The Impact of Age on Outcomes and Mode of Transport in Trauma

Maritza D. Essis

Ursula Barghouth
Henry Ford Health System, ubargho1@hfhs.org

David A Moore
Henry Ford Health System, DMOORE19@hfhs.org

Jeffrey Johnson
Henry Ford Health System, jjohns52@hfhs.org

Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019clinres

Recommended Citation

Essis, Maritza D.; Barghouth, Ursula; Moore, David A; and Johnson, Jeffrey, "The Impact of Age on Outcomes and Mode of Transport in Trauma" (2019). *Clinical Research*. 64.
https://scholarlycommons.henryford.com/merf2019clinres/64
The Impact of Age on Outcomes and Mode of Transport in Trauma

Maritza D. Essis¹, Ursula Barghouth¹, David Moore², Jeffrey Johnson²

¹. Wayne State University School of Medicine
². Henry Ford Health System, Department of Acute Care Surgery
Background

• Patient outcomes better with Private Vehicle Transport (PVT) vs Emergency Medical Services (EMS)

• Age impacts trauma outcomes

• Hypothesis:
 • Older patients would be more likely to utilize EMS transportation over PVT
 • Improved outcomes with PVT would be demonstrated across all age groups
Methods

- Academic, Regional, Level 1 Trauma center in Detroit between 2013-2017
 - N=4997

- Retrospective study utilizing data from the following sources:
 - Trauma registry
 - Patient chart reviews

- Inclusion criteria
 - Trauma patients arriving via PVT or EMS with any of the three dispositions
 - Admitted
 - Deceased in ED
 - Transferred out of Hospital
Methods (cont.)

• Exclusion criteria; anyone transferred from outside hospital

• Age classification:
 • Pediatric (age 0-14)
 • Adult (age 15-64)
 • Geriatrics (age 65+)

• Chi square tests for nominal data and independent sample t-tests for continuous data
 • Significance defined as $p < 0.01$
Chart 1: Percentage of Patients Using PVT vs. EMS by Age Classification

<table>
<thead>
<tr>
<th>Age Classification</th>
<th>PVT</th>
<th>EMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL PATIENTS</td>
<td>35.7</td>
<td>64.3</td>
</tr>
<tr>
<td>GERIATRIC</td>
<td>35.7</td>
<td>64.3</td>
</tr>
<tr>
<td>ADULT</td>
<td>33.9</td>
<td>66.1</td>
</tr>
<tr>
<td>PEDIATRIC</td>
<td>56.9</td>
<td>43.1</td>
</tr>
</tbody>
</table>
Chart 2: Average Glasgow Coma Scale Score by Age and Mode of Transport

- PEDIATRIC: p value = 0.009
- ADULT: p value < 0.001
- GERIATRIC: p value < 0.001

Chart 3: Average Heart Rate by Age and Mode of Transport

- Adults: p value < 0.001
- Geriatrics: p value = 0.206
- Peds: p value = 0.012
Chart 4: Mechanism of Injury By Age In PVT vs. EMS

- **% PENETRATING (PEDIATRICS)**
 - PVT: 45%
 - EMS: 15%
 - P value <0.001

- **% BURN (PEDIATRICS)**
 - PVT: 30%
 - EMS: 20%
 - P = 0.764

- **% BLUNT (PEDIATRICS)**
 - PVT: 25%
 - EMS: 65%
 - P < 0.001

- **% PENETRATING (GERIATRICS)**
 - PVT: 30%
 - EMS: 10%
 - P < 0.001

- **% BURN (GERIATRICS)**
 - PVT: 40%
 - EMS: 30%
 - P = 0.071

- **% BLUNT (GERIATRICS)**
 - PVT: 30%
 - EMS: 60%
 - P < 0.001

- **% PENETRATING (ADULTS)**
 - PVT: 20%
 - EMS: 10%
 - P < 0.001

- **% BURN (ADULTS)**
 - PVT: 30%
 - EMS: 20%
 - P < 0.001

- **% BLUNT (ADULTS)**
 - PVT: 50%
 - EMS: 30%
 - P < 0.001
Chart 5: Average Intensive Care Unit (ICU) Stay and Average Length of Stay (LOS) In Days

- LOS (Geriatrics)
- ICU (Geriatrics)
- LOS (Adults)
- ICU (Adults)

<table>
<thead>
<tr>
<th></th>
<th>EMS</th>
<th>PVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (Geriatrics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOS (Adults)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICU (Geriatrics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICU (Adults)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P < 0.001

Chart 6: Mortality Within Age Groups Between PVT and EMS

- Adults: 23
- Geri: 9
- Peds: 2

<table>
<thead>
<tr>
<th></th>
<th>PVT</th>
<th>EMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>23</td>
<td>188</td>
</tr>
<tr>
<td>Geri</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>Peds</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

P < 0.001
P = 0.096
P = 0.125
Conclusions

- Pediatrics had higher PVT use
 - EMS more likely to take patients to children’s trauma center

- Increased age correlates with a greater likelihood of utilizing EMS

- PVT utilization correlates with decreased mortality in adults

- Other outcome measures were improved in patients arriving via PVT (when excluding pediatric sample)