Henry Ford Health Henry Ford Health Scholarly Commons

Quality Expo 2024

Quality Expo

3-12-2024

Project #31: Reducing Greenhouse Gas Emissions in Jackson: A CQI Story about the Triumphs of Science and Collaboration in Changing Clinical Operations

Joshua Goldblatt Henry Ford Health

Kimberly Finch

Terry A. Ellis Henry Ford Health

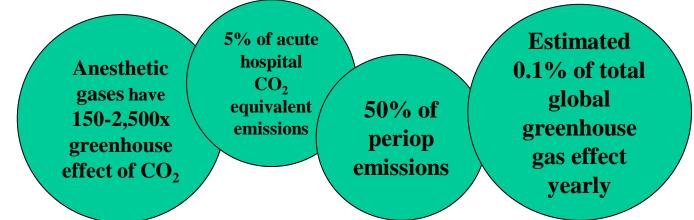
Kannan Suri-Mohanram Henry Ford Health

Follow this and additional works at: https://scholarlycommons.henryford.com/qualityexpo2024

Recommended Citation

Goldblatt, Joshua; Finch, Kimberly; Ellis, Terry A.; and Suri-Mohanram, Kannan, "Project #31: Reducing Greenhouse Gas Emissions in Jackson: A CQI Story about the Triumphs of Science and Collaboration in Changing Clinical Operations" (2024). *Quality Expo 2024*. 34. https://scholarlycommons.henryford.com/qualityexpo2024/34

This Book is brought to you for free and open access by the Quality Expo at Henry Ford Health Scholarly Commons. It has been accepted for inclusion in Quality Expo 2024 by an authorized administrator of Henry Ford Health Scholarly Commons.


HENRY FORD **HEALTH**

Reducing Greenhouse Gas Emissions in Jackson: A CQI Story about the Triumphs of Science and Collaboration in Changing Clinical Operations

Joshua Goldblatt, MSN; Kimberly Finch, MSN; Terry Ellis, MD; Kannan Suri-Mohanram, MD **Department of Anesthesia**, Henry Ford Health System

Abstract

The climate change crisis threatens human health by adversely affecting the spread of infectious disease, malnutrition, mental health, and the displacement of people or communities. (1)

The Anesthesiology Performance Improvement and Reporting Exchange (ASPIRE) is a project of the Multicenter Perioperative Outcomes Group (MPOG) Collaborative Quality Initiative (CQI). Their sustainability goal is to help reduce greenhouse gas emissions from anesthesia waste used in the US by optimizing environmentally-safer anesthesia agents and managing fresh gas flow.

Aim

- MPOG goal: at least 45% of cases in 2024 will have an average hourly emissions profile of 2.83kg CO₂ equivalents per hour of maintenance anesthesia.
- At Henry Ford Jackson Hospital (HFJH): average hourly emissions were 6.32kg CO_2 eq/hr. We seek to reduce that average hourly emissions rate each month by 40% by February 2024 and maintain that level into the future.

Measures:

- Sustainability Goal 01 (SUS-01): Percent of cases with mean fresh gas flow (FGF) during maintenance anesthesia of ≤3L/min, target 95%
- Sustainability Goal 02 (SUS-02): Percent of cases where mean hourly CO_2 eq is less than the CO_2 eq of 2%
- sevoflurane at 2L/min FGF = 2.83kg CO₂ eq/hr, target 45%
- Monthly Mean of Hourly Emissions
- Calculating CO₂ equivalents is based on:
- Vapor Flow = FGF x Percent Agent
- GWP¹⁰⁰ = Global warming potential is a multiplier to approximate comparative global warming effect of a chemical to CO₂ over a 100-year timeframe
- Molecular weight = GWP to calculate CO_2 eq is based on the same mass of chemical

Agent	Molecular Weight (3)	GWP ¹⁰⁰ (3)	Max Vapor Flow	Minimum Alveolar Concentration
Sevoflurane	200g/mol	144	40mL/min	2-2.4%
Isoflurane	184.5g	565	11mL/min	1.2-1.8%
Desflurane	169g	2540	2.6mL/min	6.8%
Nitrous Oxide	44g	282	92mL/min	1L/min

Interventions

Date	Action		
August 2021	Reduced default Free anesthesia machine		
July 2023	Joint education ses anesthesiologists o low flow anesthesia		
August 2023	Clinical education a reliability of previou encouragement tov		
November 2023	Education about SU calculated, and how performance data f		
January 2024	Data show reduction 1. Use of highest e 2. Use of fresh gas		

Baseline Data

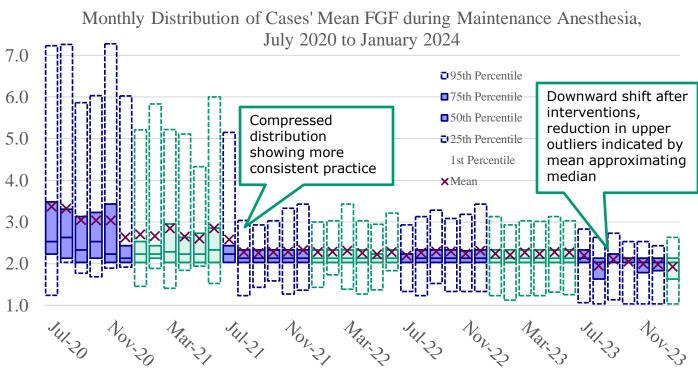
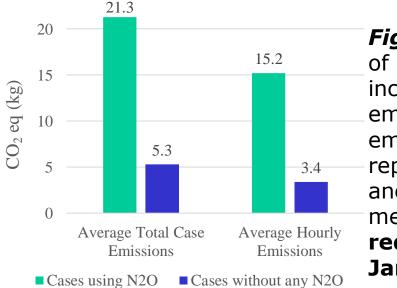



Figure 1. Boxplots show the distribution of case mean FGF, *month by month.* SUS-01 metric was introduced during 2020. By August 2021, the distribution had compressed showing more consistent practice. Each boxplot also shifted down reflecting lower flows. Additional reductions began in August 2023 after education with centralization of the mean to the median.

esh Gas Flow rate in all es at HFHS

ssion for CRNAs and on technical mechanics of ia (<1L/min)

around performance, ous target (3L/min), with ward target below 2L/min

US-02 metric, how it is w to meet metric; shared from August-September

ons in two areas: emission gases as flows

Figure 2. July 2023. Any use of N₂O disproportionately increases both total case emissions and average hourly emissions. In July, N₂O represented over 50% of total anesthetic gas emissions as measured in CO₂ equivalents, reduced to 15.3% in January.

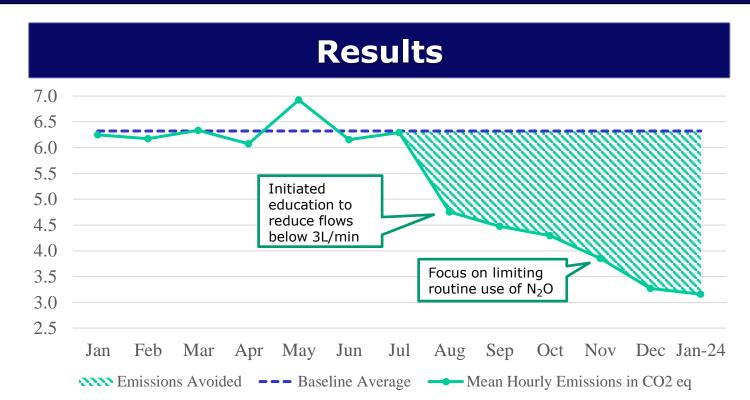


Figure 3. Monthly mean hourly emissions in kg CO₂ eq. Six consecutive months of decreasing emissions.

Sustainability measure	Goal	Outcome achieved	
SUS-01: cases with mean Fresh Gas Flow \leq 3L/min	95%	97% for 2023	
SUS-02: Cases with mean hourly CO_2 equivalent ≤ 2.83 kg/hour	45%	35% Jan-July 202356% Aug-Jan 2024	
Monthly mean hourly emissions	40% reduction	January's mean hourly emissions are 50% below baseline	
Total emissions avoided since August	n/a	>14,600kg CO ₂ eq	

Conclusions:

- Considering the greenhouse gas effect of inhaled • anesthetics is a paradigm shift in this practice of medicine.
- A focus on fresh gas flows can have a profound impact on • hourly and total emissions.
- There are differential global warming effects of various • agents. Specifically, avoiding routine use of nitrous oxide can further reduce emissions.
- Participation in the Anesthesia CQI-sharing metrics and targets can elevate issues of environmental sustainability in the administration of anesthetics.
- Results for other Henry Ford Health System hospitals will • be available after implementing similar interventions starting in December 2023.

Bibliography

- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022 Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2023. doi:10.1017/9781009325844
- 2. Devlin-Hegedus JA, McGain F, Harris RD, Sherman JD. Action guidance for addressing pollution from inhalational anaesthetics. Anaesthesia. 2022;77(9):1023-1029. doi:10.1111/anae.15785
- 3. Guetter CR, Williams BJ, Slama E, et al. Greening the operating room. Am J Surg. 2018;216(4):683-688. doi:10.1016/j.amjsurg.2018.07.021