methylation state of 
CpG sites either through direct nucleotide change within the 
CpG dinucleotide or intermediary mechanisms. Prior studies of 
patients with lupus show an enrichment of meQTL associated 
with type I interferon genes, genetic risk loci and specific clin-
ical manifestations in whole blood and neutrophils.22–24 Further-
more, our previous work suggests that meQTL might at least in 
part explain differences in DNA methylation between African- 
American and European- American patients with lupus.22

Herein, we evaluated genome- wide DNA methylation data in 
naïve CD4+ T cells from a large cohort of patients with lupus 
compared with matched healthy controls. We integrated DNA 
methylation and genotyping data to better understand the 
influence of genetic factors on the DNA methylation changes 
observed in lupus.

METHODS
Study participants and demographics
Seventy- four female patients with lupus and 74 female healthy 
age- matched (±5 years) and race- matched controls were 
recruited as previously described25 26 (online supplemental table 
1). All patients fulfilled the American College of Rheumatology 
classification criteria for SLE.27

Sample collection, DNA isolation and data generation
Genomic DNA samples for this study were collected from naïve 
CD4+ T cells as previously described.18 Briefly, magnetic beads 
and negative selection was used to isolate naïve CD4+ T cells 
from whole blood samples collected from patients with lupus 
and controls. Genomic DNA was directly isolated from collected 
cells and bisulfite converted using the EZ DNA Methylation Kit 
(Zymo Research, Irvine, California, USA). The Illumina Human-
Methylation450 BeadChip (Illumina, San Diego, California, 
USA) was used to measure DNA methylation levels at over 485 
000 methylation sites across the genome.

Epigenome-wide association study
Epigenome- wide association study (EWAS) for identifying 
associations between specific CpG sites and disease status was 
performed using GLINT.28 29 Covariates for age, race and tech-
nical batch were included for the analysis prior to other prepro-
cessing. No outliers beyond 4 SD were detected in the first two 
components of the principal component analysis (PCA) space, 
all 148 samples were included in the analysis. Reference- less cell 
type composition correction was performed using ReFACTor, 
with six components used in the downstream analysis to account 

for any cell- type heterogeneity in the samples. An additional 
covariate was included to account for effects of genetic admix-
ture using the EPISTRUCTURE algorithm included in GLINT. 
Cell- type composition covariate components generated by 
ReFACTor were included at this step to reduce bias from poten-
tial cell- type heterogeneity, and polymorphic CpG sites were 
excluded from this step and the EWAS. Using the age, race and 
technical batch covariates, along with six ReFACTor compo-
nents and one EPISTRUCTURE component, logistic regression 
for disease status was performed across all CpG sites, excluding 
the polymorphic and unreliable cross- reactive probes previously 
described in the literature, as well as CpG sites with low variance 
(SD <0.01).30 31

Differential DNA methylation analysis of gene promoters
Raw .idat files were used to generate methylation beta value 
profiles across all samples using GenomeStudio (Illumina) after 
background subtraction and normalising to internal control 
probes. Missing probe values were imputed using  sklearn. impute. 
KNNImputer, and ComBat was used to correct for batch effects 
associated with sample preparation.32–34 Ensembl gene loci for 
hg19 were downloaded using PyEnsembl.35 For each gene, loci 
for 1500 base pairs upstream of the transcription start site36 to 
the transcription start site (TSS) were mapped to the overlapping 
CpG probes using PyBedtools, and the mean of the associated 
probes for each gene was used as the representative methyla-
tion value for the resulting 20 437 mapped genes.37 Differen-
tial methylation analysis comparing patients and controls was 
performed on the mean TSS1500 methylation using limma, and 
false discovery rate adjustment using the Benjamini- Hochberg 
method was used to correct p values for multiple testing. Gene 
Ontology Enrichment for Biological Process terms was performed 
on the differentially methylated gene list using Enrichr with the 
mapped promoter gene list used as the background.38 39

Trend deviation analysis
DNA methylation data derived using the Illumina 450k methyl-
ation array from 23 415 samples were downloaded from Gene 
Expression Omnibus (GEO).40 To reduce batch effects, samples 
from experiments with fewer than 50 samples were omitted, 
and the remaining samples were quantile normalised.41 A matrix 
of pairwise Pearson’s correlation values for DNA methylation 
levels was computed across TSS1500 gene promoters in 16 
541 samples across 37 tissues to create a multitissue correla-
tion network (online supplemental figure 1). The differentially 
methylated genes in lupus- naïve CD4+ T cells were clustered by 
their correlation in global signature created from the GEO data. 
Hierarchical clustering was performed using Scipy’s hierarchical 
linkage. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis was performed using Enrichr,42 and p values 
were reported after false discovery rate (FDR) adjustment.

The goal of a trend deviation analysis is to detect correlation 
patterns among differentially methylated genes in large DNA 
methylation datasets. A correlation in methylation among a set 
of differentially methylated genes between patients and controls 
suggests a trend is being observed, reinforcing the significance 
and robustness of the differential DNA methylation detected 
between patients and controls.

Genotyping
Genomic DNA isolated from naïve CD4+ T cells was used as input 
for the Infinium Global Screening Array- 24 V.2.0 (Illumina). 
Single nucleotide polymorphisms (SNPs) with a genotyping call 
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rate <98%, minor allele frequencies (MAF) <5% and deviating 
from Hardy- Weinberg equilibrium (p<1E- 3) were filtered out. 
Samples were removed if they had a genotyping call rate <95%. 
Sex chromosomes were not analysed. About 100 000 indepen-
dent SNPs were pruned and used to perform PCA with Eigen-
soft (V.6.1.4) software.43 Genotyping data were analysed using 
PLINK (V.1.9).44 Genotype profiles were generated for n=63 
patients and n=68 controls.

Methylation quantitative trait loci analysis
Raw .idat files were used to generate methylation profiles 
using minfi (V.1.32.0)45 46 and to check median intensity values 
and reported sex in the R statistical computing environment 
(V.3.6.3).47 Probes with less than three beads and zero intensity 
values across all samples were removed using the DNAmArray 
package (V.0.1.1).48 Background signal and dye bias were 
corrected, followed by normalisation of signal intensities using 
functional normalisation in the preprocessFunnorm.DNAmArray 
function48 49 using the first three principal component values 
calculated from signal intensities of control probes present on 
all array spots to correct for technical variation. Any probe with 
a detection p<0.01 or returned signal intensities in fewer than 
98% of samples was removed. This resulted in a total of 476 
767 probes used for further analysis. Signal intensities were 
then converted to M values with a maximum bound of ±16. 
M values were used for meQTL analysis and converted to beta 
values (0%–100% methylation scale) using minfi for reporting.

We removed any probe for meeting any of the following tech-
nical criteria: a unique probe sequence of <30 bp, mapping to 
multiple sites in the genome, polymorphisms that cause a colour 
channel switching in type I probes, inconsistencies in specified 
reporter colour channel and extension base, mapping to the Y 
chromosome and/or having a polymorphism within 5 bp of the 
3’ end of the probe with a MAF >1% with the exception of 
CpG- SNPs with C>T polymorphisms which were retained.50 
Batch correction for chip ID was performed using the ComBat 
function in the sva (V.3.34.0) package.51 After technical filtering, 
there were a total of 421 214 probes used for meQTL analysis.

We implemented a mixed correspondence analysis with the 
PCAmixdata package (V.3.1)52 to calculate eigenvalues using 
patient medication data for prednisone, hydroxychloroquine, 
azathioprine, mycophenolate mofetil and cyclophosphamide. 
The top four components accounted for a cumulative 89.3% 
of variability in the medication data. Each component value 
was used as an independent variable in regression analysis to 
adjust for medication usage across individuals. MeQTL associa-
tion analysis was performed in patients and controls separately 
using methylation M value profiles and corresponding sample 
genotypes. Age, the top 4 medication components and top 10 
genotype principal components were included as covariates to 
build a linear model for detecting meQTL using MatrixEQTL 
(V.2.3).53 Cis- meQTL were defined as CpG sites with methyla-
tion values associated with an SNP within a conservative 1000 bp 
of the CpG dinucleotide. We used a Benjamini- Hochberg FDR- 
adjusted p value cut- off of <0.05 as a threshold for significant 
associations. The above EWAS results were compared with the 
meQTL results to determine overlap of lupus- associated differ-
entially methylated CpG sites and those CpG sites in an meQTL.

Functional enrichment analysis
ToppGene Suite was used for functional enrichment analysis54 
of Molecular Function and Biological Process Gene Ontologies 
and KEGG pathways in meQTL. P values were derived using 

a hypergeometric probability mass function, and a Benjamini- 
Hochberg FDR- adjusted p value cut- off of <0.05 was used 
as a threshold of significance. A minimum membership of 3 
genes and maximum of 2000 genes in each term was used as a 
threshold for inclusion. Interferon- regulated genes were identi-
fied using the set of genes associated with the CpG site in each 
meQTL as input using Interferome (V.2.01).55 The type I inter-
feron response genes were defined as genes with an expression 
fold change of 1.5 or greater between type I interferon- treated 
and untreated samples using gene expression datasets from all 
available CD4+ T cell experiments in the Interferome database.

For the analysis of miR- 18a- regulated genes, literature- based 
network association analysis was performed using IRIDESCENT 
to create a weighted network of published relationships as previ-
ously described.56

MicroRNA expression microarray
MicroRNA (miRNA) expression was measured in naïve CD4+ T 
cells from a subset of patients with lupus and healthy matched 
controls (n=16). Cells were immediately lysed with TRIzol 
Reagent (ThermoFisher Scientific, New York, USA) followed by 
storage at −80°C. Total RNA was isolated using the Direct- zol 
RNA MiniPrep Kit (Zymo Research, California, USA) following 
the manufacturer’s directions. The Affymetrix miRNA V.4.1 
Array Strip (Affymetrix, California, USA) was used to measure 
expression of over 2000 premature and 2500 mature human 
miRNA sequences. RNA sequences were polyadenylated and 
ligated to a biotin- labelled oligomer using the FlashTag Biotin 
HSR RNA Labeling Kit (Affymetrix). Biotin- labelled sequences 
were hybridised to array probes and washed then stained with 
streptavidin- phycoerythrin (PE). The Affymetrix Expression 
Console & Transcriptome Analysis Console V.2.0 software 
(Affymetrix) was used to analyse biotin/streptavidin- PE fluores-
cence measurements. All samples passed signal intensity, polya-
denylation and ligation quality controls. Signal intensities were 
background adjusted and normalised. Log2- transformed expres-
sion values for each probeset was calculated using a robust multi- 
array average model.23 The Pearson’s r correlation coefficient 
for median expression values of probes for miR- 17, miR- 18a, 
miR- 19a, miR- 19b1 and miR- 20a and Systemic Lupus Erythe-
matosus Disease Activity Index (SLEDAI) scores were calculated 
using GraphPad Prism (V.9.3.0) (GraphPad Software, California, 
USA).

RESULTS
Differential methylation of gene promoters in naïve CD4+ T 
cells isolated from patients with lupus
A comparison of DNA methylation profiles from circulating 
naïve CD4+ T cells isolated from 74 patients with lupus and 
74 age- matched, sex- matched and race- matched healthy 
controls revealed a total of 2627 CpGs, out of 334 337 total 
CpG sites included in the EWAS, with a significant difference in 
average methylation. Significant hypomethylation in interferon- 
regulated genes was observed, consistent with previous reports 
(online supplemental table 2). Average promoter methylation for 
each gene was calculated by including all CpG sites on the array 
within 1500 bp of the associated gene’s TSS. A total of 51 genes 
showed a significant difference in average promoter methylation 
between patients with lupus and controls (17 hypomethylated 
and 34 hypermethylated in patients compared with controls) 
(table 1) (figure 1). Biological Process Gene Ontology enrich-
ment analysis of differentially methylated promoter regions did 
not show significant enrichment compared with the background 
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of all gene promoters after adjusting for multiple testing (online 
supplemental table 3).

The pairwise correlation of the 51 gene promoters identified 
above was calculated across a collection of 16 541 samples from 
37 tissues available in GEO. Hierarchical clustering of correla-
tions showed that 21 out of the 51 gene promoters were highly 

Table 1 Genes with differentially methylated promoter regions 
in naive CD4+ T cells of patients with lupus compared with healthy 
controls

Gene Δβ −log10 (FDR- adjusted p value) t- statistic

IFI44L −0.177 Infinity −10.757

DTX3L −0.130 Infinity −11.566

BST2 −0.089 11.323 −9.285

RABGAP1L −0.088 9.165 −8.421

BCL2L14 −0.086 5.520 −6.908

MIR19B1 −0.059 3.169 −5.846

IFI44 −0.059 2.057 −5.304

MIR20A −0.055 3.088 −5.807

MIR17 −0.054 6.882 −7.487

MIR18A −0.051 6.537 −7.342

MIR19A −0.049 4.771 −6.579

IKZF4 −0.048 3.289 −5.902

MX1 −0.046 10.624 −9.004

TRIM34 −0.045 2.184 −5.367

ODF3B −0.034 1.712 −5.128

GNG2 −0.033 2.138 −5.344

FAM177B −0.025 1.897 −5.223

MZF1 0.008 1.493 5.014

SSBP4 0.015 1.344 4.934

ATP6V0D1 0.018 2.594 5.569

DCUN1D1 0.025 2.068 5.309

C14orf93 0.025 1.922 5.236

TIPARP 0.026 2.069 5.310

LMBRD1 0.027 2.211 5.381

HAVCR2 0.027 2.574 5.560

KIAA1949 0.030 3.158 5.841

GPD2 0.032 1.953 5.251

CNTF 0.033 1.705 5.124

CD47 0.034 4.259 6.350

ARHGAP9 0.036 3.339 5.926

IL27RA 0.036 1.367 4.946

RAP1A 0.036 2.573 5.559

LAMA3 0.037 1.445 4.988

ABI3 0.037 1.436 4.983

FAM102A 0.038 3.161 5.842

CXCR5 0.039 1.439 4.985

DPEP2 0.040 1.889 5.219

DYRK2 0.041 3.924 6.197

TMEM71 0.044 2.757 5.649

ADORA2A 0.046 2.234 5.392

SEPT9 0.047 2.036 5.293

PSMB4 0.052 2.935 5.734

TOM1 0.055 5.415 6.862

PRIC285 0.057 9.934 8.729

LTB 0.062 2.036 5.293

MIR1205 0.067 1.698 5.121

ACER3 0.073 2.612 5.578

BCL9L 0.079 4.034 6.248

MDS2 0.080 3.149 5.836

SNORA5B 0.083 1.712 5.128

PTPRCAP 0.091 3.620 6.057

FDR correction was performed using the Benjamini- Hochberg method with an 
FDR- adjusted p value threshold of <0.05. Δβ: methylation difference in median 
methylation value of CpG sites within 1500 bp upstream of the associated gene’s 
transcription start site (TSS1500) between patients with lupus and healthy controls.
FDR, false discovery rate; TSS, transcription start site.

Figure 1 Distribution of average CpG methylation levels within 1500 
bp of the transcription start site (TSS1500) for the respective genes 
differentially methylated (DM) in naïve CD4+ T cells of patients with 
lupus compared with healthy controls.
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correlated. KEGG pathway enrichment analysis showed a signif-
icant enrichment for three pathways among the 21 correlated 
gene promoters: ‘microRNAs in cancer’ (p=3.86E- 04), 
‘cytokine- cytokine receptor interaction’ (p=4.34E- 02) and 
‘rheumatoid arthritis’ (p=4.34E- 02) (table 2) (figure 2). The 
‘microRNAs in cancer’ pathway included genes encoding miR- 
17, miR- 18a, miR- 19a, miR- 19b1 and miR- 20a. Four of seven 
CpG sites used to calculate the average promoter methylation 
(TSS1500) in this locus showed a significant reduction in median 
methylation in patients with lupus compared with healthy 
controls (figure 3A). These sites: cg17799287 (Δβ=−5.5%; 
p=2.05E- 03), cg07641807 (Δβ=−4.4%; p=1.71E- 02), 
cg23665802 (Δβ=−5.8%; p=1.19E- 02) and cg02297838 
(Δβ=−4.9%; p=3.48E- 02) were all hypomethylated in patients 
with lupus compared with healthy controls, and overlapped with 
enhancers and regions flanking TSS in peripheral naïve CD4+ T 
cells using data collected from the Epigenome Roadmap57 and 
visualised using the WashU Epigenome Browser.58 We examined 
expression levels of the miRNAs included in the ‘microRNAs 
in cancer’ pathway (miR- 17, miR- 18a, miR- 19a, miR- 19b1 and 
miR- 20a) in naïve CD4+ T cells of a subset of our patients with 
lupus (n=16) and healthy matched controls (n=16). We did not 
observe a difference in expression between patients and controls. 
However, two miRNAs, miR- 18a- 5p and miR- 19b1- 5p, showed 
a significant positive correlation (hsa- miR- 18a- 5a p=0.038 and 
hsa- miR- 19b1- 5p p=0.042) between median expression levels 
and SLEDAI scores in patients with lupus (figure 3B) (online 
supplemental table 4).

Examining publicly available miRNA expression data from 
total CD4+ T cells revealed overexpression of miR- 18a in 
patients with lupus compared with healthy control individuals.59 

In these same samples, a total of 74 miR- 18a- target genes were 
downregulated in patients with lupus compared with controls. 
Using a literature- based network association analysis, we iden-
tified 15 of these 74 genes with relatedness to lupus (online 
supplemental figure 2). TNFAIP3, which encodes a negative 
regulator of nuclear factor kappa B (NF-κB) targeted by miR- 
18a, was downregulated in lupus CD4+ T cells compared with 
controls.

We examined the expression of MIR17HG, which is the host 
gene that encodes the miR- 17- 92 cluster, in single cell RNA- 
sequencing data from lupus nephritis tissue samples generated 
by the Accelerating Medicines Partnership (AMP) project.60 We 
show evidence for MIR17HG mRNA expression in multiple 
immune cells infiltrating the kidneys of patients with lupus 
nephritis, including multiple T cell subsets, although in a 
small percentage of kidney infiltrating cells. While over 8% of 
tissue- resident macrophages in lupus nephritis tissues express 

Table 2 KEGG pathway gene enrichment of 21 gene promoters highly correlated with each other in multitissue DNA methylation data 
constructed from 16 541 samples available through Gene Expression Omnibus

Pathway (KEGG_2019_Human) P value FDR- adjusted, p value OR Genes

MicroRNAs in cancer 1.21E- 05 0.00039 20.92 MIR19B1;MIR20A;MIR17;MIR18A;MIR19A

Cytokine- cytokine receptor interaction 0.0034 0.043 11.28 CNTF;CXCR5;LTB

Rheumatoid arthritis 0.0041 0.043 23.52 LTB;ATP6V0D1

FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes; OR, odds ratio.

Figure 2 Heatmap of hierarchical clustering of pairwise Pearson’s 
correlation coefficient values of 51 differentially methylated gene 
promoters (transcription start site (TSS)1500) in global tissue signature 
derived from 16 541 samples. Range from +1 (red) to −1 (blue), 
represent a greater to lower correlation in global tissue, respectively. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are 
significantly enriched (false discovery rate- adjusted p<0.05) in a block 
of 21 genes (green bars).

Figure 3 (A) Violin plots of the seven CpG sites in patients with 
lupus and healthy controls used to calculate the average promoter 
methylation (transcription start site (TSS)1500) for the miR- 17- 92 
cluster. The solid black bar represents the median value and the dashed 
lines the first and third quartiles. Genomic visualisation and annotation 
are from WashU Epigenome Browser using AuxillaryHMM tracks from 
peripheral naïve CD4+ T cells (E038 and E039, top and bottom tracks, 
respectively). n.s., not significant. *P<0.05, **p<0.01. (B) Correlation of 
median microRNA (miRNA) expression in naïve CD4+ T cells of a subset 
(n=16) of patients with lupus with Systemic Lupus Erythematosus 
Disease Activity Index (SLEDAI) score. Hsa- miR- 18a- 5p and hsa- miR- 
19b1- 5p had a Pearson’s correlation (r) of 0.52 (p=0.038) and 0.51 
(p=0.042), respectively.
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MIR17HG mRNA, the highest levels of expression were 
observed in T cell subsets (online supplemental figure 3).

Naïve CD4+ T cell methylation quantitative trait loci in 
patients with lupus
Global genotype profiles were generated in a subset of patients 
and controls and compared with global DNA methylation 
profiles to identify CpG sites with allele- specific methylation 
associations. There was no significant difference in the average 
age (years) between the patient (n=63) and control (n=68) 
subsets (patient average age=41.6; patient age SD=12.8; control 
average age=40.8; control age SD=12.5; t- test statistic=0.381; 
two- tailed p=0.704). Allele- specific DNA methylation associa-
tions were measured as meQTL, where the CpG site was within 
1000 bp of the measured SNP separately in patients and controls. 
After adjusting for age, genetic background and medication use 
in patients, we identified 5785 meQTL in naïve CD4+ T cells 
of patients with lupus with an FDR- adjusted p<0.05 (online 
supplemental table 5). These meQTL include 4649 unique CpG 
sites and 4120 unique polymorphisms.

A linear model adjusting for age and genetic background 
was fit to healthy controls separately. We identified a total of 
7331 meQTL with an FDR- adjusted p<0.05 in controls (online 
supplemental table 6). These meQTL include 5885 unique CpG 
sites and 5138 unique polymorphisms.

Of 2627 CpG sites differentially methylated between patients 
and controls, we identified 17 (0.65%) and 34 (1.29%) CpG 
sites that overlapped with CpG sites included in meQTL in 
patients and controls, respectively (figure 4A,B). We exam-
ined the overlap of meQTL in patients with lupus and healthy 
controls and identified a total of 3957 meQTL (68.4% of lupus 
patient meQTL and 54.0% of healthy control meQTL) shared 
between both patients and controls (online supplemental table 
7). This shared set of meQTL contained 8 (0.3%) CpG sites that 
we identified as differentially methylated between patients with 
lupus and controls (figure 4C).

Functional enrichment analysis was performed using genes 
associated with CpG sites in our meQTL shared between patients 
and controls. Functional enrichment analysis revealed multiple 
ontologies and pathways for cell adhesion (‘cell- cell adhesion’; 
p=1.04E- 12, ‘biological adhesion’; p=6.80E- 12, ‘cell adhe-
sion’; p=8.25E- 12, ‘cell adhesion molecules’; p=2.25E- 06), 
transporter associated with antigen processing (TAP) proteins 
and antigen presentation (‘TAP binding’; p=1.59E- 7, ‘peptide 
antigen binding’; p=4.40E- 5) and immune disorder pathways 
(‘type I diabetes mellitus’; p=1.92E- 8, ‘graft- versus- host disease 
(GVHD)’; p=4.38E- 7) (online supplemental table 8).

There were 1828 meQTL detected only in patients with lupus 
but not in controls. These were enriched in gene ontologies and 

pathways related to tissue growth and development (‘animal 
organ morphogenesis’; p=8.44E- 10, ‘urogenital system devel-
opment’; p=1.05E- 07) and gene silencing (‘negative regulation 
of gene silencing by miRNA’; p=2.54E- 6, ‘negative regulation of 
post- transcriptional gene silencing’; p=5.41E- 6) (online supple-
mental table 9).

We compared our list of meQTL in patients with lupus with 
previously identified lupus susceptibility loci from genome- wide 
association studies.4 61–64 We found 41 meQTL with CpG site- 
associated genes that overlapped with 20 unique lupus risk loci 
genes (online supplemental table 10). This included interferon 
regulatory factor genes IRF5 and IRF7. We found three meQTL 
in naïve CD4+ T cells that included, or were in high linkage 
disequilibrium (LD) (r2 ≥0.80) with, a known lupus genetic risk 
variant (table 3).65 We also performed a similar analysis using 
data previously collected from granulocytes of patients with 
lupus to determine if these effects were present across tissues.22 
We found meQTL associated with lupus risk variants in CFB 
(rs170942) and IRF7 (rs1131665) in both naïve CD4+ T cells 
and granulocytes isolated from patients with lupus. In addi-
tion, an meQTL associated with the TMEM86B- PTPRH locus 
was observed in naïve CD4+ T cells. When we compared the 
lupus risk alleles with DNA methylation levels, we found that 
the presence of the risk allele at rs1270942 (CFB) is associated 
with increased DNA methylation of cg16505946. The presence 
of the risk allele at rs1131665 (IRF7) (figure 5) and rs56154925 
(TMEM86B- PTPRH) was associated with decreased DNA meth-
ylation of cg16486109 and cg01414877, respectively. The direc-
tion of the risk allele- DNA methylation association in the CFB 
and IRF7 meQTL was the same in both naïve CD4+ T cells and 
granulocytes.

We examined the overlap between genes associated with CpG 
sites in meQTLin lupuspatients and genes that respond to type 
I interferon treatment in CD4+ T cells, to better understand the 
association between genetics and type I interferon- response gene 
methylation differences in lupus. A total of 101 unique type I 
interferon- response genes were identified as meQTL in our data 
(online supplemental table 11).

Because IRF7 is a master regulator of type I interferon 
response,66 and the lupus- associated epigenotype is dominated 
by hypomethylation in interferon- regulated genes, we examined 
if rs1131665 (IRF7) had an effect on the methylation levels of 
the 2627 CpGs differentially methylated in naïve CD4+ T cells 
between patients with lupus and healthy controls. This trans- 
meQTL analysis revealed no significant difference in methyla-
tion levels across these CpG sites based on rs1131665 genotypes, 
among patients with lupus (analysis of variance, data not shown).

DISCUSSION
We generated genome- wide DNA methylation data in naïve 
CD4+ T cells from a large cohort of patients with lupus and 
matched healthy controls. Implementing an innovative trend 
deviation analysis, we identified a cluster of miRNAs (miR- 17, 
miR- 18a, miR- 19a, miR- 19b1, miR- 20a) among differentially 
methylated loci in patients with lupus. Promoter methylation 
analysis revealed significant hypomethylation in this miRNA 
cluster in patients with lupus compared with controls. Trend 
deviation analysis suggested a coordinated, disease- associated 
change in promoter methylation for these miRNAs. Indeed, 
the expression of miR- 18a and miR- 19b1 included within this 
cluster positively correlated with disease activity, as measured 
using SLEDAI score, in our patients with lupus.

Figure 4 Proportion of differentially methylated CpG sites in naïve 
CD4+ T cells of patients with lupus compared with healthy controls 
associated with a methylation quantitative trait loci (meQTL) in (A) 
patients with lupus, (B) healthy controls and (C) the subset of meQTL 
shared between patients with lupus and healthy controls.
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MiRNAs play an important role in post- transcriptional gene 
regulation by targeting specific complementary gene transcripts 
for degradation.67 Peripheral blood cells in patients with lupus 
show altered expression of miRNAs.68 Some dysregulated 
miRNAs in lupus target DNMT1, and as a result, contribute to 
altered DNA methylation patterns in lupus CD4+ T cells.69–71 
miR- 17, miR- 18a and miR- 20a form the ‘miR- 17 family’ while 
miR- 19a and miR- 19b1 form the ‘miR- 19 family’. These miRNAs 
are grouped by sequence homology and encoded in a single poly-
cistronic miRNA gene as the ‘miR- 17- 92 cluster’. This cluster has 
been well- studied as an oncogene and an immune regulator.72 
Average promoter methylation of miR- 17, miR- 18a, miR- 19a, 
miR- 19b1 and miR- 20a was reduced by ~5% in patients with 
lupus compared with controls, which has not been previously 
described in immune cells of patients with lupus. Enterovirus 
71 infection has been observed to suppress miR- 17- 92 cluster 
expression by increasing DNMT- mediated promoter methyla-
tion,73 and chemical inhibition of DNMT1 activity in bleomycin- 
induced lung fibrosis mouse model increases miR- 17- 92 cluster 
expression in lung fibroblasts.74 This suggests that miR- 17- 92 
cluster promoter methylation plays an important role in regu-
lating the expression of its members.

MiR- 17- 92 cluster genes play a vital role in regulating T cell 
activities including proliferation and differentiation. Overexpres-
sion of miR- 17- 92 cluster genes promotes lymphoproliferative 

disease and autoimmunity in mice by targeting critical immu-
notolerance regulators Bim and PTEN.75 Conditional knockout 
of miR- 17- 92 cluster in a murine model of chronic GVHD 
(cGVHD) reduced disease- associated T cell infiltration and IgG 
deposition in the skin.76 In cGVHD mice, miR- 17- 92 cluster 
expression in CD4+ T cells supports T helper (Th)1, Th17 
and T follicular helper (Tfh) cell differentiation. Loss of miR- 
17- 92 cluster expression leads to a corresponding reduction 
in Tfh- dependent germinal centre formation and plasma cell 
differentiation.76 MiR- 17, miR- 18a, miR- 19a and miR- 20a are 
overexpressed in splenic T cells of MRL/lpr mice.77 Similarly, 
miR- 17, miR- 17a, miR- 18a, miR- 19a, miR- 19b1 and miR- 20a 
are overexpressed in circulating CD4+ T cells of patients with 
lupus.78 MiR- 19b1 expression, specifically, has a significant 
positive correlation with disease activity as measured by SLEDAI 
score.78 MiR- 17 and miR- 20 are downregulated in circulating 
peripheral blood mononuclear cells,79 B cells80 and as circulating 
free miRNAs81 in patients with lupus compared with healthy 
controls, suggesting tissue- specific and miRNA- specific expres-
sion patterns. Of the miR- 17- 92 cluster miRNAs identified as 
differentially methylated in our analysis, only miR- 18a and miR- 
19b1 showed a significant positive correlation between median 
expression in naïve CD4+ T cells and disease activity in patients 
with lupus, consistent with these prior observations. MiR- 19b1 
promotes proliferation of mature CD4+ T cells, Th1 differentia-
tion and interferon-γ production, and suppresses inducible Treg 
differentiation.82 MiR- 18a expression increases rapidly early on 
in CD4+ T cell activation,83 84 and suppresses Th17 cell differ-
entiation through direct targeting of critical Th17 transcrip-
tion factor transcripts including SMAD4, HIF1A and RORA in 
human CD4+ T cells in vitro and in vivo murine airway inflam-
mation models.83 We did not observe a difference in the expres-
sion of members in the miR- 17- 92 cluster between patients with 
lupus and controls in naïve CD4+ T cells, likely because these 
miRNAs are upregulated upon T cell activation. Evidence for 
hypomethylation in lupus in naïve CD4+ T cells suggests epigen-
etic priming of this locus, similar to what we previously observed 
in interferon- regulated gene loci in lupus.18

Consistent with our DNA methylation data and the epigenetic 
priming concept in naïve CD4+ T cells discussed above, gene 
expression data in total CD4+ T cells isolated from patients with 
lupus compared with normal healthy controls revealed upreg-
ulation of miR- 18a in lupus and concomitant downregulation 
of several genes known to be targeted by miR- 18a.59 Of 74 
miR- 18a target genes downregulated in lupus CD4+ T cells, our 
literature- based analysis highlighted 15 genes, including HIF1A 
which is involved in T cell differentiation as discussed above. 
The most robustly lupus- related gene was TNFAIP3, which 

Table 3 MeQTL in naive CD4+ T cells and granulocytes of patients with lupus that include a known lupus risk variant

Lupus- naïve CD4+ T cell meQTL

CpG site meQTL SNP Lupus risk SNP* Risk SNP- associated gene Lupus risk allele Direction of CpG methylation associated with risk allele

cg16505946 rs558702 rs1270942 CFB C ↑
cg16486109 rs1131665 rs1131665 IRF7 A ↓
cg01414877 rs56154925 rs56154925 TMEM86B- PTPRH C ↓
Lupus granulocyte meQTL

CpG site meQTL SNP Lupus risk SNP* Risk SNP- associated gene Lupus risk allele Direction of CpG methylation associated with risk allele

cg16505946 rs558702 rs1270942 CFB C ↑
cg16486109 rs1131665 rs1131665 IRF7 A ↓
*rs558702 and rs1270942 have an LD r2 ≥0.80.
meQTL, methylation quantitative trait loci; SNP, single nucleotide polymorphism.

Figure 5 (A) Gene structure diagram of IRF7 depicting the location 
of rs1131665 and cg16486109. (B) The presence of the lupus risk allele 
at rs1131665 (allele A) is associated with significantly lower DNA 
methylation levels of cg16486109 located in IRF7. FDR, false discovery 
rate; TSS, transcription start site.
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encodes the NF-κB negative regulator A20. Indeed, the genetic 
association between TNFAIP3 loss- of- function polymorphisms 
and lupus has been repeatedly confirmed.85

Single cell RNA sequencing data from lupus nephritis kidney 
tissues revealed evidence for expression of MIR17HG, the host 
gene encoding the miR- 17- 92 cluster, in kidney- infiltrating 
immune cells, including multiple T cell subsets. Further studies 
are needed to determine if altered DNA methylation at the miR- 
17- 92 cluster promoter is associated with expression changes 
with a causal role in the development of lupus, and to determine 
if methylation levels at this locus can be used as biomarker for 
monitoring disease activity.

We used analysis of meQTL to identify allele- specific DNA 
methylation associations across the genome of naïve CD4+ T 
cells from patients with lupus and healthy controls. Our primary 
objective was to understand to what extent are DNA methyla-
tion changes associated with lupus (the lupus- defining epigenetic 
profile), explained by genetic factors. We found that <1% of 
differentially methylated sites in patients with lupus compared 
with healthy controls were associated with a cis- meQTL. This 
suggests that almost all of the DNA methylation alterations 
observed in lupus are not associated with local allelic differ-
ences in the genome, suggesting a greater contribution from 
non- genetic and possibly environmental factors to epigenetic 
dysregulation in lupus. A previous study of meQTL in whole 
blood of patients with lupus found that a majority of meQTLs 
were shared between patients and controls.24 We observed that 
about 68% of meQTL in patients with lupus and 54% of meQTL 
in healthy controls were shared by both groups, supporting this 
observation.

Our prior analysis of granulocytes from a cohort of 
patients with lupus identified overlap in meQTL genes 
and lupus genetic risk loci.22 MeQTL pairs including 
ARID5B (cg13344587- rs10821936), HLA- DQB1 
(cg13047157- rs9274477), and IRF7 (cg16486109- rs1131665) 
were found in both granulocytes and naïve CD4+ T cells from 
patients with lupus. Risk loci genes unique to naïve CD4+ T 
cell meQTLs included CD80 (cg06300880- rs3915166), TYK2 
(cg06622468- rs280501), IKBKE (cg22577136- rs17020312) and 
CTLA4 (cg05092371- rs16840252, cg05092371- rs4553808). 
Naïve CD4+ T cell- specific meQTL risk loci genes are related 
to signal response and activation in CD4+ T cells compared 
with the more general DNA repair and type I interferon signal-
ling seen in the shared meQTL risk loci genes. Disease- relevant 
meQTL show tissue- specific patterns which should be consid-
ered when teasing apart their potential impact.

We identified three meQTL that include SNPs previously 
identified as lupus genetic risk variants. One meQTL is in the 
complement factor B gene CFB (cg16505946- rs558702), where 
the risk allele is associated with increased DNA methylation of 
the nearby CpG site. Complement factor B (CFB) combines 
with C3 to form the C3 convertase after cleavage by comple-
ment factor D as part of the alternative complement pathway. 
Complement pathway defects have long been studied as a model 
of monogenic lupus and contribute to increased risk of poly-
genic lupus.65 We identified an additional meQTL that included 
a known lupus risk variant in IRF7 (cg16486109- rs1131665). 
Rs1131665 is a missense variant in the inhibitory domain of 
IRF7 (Q412R). This lupus- associated amino acid change was 
demonstrated to enhance IRF7- induced expression response in 
a luciferase reporter assay.86 This same risk allele is also associ-
ated with decreased DNA methylation of cg16486109. Although 
the relative DNA methylation fractions are different between 
naïve CD4+ T cells and granulocytes of patients with lupus, the 

direction of the allele- specific DNA methylation is the same. 
This suggests that the observed meQTL effect may be present 
in other lymphoid and myeloid tissues, potentially including 
plasmacytoid dendritic cells, which are major producers of type 
I interferons. We describe a direct association between a lupus 
risk allele and local hypomethylation of a CpG site in IRF7 in 
lupus. This observation provides new insights regarding possible 
biological mechanisms underlying pathogenic consequences of 
lupus- associated genetic polymorphisms.

In summary, we investigated genome- wide DNA methyla-
tion changes in naïve CD4+ T cells from an extended cohort of 
patients with lupus and controls, and using a methylation trend 
deviation analysis method, we showed promoter hypomethyla-
tion of the miR- 17- 92 cluster that has a significant regulatory 
role in T cell growth, function and differentiation. Combining 
genome- wide DNA methylation and genotyping data, we were 
able to determine genetic contribution to the lupus- defining epig-
enotype. Our data indicate that epigenetic changes characteristic 
of lupus are not under direct genetic influence. This suggests a 
more important role for non- genetic factors in the epigenetic 
dysregulation observed in patients with lupus, including the 
robust demethylation of interferon- regulated genes.
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