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Background: Seasonal variation in respiratory illnesses and
exacerbations in pediatric populations with asthma is well
described, though whether upper airway microbes play season-
specific roles in these events is unknown.
Objective: We hypothesized that nasal microbiota composition
is seasonally dynamic and that discrete microbe–host
interactions modify risk of asthma exacerbation in a season-
specific manner.
Methods: Repeated nasal samples from children with
exacerbation-prone asthma collected during periods of
respiratory health (baseline; n 5 181 samples) or first captured
respiratory illness (n 5 97) across all seasons, underwent
bacterial (16S ribosomal RNA gene) and fungal (internal
transcribed spacer region 2) biomarker sequencing. Virus
detection was performed by multiplex PCR. Paired nasal
transcriptome data were examined for seasonal dynamics and
integrative analyses.
Results: Upper airway bacterial and fungal microbiota and
rhinovirus detection exhibited significant seasonal dynamics. In
seasonally adjusted analysis, variation in both baseline and
respiratory illness microbiota related to subsequent
exacerbation. Specifically, in the fall, when respiratory illness
and exacerbation events were most frequent, several Moraxella
and Haemophilus members were enriched both in virus-positive
respiratory illnesses and those that progressed to exacerbations.
The abundance of 2 discrete bacterial networks,
characteristically comprising either Streptococcus or
Staphylococcus, exhibited opposing interactions with an
exacerbation-associated SMAD3 nasal epithelial transcriptional
module to significantly increase the odds of subsequent
exacerbation (odds ratio 5 14.7, 95% confidence interval 5
1.50-144, P 5 .02; odds ratio 5 39.17, 95% confidence
interval 5 2.44-626, P 5 .008, respectively).
Conclusions: Upper airway microbiomes covary with season
and with seasonal trends in respiratory illnesses and asthma
exacerbations. Seasonally adjusted analyses reveal specific
bacteria–host interactions that significantly increase risk of
asthma exacerbation in these children. (J Allergy Clin Immunol
2022;nnn:nnn-nnn.)

Key words: Microbiome, respiratory illness, transcriptomics, pedi-
atric asthma, exacerbations, virus infection

Incidence of asthma exacerbation is seasonal and a leading cause
of pediatricmorbidity.1 The annual peak in theUnited States is typi-
cally observed in the fall (September through November), with

some variation by geographical region.2 Seasonal variability in
acute asthma exacerbations requiring hospitalization is also
strongly associated with age and is more likely to vary by season
in younger children.3 Asthma exacerbations trackwith seasonal tra-
jectories of viral upper respiratory infections.4 Approximately 80%
of acute asthma exacerbations in children present with a cooccur-
ring respiratory virus, with rhinovirus (RV) accounting for 60%
to 70% of virus infection–associated exacerbations.5 Thus, under-
standing upper airway factors that covary with season and poten-
tiate these clinical respiratory events may offer opportunities to
prevent or modify their incidence.

Recent studies have revealed relationships among distinct
upper airway microbiota, virus infections, and risk of asthma
exacerbations, suggesting that interactions between the upper
airway microbiome and airway mucosal responses may influence
susceptibility to these respiratory events.6,7 Specific bacterial
genera dominate distinct upper airway microbiota structures,
with those dominated by Moraxella catarrhalis, Streptococcus
pneumoniae, or Haemophilus influenzae emerging across multi-
ple independent studies as associated with age6 and RV-
associated asthma exacerbation.6,7 Further, longitudinal studies
of pediatric populations without asthma have identified seasonal
relationships among upper airway microbiota composition, viral
upper respiratory infection, and sinusitis.8,9 These data suggest
that the upper airway microbiota is dynamically responsive to
seasonal variation and could explain the heightened seasonal sus-
ceptibility to respiratory illness and exacerbation events in popu-
lations of children with asthma.

Airway immune responses clearly contribute to the relation-
ship between upper respiratory infections and asthma exacerba-
tions.10 Using nasal epithelial transcriptional analysis, we
previously identified specific gene expression modules (groups
of coexpressed genes), which are differentially regulated during
viral and nonviral exacerbations, including upregulation of those
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involved in cell differentiation and wound healing, eosinophil
activation and mucus hypersecretion, extracellular matrix pro-
duction, and epidermal growth factor receptor signaling.10

Collectively, these findings support the concept that viruses,
type II inflammatory immune responses, epithelial integrity, and
upper airway microbiota represent important and potentially
interactive contributors to asthma exacerbations.

We therefore hypothesized that the upper airway microbiota is
dynamic and covaries with season. We further postulated that
season- and age-aware algorithms are necessary to uncover
relationships between upper airway microbiota and respiratory
illness or exacerbation events in children with asthma. Using
longitudinal nasal samples collected from participants in the
MUPPITS-1 study of urban-residing children (6-17 years old)
with exacerbation-prone asthma, we found that the upper airway
microbiome indeed exhibits seasonal dynamics. Further, by
leveraging seasonally adjusted analyses, we uncovered networks
of upper airway microbes that interact with epithelial transcrip-
tional modules during respiratory illness events to significantly
increase risk of subsequent exacerbation.

METHODS
Samples obtained from children enrolled onto the Mechanisms Underlying

Asthma Exacerbations Prevented and Persistent with Immune-based therapy

(MUPPITS-1; NCT02502890) trial were used for this study, which was part

of the Inner-CityAsthmaConsortium.10Children enrolled onto this study lived

in 1 of 9 inner-city study sites in theUnited StateswithinBoston,Chicago,Cin-

cinnati, Dallas, Denver, Detroit, New York, St Louis, and Washington, DC;

were between 6 and 17 years old; had doctor-diagnosed asthma; had experi-

enced at least 2 exacerbations in the previous year; and had eosinophil counts

greater than 150 cells/mm3. In addition, eligible participants required treat-

ment with at least 1 puff twice daily of either fluticasone 250 mg or flutica-

sone/salmeterol (Advair, Glaxo Smith Klein, Middlesex, United Kingdom)

250/50 mg for those less than or greater than 12 years old, respectively, and

were nonsmokers. Children provided an initial baseline visit sample at enroll-

ment and were then observed for upper respiratory illness symptoms and

asthma exacerbations for either 6 months or 2 respiratory illness visits, which-

ever came first. Exacerbations were defined as a need for systemic corticoste-

roid therapy or hospitalization.

A clinic visit with nasal sampling occurred within 3 days of the start of

reported upper respiratory illness symptoms for each illness (V1a and V2a,

respectively). For this study, baseline and V1a samples were used. For each

illness event, a subsequent asthma exacerbation was recorded if there was a

requirement for systemic corticosteroids up to 10 days after the onset of

respiratory illness symptoms. Nasal mucus samples collected at baseline and

V1a were processed for microbiota (16S ribosomal RNA [rRNA] and internal

transcribed spacer region 2 [ITS2] analyses); nasal lavage samples collected in

parallel underwent RNA sequencing (RNA-Seq) analyses as previously

described.10 Predefined exacerbation-associated transcriptional modules iden-

tified in the parent study10 were used in this investigation. In brief, gene

expression data were clustered using weighted correlation network analysis

into modules. These modules were then annotated using the Database for

Annotation, Visualization, and Integrated Discovery. STRING identified

known or predicted protein–protein interactions. Summary annotations for

each module were derived from a manual inspection of a module’s cell type

assignment, functional enrichments, and interaction network.

This study was approved by the institutional review boards of all

institutions. All participants or their legal guardians providedwritten informed

consent before enrollment onto the study.

Nasal blow collection and processing
The sample collection protocol was developed by the Inner-City Asthma

Consortium. Samples were collected under the supervision of a physician.

Deep Sea saline nasal spray was administered into one nostril, and the child

expelled the liquid from the nostril into a small plastic bag, then repeated in the

opposite nostril. After the procedure, 1.5 mL of Addipak sterile saline

(Hudson RCI, Temecula, Calif) was added to the bag, and the sample was

mixed in andmaintained in the refrigerator for additional processingwithin 24

hours. During additional processing, the sample was transferred completely

from the plastic bag into M4RT viral transport media (Thermo Fisher

Scientific, Waltham, Mass) and vortexed vigorously for 1 minute; 500 mL

was formed into aliquots for virus analysis at the University of Madison. Sub-

sequently, 1000mLwas formed into aliquots in 3 tubes stored on site, 1 aliquot

of which was shipped to the University of California, San Francisco, for 16S

rRNA and ITS2 biomarker sequencing.

Virus detection and specification
Respiratory viruses were assessed in nasal mucus samples obtained by the

above-described nasal blow technique at respiratory illness events as previ-

ously described11 usingmultiplex PCR, including the identification of all com-

mon respiratory viruses. Partial sequencing of RV allowed for further

classification into species and types.12

Nasal 16S rRNA gene and ITS2 sequencing
Nasal blow samples obtained at baseline and respiratory illness clinic visits

underwent 16S rRNA gene and ITS2 sequencing. DNAwas extracted from all

samples using a modified cetyltrimethylammonium bromide buffer extraction

protocol as previously described.13 Extracted DNAwas amplified for the 16S

rRNA gene V4 region using 515F and 806R primer pairs as previously

described by Caporaso et al.14 After sequencing on the NextSeq 500 platform

(Illumina, San Diego, Calif), bacterial reads were demultiplexed by barcode

and then assembled using FLASH v1.2.7,15 and low-quality reads were dis-

carded using QIIME 1.9.1.16 Sequences with more than 2 consecutive bases

having a Q-score of less than 30 were truncated. Sequences were dereplicated

and binned into operational taxonomic units (OTUs) using a 97% sequence

similarity threshold using USEARCH.17 OTUs were removed if they were

determined to be chimeric or of nonbacterial origin using QIIME. Negative

controls provided information about background signal, and OTUs were

removed if they were in more than half of negative controls and most of the

samples. Any remaining negative control read counts were subtracted from

samples using themaximumread count across negative controls.Upper airway

bacterial sequence datawere representatively rarefied at 20,722 reads per sam-

ple, a level selected to optimize sample count and community coverage.

Using extracted DNA, ITS2 of the rRNA gene was also amplified using

fITS7 and ITS4, designed for the Illumina MiSeq platform and processed as

previously described.18 Fungal microbiota sequence data underwent similar

procedures after sequencing with the following modifications. Adapter se-

quences were removed and sequences were quality trimmed using ‘cuta-

dapt’19 before assembling paired-end reads with FLASH. ITSx extractor

was used to identify sequences as specifically fungal and not of plant origin.20

Any sequences not passing this filter were removed. Taxonomy was assigned

to OTUs using UNITE.21 Samples were retained if they had at least 50 fungal

reads, and variance-stabilized transformations were used to normalize for dif-

ferences in library depth and retain most samples.22

Statistical analyses
To relate clinical events with changes in season, generalized additivemixed

models and generalized additive models were fitted to identify significant

change throughout the year using the ‘mgcv’ package in R. For relationships

with respiratory illness and exacerbation, a generalized additive mixed model

was used with months as a spline and the option for a cyclic cubic regression

spline; exacerbation or respiratory illness events were the dependent variable,

and a logit regression was used. If 2 events occurred in the samemonth, only 1

event was noted. A random effect for subject was also included. This analysis

used a participant-month data set (around 1300 observations over 208 individ-

uals). Analyses of virus infection were cross-sectional, where a cyclic cubic

regression spline was used for the dependent months variable, as well as logit
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regression on a participant level data set for each visit type, with the assump-

tion that the lack of visit did not necessarily indicate the lack of virus infection.

Therefore, the ‘‘denominator’’ in the associated plot is the number of visits that

occurred within that month.

Analyses with microbiome, fungal, and transcriptome relationships were

analyzed similarly, except that the first principal coordinate (PC) was used as

the dependent variable in a Gaussian regression. When data were available for

fewer than 10months, a smaller number of knots (evenly distributed cut points

between which a continuous curve is fitted to the data) were used in the

analysis. The estimated degrees of freedom statistic describes the nonlinearity

in the curve over time, with larger numbers representing greater variability in

the fitted line. SignificantP values indicate the probability of a nonlinear trend.

Predicted values were obtained from the model using the ‘predict’ function

and represented using the ‘ggplot2’ package in R. To ensure model fit, we

reduced data for mixed models to months where individuals contributed at

least 5 days of observation. For associations with transcriptome modules,

the second principal coordinate was used, as the first was primarily explained

by differences in cell counts.10 To identify the specific bacteria, fungi, and

gene expression modules that related to the principal coordinate, Spearman

correlations were used and the correlation coefficient plotted.

Nasal bacterial and fungal microbiota distance matrices were calculated

using Bray Curtis and Canberra distance matrices, and bacterial microbiota

distance matrices were also calculated by Unweighted andWeighted UniFrac.

Bacterial and fungal distance matrices were calculated using ‘phyloseq’ in

R.23 Principal coordinates were calculated using the ‘ape’ package.

Permutational analyses of variance (PERMANOVA)were performed using

the ‘adonis2’ function from the ‘vegan’ package,24 and 999 permutations with

marginal tests (by5 ‘‘margin’’), including exacerbation, virus detection, age,

sex, and study site in the same model. P <.05 was considered significant, with

trends being described at P <.1. Differentially abundant OTUs were identified

by DESeq2 in R,25 filtering to OTUs present in at least 10% of samples, and

using size factors calculated from positive counts and a local fit type. Relation-

ships with age included additive adjustments for sex, study site, and season,

while season-specific outcome models also included adjustments for exacer-

bation and virus detection. P values were corrected for multiple comparisons

using the Benjamini-Hochberg correction, and false discovery rate–corrected

P < .2 was considered significant.

For analyses of OTU networks, nasal OTUs were filtered out if they were

present in less than 10% of samples, and correlations between OTUs were

identified using SparCC26 from the SpiecEasi package in R. A correlation of

0.5 or more indicated a connection, and networks were identified using a clus-

ter_fast_greedy approach from the ‘igraph’ package,27 which uses the random

walker method. Nineteen networks were identified (see Table E5 in this arti-

cle’s Online Repository at www.jacionline.org). To create a network-specific

OTU table, OTUs were collapsed by summing counts of OTUs within each

network for each sample. Any taxa that did not have any connections were

agglomerated into an ‘‘unassigned’’ network and are not presented in Table E5.

To delineate the specifics of these relationships in the context of season and

clinical outcomes, we examined associations of these networks with 4 tran-

scriptomemodules previously identified in this cohort, including those associated

with exacerbation (ie, epithelial mothers against decapentaplegic homolog 3

[SMAD3]-related cell differentiation, eosinophil activation, and mucus hyperse-

cretion, extracellular matrix production, and EGFR signaling modules).

To identify instances where the combination of microbiota networks and

gene expression modules associated with distinct risk of subsequent

exacerbation, we utilized interaction terms in logistic regression models

with exacerbation as the dependent variable, and pairwise gene expression

modules and microbiome networks as interaction terms (ie, exacerbation ;
gene expression module 3 microbiome network). Interaction models are

adjusted for age, sex, and season. For these models, study site increased the

degrees of freedom, reduced the models’ ability to converge, and did not

change any effect estimates by more than 10%, and thus it was not used for

adjustments. Models with significant interaction terms were stratified by the

median count of the bacterial network to understand the nature of significant

interactions. In other words, in the context of a large abundance of a specific

microbiota network, a gene expression module is associated with the risk of

exacerbation. Interactions were considered significant if the P value for the

overall interaction effect was less than .05 or if the P value for a specific me-

dian stratumwas less than .05 with an overall interaction P value was less than

.1. Plots for visualization of interactions were developed using the ‘emmip’

function from the ‘emmeans’ package in R.28

Amplicon sequencing data sets generated and analyzed under the current

study are available in the European Nucleotide Archive under accession

number PRJEB42394. Transcriptomics data sets are available from the

original publication (PMID:30962590). Participant-level metadata are avail-

able upon request.

RESULTS

Clinical and upper airway microbiota features

covary with season
Relationships among season and clinical events, upper airway

microbiome, and nasal epithelial transcriptome were initially
assessed independently. Among 208 children with asthma
enrolled onto the study, a total of 164 respiratory illnesses and
143 exacerbations were reported. Consistent with previous
reports,7-9,29,30 incidence of respiratory illnesses and exacerba-
tions exhibited seasonal trends (generalized additivemixedmodel
for respiratory illnesses; P < .001, Fig 1, A; P 5 .039, Fig 1, B),
with the highest frequency in fall and winter and the lowest fre-
quency in the summer months. An increase in both respiratory ill-
nesses and exacerbations was evident from late summer through
late fall. As expected, detection of any respiratory virus (picorna-
virus, coronavirus, influenza, or others) also varied by season; this
was true during baseline visits in the absence of illness (visit 0;
generalized additive model P5 .012) and also during respiratory
illness events (visit 1a; P 5 .003; Fig 1, C). More specifically, in
respiratory illness samples, RV-A and RV-B, but not RV-C, ex-
hibited significant seasonality (RV-A P 5 .015, RV-B P 5 .008,
Fig 1, D), peaking in late summer and fall.

Likewise, 16S rRNA nasal microbiota composition varied with
season in both baseline and respiratory illness samples (baseline
n 5 181, P 5 .001; respiratory illness n 5 97, P 5 .016, respec-
tively, Fig 1, E). Distinct upper airway microbiota were evident
in late spring and early fall compared to other seasons, primarily
driven by increased relative abundance of multiple Moraxella
taxa in spring and several Staphylococcus in the fall (see Fig E1
in the Online Repository at www.jacionline.org). Upper airway
fungal microbiota did not relate to season in the absence of a res-
piratory illness (visit 0 n 5 108, P 5 .742, Fig 1, F). However, a
significant relationship between season and variation in fungalmi-
crobiota composition was observed in respiratory illness samples
(visit 1a n5 57, P5 .006, Fig 1, F). Illnesses experienced in the
spring associated withMalassezia enrichment, while those in the
fall were associatedwith enrichment of allergenic fungi,Candida,
and Cladosporium (see Fig E2 in the Online Repository).

Nasal transcriptomes were also assessed for relationships with
season within baseline and respiratory illness samples. For
baseline samples, a suggestion of variation throughout the year
did not quite reach statistical significance (visit 0 Principal Coor-
dinate [PC] 2,P5.071, n5 94, Fig 1,G), though in the late spring
months, in parallel with elevatedMoraxella abundance, increases
in chromatin modification, integrin, and keratinization modules
were evident (see Fig E3 in the Online Repository at www.
jacionline.org). Respiratory illnesses were associated with epithe-
lial transcriptional modules related to antigen presentation (Fig
E3), although no association between season and epithelial tran-
scription was identified in these samples (visit 1a PC2, P5 .149,
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n5 97, Fig 1, G), suggesting that host transcriptional response to
respiratory infection is relatively conserved across seasons. Rela-
tionships with PC1 were examined but did not reach statistical
significance and were primarily characterized by differences in
cell types (see Fig E4 in the Online Repository).

Baseline nasal microbiota relates to time to

respiratory illness
Consistent with previous reports,6 older children in this study

exhibited nasal enrichment of several Staphylococcus and Cory-
nebacterium members, while younger children exhibited

FIG 1. Variation in (A) respiratory illness (respiratory illness events as a proportion of total individuals

observed each month), (B) exacerbation (exacerbation events as a proportion of total individuals observed

each month), (C) virus detection (proportion of samples with detectable virus), (D) RV species during respi-

ratory illness events, (E) nasal bacterial composition (16S rRNA, PC1), (F) mycobiome (ITS2, PC1), and (G)

nasal transcriptome (airway mucosal RNA-Seq, PC2) across seasons in baseline (visit 0) and respiratory

illness (visit 1a) samples. PC, Principal coordinate; ITS, Internal Transcribed Spacer; RV, Rhinovirus.
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increased Moraxella, Haemophilus, and Alloiococcus taxa in
their baseline samples (n5 181; Fig 2, A; see Table E1 in the On-
line Repository at www.jacionline.org). Among children with a
baseline sample, those who reported a first respiratory illness visit
did so between 3 and 202 days after the baseline visit (n 5 93).
While nasal bacterial microbiota composition at baseline was
not associated with the time to respiratory illness (Unweighted
UniFrac, PERMANOVA R2 5 0.014, P 5 .13, adjusted for age
and season of sampling), it was significantly associated with
time to exacerbation (Weighted UniFrac, R2 5 0.034, P 5 .04,
adjusted for age and season). These data indicate that age- and
season-adjusted analyses are necessary to reveal relationships be-
tween upper airwaymicrobiota and length of time to exacerbation
in children with asthma.

Fungus composition at baseline (n5 53) was primarily associ-
ated with the age of the child (Bray Curtis, PERMANOVA, R2 5
0.044, P 5 .001) after adjustment for exacerbation, virus detec-
tion, sex, and study site (P > .4 for all). Age-associated fungi
included a single Malassezia taxon (associated with older chil-
dren) and distinct members of Ascochyta, Malassezia, Cladospo-
rium, and Verticillium associated with younger-age participants
(Fig 2, B; see Table E2 in the Online Repository at www.
jacionline.org). This subset of children returned for a respiratory
illness visit between 5 and 192 days after the baseline visit, but
fungal communities at baseline were not associated with time to
first illness (Bray Curtis, PERMANOVA R2 5 0.021, P 5 .242;
after adjustment for age, study site, virus positivity, and season).
A single Cladosporium taxon (OTU8, the same Cladosporium
OTU associated with younger children in the study), was found
to be enriched in children who experienced a longer duration to
respiratory illness (OTU8 log2 fold change5 0.106, false discov-
ery rate–corrected P5 .006), after adjustment for age, study site,
and season of sample collection.

Nasal microbiota during respiratory illness exhibits

season-specific relationships with clinical outcomes
Season-specific relationships with nasal microbiota, virus

detection, and exacerbations were observed in respiratory illness
samples. Specifically, nasal bacterial microbiota composition of
respiratory illness samples in the fall (n5 34) associated with vi-
rus detection (Weighted UniFrac, PERMANOVA, R2 5 0.089,
P 5 .017) and with subsequent exacerbations (R2 5 0.078, P 5
.027) in a multivariable model that also included study site, age,
and sex (P > .2 for site, age, and sex; Table I). In the fall, bacteria
associated with respiratory illnesses and subsequent exacerba-
tions included several Moraxella and Haemophilus members,
which were enriched both in virus-positive respiratory illnesses
and those that progressed to exacerbations (DESeq2, Fig 3, A
and B; see Tables E3 and E4 in the Online Repository at www.
jacionline.org). Nasal bacterial microbiota detected in respiratory
illnesses during winter (n 5 33) primarily covaried with virus
detection (Weighted UniFrac, PERMANOVA, R2 5 0.097, P 5
.008), study site (R2 5 0.325, P 5 .050), and age (R2 5 0.11,
P 5 .009), but not with exacerbations or child’s sex (P > .15 for
each; Table I) in a multivariable model. Relationships between
these variables and spring (n 5 22) or summer (n 5 8) upper
airway microbiota did not reach statistical significance, likely
as a result of the smaller sample sizes available during these sea-
sons. Relationships using the same multivariable model and
including all samples were primarily related to age, with no

significant relationships with exacerbation or virus infection
observed (Table I). Taken together, these data suggest that
season-specific bacterial interactions influencing respiratory
illness and exacerbations in children with asthma are strongest
in the fall.

During respiratory illnesses (n 5 58), fungal composition pri-
marily associated with season (Bray Curtis; PERMANOVA; R25
0.076,P5.008), and to a lesser extent age (R25 0.025,P5.055).
Neither baseline nor illness fungal composition associated with
exacerbation risk.

Interactions between microbial networks and

immune transcriptional modules influence asthma

exacerbation risk
We next hypothesized that interactions between exacerbation-

associated epithelial transcriptional modules and specific net-
works of cocolonizing microbes in the upper airways during
respiratory illness influence the risk of subsequent exacerbation in
a season-specific manner. Before this study, host transcriptional
modules from RNA-Seq of paired nasal lavage samples were
developed using weighted correlation network analysis; these
modules were found to discriminate viral and nonviral exacerba-
tions.10 Because of our sample size, we focused specifically on the
4 host transcriptional modules previously found to be associated
with exacerbation events in this cohort:10 epithelial SMAD3-
related cell differentiation, eosinophil activation and mucus hy-
persecretion, extracellular matrix production, and epidermal
growth factor receptor signaling. Bacterial (16S rRNA) data
also underwent network analysis to reduce data dimensionality.
This process identified 19 bacterial networks (N1-19; Table
E5); interactions between these bacterial networks and the 4
exacerbation-associated transcriptomemodules were assessed us-
ing logistic regression.

Seasonally adjusted analysis of respiratory illness samples
(n 5 97) revealed that SMAD3 interacted with 2 bacterial net-
works (N1 and N3) to significantly modify the risk of subsequent
exacerbation. N1 primarily comprisedmultipleVeillonella, Strep-
tococcus, Neisseria, and Haemophilus OTUs (interaction P 5
.050), while N3 comprised entirely of Staphylococcus OTUs
(interaction P 5 .059). Specifically, increased expression of
SMAD3 among children with higher abundance of the N1 bacte-
rial network was associated with increased exacerbation risk
(odds ratio [OR] 5 14.71, 95% confidence interval [CI] 5
1.50-144.14, P 5 .018; Fig 4, A, adjusted for age and season).
Children who possessed a reduced abundance of the N3 network
in the context of increased SMAD3 expression also exhibited
increased risk of exacerbation (OR 5 39.17, 95% CI 5 2.44-
626.48, P5 .008, Fig 4, B, adjusted for age and season), suggest-
ing that low abundance or loss of this nasal bacterial network may
promote exacerbation. Importantly, these 2 bacterial networks
were not inversely related or mutually exclusive (x2 P 5 .747).
When bacterial networks were not considered in the relationship
between SMAD3 and exacerbation, odds ratios were substantially
lower (OR5 3.22, 95% CI5 1.28-8.07, P5 .01), and in interac-
tion models unadjusted for season, interaction P values were
nonsignificant (P5 .11 and .18). Thus, these findings provide ev-
idence that interactions between specific upper airway microbial
networks and host transcriptional modules during respiratory
illness increase the risk of exacerbation in a season-specific
manner.
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DISCUSSION
Seasonal variations in respiratory illnesses and asthma exac-

erbations are well described.4,31 Although asthma exacerbations
occur throughout the year, they are most common in the fall, an
observation validated in this cohort of inner-city children with
asthma. While this pattern has traditionally been attributed to
increased virus exposure after returning to school,32 there are a
number of other potential contributing factors to this seasonal
variation. Human behavior covaries with season, including the
proportion of time spent indoors and in close proximity to others,
increasing the potential for horizontal transmission of cellular mi-
crobes as well as viruses. In parallel, atmospheric,33 human, and
animal microbiomes also exhibit seasonal variation,34,35 as do
several respiratory viruses.36-38 The latter is consistent with ob-
servations made in this cohort, which indicate increased RV
detection in late summer which peaks in fall and comprises suc-
cessional waves of RV-A, -B, and -C.

Conditions in the upper airway also covary with seasonal
changes in humidity, temperature, air pollution, allergen expo-
sure, and virus infection.39 In this analysis, while upper airway
transcriptional response to respiratory illness was relatively
conserved, transcriptional variation in baseline samples was asso-
ciated with season, particularly summer, when modules involved

in keratinization and integrins were expressed. Given that this
season exhibits low rates of respiratory illness and exacerbation,
it is possible these season-specific host responses protect against
virus infection. An alternative possibility is that these transcrip-
tional changes in the summer in children with asthma influence
their upper airway microbiome and increase susceptibility to sub-
sequent virus encounters in the late summer and fall season. Yet
another possibility is that upper airway microbiota responds to
the external environment, including pollution40 and tempera-
ture.41 One recent publication identified thermo-sensing abilities
in S pneumoniae andH influenzae leading to altered expression of
virulence factors under distinct temperature conditions.41 Sea-
sonal variation in nasal microbiota composition, especially in in-
fants and children, has previously been described,7,9,29,30 and the
types of bacteria present in the upper airways during the fall sea-
son relate to risk of respiratory illness and exacerbation in chil-
dren with asthma.6

These observations raised the possibility that the upper airway
microbiome and microbial exposures may dynamically interact
with each other and the host in a season-specific manner to
influence respiratory illness susceptibility and exacerbation out-
comes in children with asthma. This prompted an examination of
microbiome features in season-specific and -adjusted analyses

A B

FIG 2. A, Specific bacterial taxa in baseline samples that associate with age (n 5 181). Moraxella and Hae-
mophilus decrease in relative abundance with increasing age, while Corynebacterium and Staphylococcus
increase in abundance with increasing age. B, Fungus taxa in baseline samples related to age (n5 53). Pos-

itive fold changes reflect taxa that increase with child’s age; negative fold changes, those that decrease with

increasing age. Data are color coded by genus-level taxon identity; circle size indicates average relative

taxon abundance. All findings are adjusted for sex, season of sample collection, and study site.

TABLE I. Variation in season-specific nasal microbiota during respiratory illness relates to clinical outcomes in children with

asthma using Weighted UniFrac distance

Variable

Overall (n 5 97) Fall (n 5 34) Winter (n 5 33)

R2 P value R2 P value R2 P value

Exacerbation 0.005 .747 0.078 .027 0.020 .455

Virus positive 0.013 .239 0.089 .017 0.097 .008

Age (years) 0.034 .017 0.025 .453 0.110 .009

Study site 0.111 .093 0.151 .785 0.325 .050

Sex 0.019 .093 0.036 .251 0.034 .194

R2 values and P values were obtained from multivariable PERMANOVA; multivariable PERMANOVA included all variables listed.
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that associated with respiratory illness and subsequent exacerba-
tion. Fall respiratory illness microbiota were enriched forHaemo-
philus and Moraxella in the context of both virus infection and
subsequent exacerbation, which is consistent with our previous

study that longitudinally profiled the upper airway bacterial mi-
crobiota of over 400 children with asthma specifically during
the fall season.6 Thus, the presence of specific bacterial genera
in the upper airway microbiota during fall respiratory illnesses

A B

FIG 3. Specific bacterial taxa in fall respiratory illness samples (n 5 34) relate to (A) subsequent exacerba-

tion and (B) virus infection. Taxa are color coded by genus-level taxon identity; circle size indicates average

relative taxon abundance. All findings are adjusted for exacerbation, virus infection, sex, season of sample

collection, and study site.
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FIG 4. Interactions between SMAD3 expression and 2 upper airway bacterial networks (N1 and N3) during

respiratory illness events significantly increases the probability of subsequent exacerbation (age, sex and

season of respiratory illness adjusted analysis). A, Interaction between SMAD3 expression and elevated

abundance of the N1 bacterial network increases risk of exacerbation. B, Interaction between SMAD3
expression and reduced abundance of the N3 bacterial network increases risk of exacerbation. Slopes indi-

cate the association between exacerbation and SMAD3 expression among subsets of children differentiated

by the median count of reads in each network, with 4558 reads in (A) and 7949 reads in (B).
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increased the likelihood of subsequent exacerbation and virus
detection, suggesting that their interaction with host response to
virus infection relate to these outcomes.

Host transcriptome analyses provide insights into the host
response during respiratory illnesses and subsequent exacerba-
tions. Our data indicate that combining this information with
networks of coassociated bacteria in season-adjusted interaction
models permits identification of children at significantly higher
risk of asthma exacerbation. Specifically, those possessing a
network of Streptococcus, Haemophilus, Neisseria, Prevotella,
and other genera (N1) or those lacking a Staphylococcus network
(N3) were found to have increased risk of exacerbation associated
with increased epithelial SMAD3-related cell differentiationmod-
ule expression. Although causative directionality is currently un-
known, the SMAD3 module is composed of several genes
including RRAD42 and TRPV443 that regulate the uptake of cal-
cium. Previous studies have demonstrated that Staphylococcus
aureus forms less-structured biofilms with increasing calcium
availability44,45 and that calcium improves macrophage response
to H influenzae.46 Additionally, the SMAD3module also includes
the CLU gene, which encodes clusterin, a protein associated with
cellular debris clearance.47 Intriguingly, independent studies have
shown that clusterin binds efficiently to S aureus,48 improving
species-specific bacterial adhesion and reducing the bacteria
load required to produce a pathogenic response. These findings
support the hypothesis that specific upper airway bacterial net-
works may leverage host responses to alter their abundance and
pathogenicity in the upper airways of children with asthma,
thus enhancing disease activity and risk of subsequent
exacerbation.

This study provides initial insights into specific host–microbe
interactions in the upper airways that promote exacerbation.
Legacy effects of these interactions imprinted via epigenetic
modifications in key immune cell populations poses a plausible
mechanism for the chronicity of asthma. Indeed, previous studies
have identified methylation patterns associated with T-cell
maturation, TH2 immunity, and oxidative stress (a key antimicro-
bial response) in children with asthma,49 providing data that
epigenetic marks in these children relate to asthma development.
The role of DNA methylation in the differentiation and function
of Treg cells is also well described,50,51 and in parallel, a recent
study found that gut bacteria with enhanced methylation
signatures exhibit greater Treg cell induction.52 How asthma-
associated epigenetic modifications in the upper airways are influ-
enced by interactions with colonizingmicrobes remains unknown
but is an active area of new and potentially fruitful research.

While this analysis provides important insights into seasonal
variation the upper airway microbiome and its relationship with
respiratory illnesses and exacerbations, there are a few limitations
to consider. First, children enrolled onto the MUPPITS-1 study
reside in urban environments and had active asthma; as such,
these findings may not be generalizable to a broader population.
Also, the number of samples with bacterial and fungal data
available for respiratory illness events, especially those in specific
seasons, was limited; a larger sample size may further elucidate
these interactions. The study also leveraged DNA amplicon–
based microbiota profiles providing information on which
microbes exist in the upper airways, limiting our ability to assess
microbial activities that relate to increased exacerbation risk.
However, the use of RNA-based microbiome analyses to capture

transcriptionally active microbes on the upper airway mucosal
surface should offer a more accurate view of microbial activities
that relate to host immune responses and clinical outcomes. In
addition, dual RNA-Seq, capturing both host and microbial
transcriptional activity in parallel, could greatly enhance our
understanding of the relationships we described. Finally, our
findings surrounding microbe–host interactions are correlative
and do not prove causality; further studies deconstructing these
interactions to delineate mechanisms that govern susceptibility to
respiratory infection and exacerbation are clearly required.

These findings indicate that age and seasonal dynamics in
upper airway microbiomes represent important factors to
consider in analyses of respiratory microbiomes. The study also
identifies specific networks of upper airwaymicrobes that interact
with host transcriptional responses to significantly increase risk of
subsequent exacerbation and that this relationship is also strongly
dependent on season. Therefore, host responses in concert with
cooperative networks of airway-associated bacteria may promote
exacerbation in a season-dependent manner.

We thank the patients and parents of those enrolled onto the Inner-City

Asthma Consortium, whose participation made this study possible. We thank

all of the investigators and staff of the National Institute of Allergy and

Infectious Diseases’ Inner-City Asthma Consortium.

Key messages

d Asthma exacerbation, respiratory illness, virus infection,
RV species, and upper airway microbiota composition
all exhibit seasonal dynamics.

d During fall respiratory illnesses, nasal microbiota compo-
sition relates to exacerbation and virus infection.

d Specific networks of upper airway bacteria present dur-
ing respiratory illness interact with a host gene expression
module to increase risk of exacerbation, suggesting that
exacerbation risk associated with gene expression may
be microbiome dependent.
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