Trends in the Abscopal Effect After Radiation to Spinal Metastases: A Systematic Review

Adam Robin
Henry Ford Health System, arobin1@hfhs.org

Mohamed Macki
Henry Ford Health System, mmacki2@hfhs.org

Mohamed Fakih
Henry Ford Health System, mfakih3@hfhs.org

Jaafar Elmenini
Henry Ford Health System, JElmeni1@hfhs.org

Sharath Kumar Anand
Henry Ford Health System

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019clinres

Recommended Citation
Robin, Adam; Macki, Mohamed; Fakih, Mohamed; Elmenini, Jaafar; Anand, Sharath Kumar; and Lee, Ian, "Trends in the Abscopal Effect After Radiation to Spinal Metastases: A Systematic Review" (2019). *Clinical Research*. 44.

This Poster is brought to you for free and open access by the Medical Education Research Forum 2019 at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Clinical Research by an authorized administrator of Henry Ford Health System Scholarly Commons.
Authors
Adam Robin, Mohamed Macki, Mohamed Fakih, Jaafar Elmenini, Sharath Kumar Anand, and Ian Lee

This poster is available at Henry Ford Health System Scholarly Commons: https://scholarlycommons.henryford.com/merf2019clinres/44
Trends in the Abscopal Effect After Radiation to Spinal Metastases: A Systematic Review

Mohamed Macki, MD MPH
Mohamed Fakih, Jaafar Elmenini, Sharath Kumar Anand, Ian Lee, Adam Robin
Abscopal Effect

- In 1953, RH Mole first described the abscopal effect as regression of tumor remote from the irradiated tissue.
- In the *New England Journal of Medicine* publication of 2012, Postow et al. popularized the abscopal effect by describing a case of metastatic melanoma resistant to standard cisplatin, vinblastine, and temozolomide.
Methods

- A systematic review identified relevant studies via a computer-aided search of MEDLINE (1946 – October 18, 2018) and Embase (1947 – October 18, 2018)

- Inclusion Criteria
 1. cases with metastatic and/or hematological cancer to the spine
 2. “abscopal” in the title, abstract, and/or keywords.
Records identified through database searching (n = 247)

Records after duplicates removed (n = 173)

Records screened (n = 171)

Records excluded because non-human studies (n = 58)

Review articles/ Non-cohort studies (n = 40)

Insufficient information in the abstract/ Full articles not available (n = 12)

Full-text articles assessed for eligibility (n = 101)

Studies included in qualitative synthesis of abscopal effect (n = 61)

- No spinal metastases (n = 47)
- Unable to determine which patients experienced abscopal effect (n = 3)
- Incorrect definition of abscopal effect (n = 1)

Studies included in quantitative synthesis (n = 10)
Results

- All 10 articles included radiation therapy to spine

- Three authors failed to observe an abscopal effect
Radiation Therapy

- Mice treated w/ high-dose, hypofractionated irradiation enhances anti-tumoral immunity measured by “tumor microenvironment” and “tumor draining lymph nodes” in T-lymphocytes

- Gy in a select few fractions, just enough to induce interferon (IFN)-related genes, such as activators of transcription and, thus, signal transducers
Immunomodulators

- Only 46 reported cases of the abscopal effect were published within the 31 articles of a systematic review by Abuodeh et al in 2014.

- The subsequent years in this study saw a rise in case reports and case series on abscopal observations with the dawn of immunomodulators.
Immunomodulators
Conclusions

(1) abscopal effect more commonly observed when systemic therapy includes immunomodulators

(2) abscopal effect has a higher likelihood of success when immunomodulators are administered in conjunction with or after RT to the spine

(3) ↑ Radiation in a smaller number of fractions likely increase the abscopal success

(4) ionizing radiation to the bone marrow of the spinal column may increase circulating lymphocytes that attack cancerous lesions elsewhere in the body.
Thank You

Adam Robin, MD