A Case of 3D Printing Shaping the Future of Percutaneous Cardiac Procedures

Georgi Fram
Henry Ford Health System

Dee Dee Wang
Henry Ford Health System

Hussayn Alrayes
Henry Ford Health System

Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019caserpt

Recommended Citation

Fram, Georgi; Wang, Dee Dee; and Alrayes, Hussayn, "A Case of 3D Printing Shaping the Future of Percutaneous Cardiac Procedures" (2019). *Case Reports*. 47.

This Poster is brought to you for free and open access by the Medical Education Research Forum 2019 at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Case Reports by an authorized administrator of Henry Ford Health System Scholarly Commons.
Background

- Paravalvular leaks (PVL) of surgically implanted aortic and mitral valves are a highly morbid complication [1,2].
- Repairing PVL surgically is associated with poor outcomes, such as persistent PVL and high mortality rates [3].
- Furthermore, these patients are often poor surgical candidates, due to age and accumulating comorbidities, making transcatheter repair a desirable alternative [4].
- Appropriate imaging prior to a percutaneous intervention to close a PVL is vital to success of the procedure.
- Complementing transesophageal echocardiography has been multi-slice computed tomography to assist with optimal device sizing and visualization of the anatomy [5].
- There are limitations with these imaging modalities, and three-dimensional (3D) printing of the patients desired anatomy has emerged as a new tool to help guide interventions with increased precision.
- 3D printing based on CT imaging datasets has been shown to improve outcomes among a variety of structural heart interventions [6,7].
- Here we report a case of a patient with a complex PVL which failed repair with conventional imaging, and returned to our structural heart team for 3D printing of his anatomy.
- His subsequent attempt using a 3D model for peri-procedural guidance aided with successful closure of his PVL.

Case Presentation

- A 69 year old male with a history of a surgically replaced aortic valve in 2004 presented to our hospital with symptoms of decompensated heart failure.
- Found to have a severe PVL on a transesophageal echocardiogram.
- Attempted PVL repair conducted with conventional imaging using 3D transesophageal echocardiography interprocedurally was unsuccessful.
- Unable to cross the defect due to irregular shape of the defect, and wire not supportive to deliver a catheter.
- Procedure was terminated.

Case Presentation (cont.)

- 3D CT imaging with 3D printed model created subsequently to assist with a second attempt at percutaneous closure.
- At second attempt with guidance and assistance periprocedurally with 3D model, successfully closed the PVL with a 6/4 ADO II.
- No residual leak seen by aortogram or TEE.
- Resolution of symptoms after closure of PVL.
- Patient discharged home following day without complication.
- Further study is needed to determine full potential benefits.

Conclusion

- Paravalvular leaks can present with signs and symptoms similar to decompensated heart failure, among other symptoms, such as hemolytic anemia.
- Conventional imaging, while improving, remains suboptimal for viewing patients anatomy from various angles.
- Three-dimensional CT imaging with 3D printing may help interventionalists with high-risk patients with challenging anatomy.
- Device selection, case planning, assistance with navigating defects are all aided with the use of 3D models.
- Further study is needed to determine full potential benefits, such as reduced contrast exposure, and reduced operation time.

References