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CLINICAL SCIENCE

Development and Validation of a Natural Language
Processing Algorithm to Extract Descriptors of Microbial

Keratitis From the Electronic Health Record

Maria A. Woodward, MD, MSc,*† Nenita Maganti, MD,*‡ Leslie M. Niziol, MS,* Sejal Amin, MD,§
Andrew Hou, MD,§ and Karandeep Singh, MD†¶

Purpose: The purpose of this article was to develop and validate a
natural language processing (NLP) algorithm to extract qualitative
descriptors of microbial keratitis (MK) from electronic health records.

Methods: In this retrospective cohort study, patients with MK
diagnoses from 2 academic centers were identified using electronic
health records. An NLP algorithm was created to extract MK
centrality, depth, and thinning. A random sample of patient with MK
encounters were used to train the algorithm (400 encounters of 100
patients) and compared with expert chart review. The algorithm was
evaluated in internal (n = 100) and external validation data sets
(n = 59) in comparison with masked chart review. Outcomes were
sensitivity and specificity of the NLP algorithm to extract qualitative
MK features as compared with masked chart review performed by
an ophthalmologist.

Results: Across data sets, gold-standard chart review found centrality
was documented in 64.0% to 79.3% of charts, depth in 15.0% to
20.3%, and thinning in 25.4% to 31.3%. Compared with chart review,
the NLP algorithm had a sensitivity of 80.3%, 50.0%, and 66.7% for
identifying central MK, 85.4%, 66.7%, and 100% for deep MK, and
100.0%, 95.2%, and 100% for thin MK, in the training, internal, and
external validation samples, respectively. Specificity was 41.1%,
38.6%, and 46.2% for centrality, 100%, 83.3%, and 71.4% for depth,

and 93.3%, 100%, and was not applicable (n = 0) to the external data
for thinning, in the samples, respectively.

Conclusions: MK features are not documented consistently
showing a lack of standardization in recording MK examination
elements. NLP shows promise but will be limited if the available
clinical data are missing from the chart.

Key Words: cornea, microbial keratitis, measurement, Natural
Language Processing, electronic health record

(Cornea 2021;00:1–6)

Microbial keratitis (MK) is an acute corneal infection that
causes severe pain, decreases quality of life, and has

potential for vision loss. Patients require immediate, intense
treatment to minimize visual insults and risk of complications.
Management of MK involves empiric topical antibiotic therapy,
culture and gram stain, and occasionally, corneal transplant.1

Appropriate treatment is based on the severity of the infection.
Studies have shown that physicians treat MK in several different
ways.2–4 Providers evaluate the features of MK, including the
infiltrate’s location, size, depth, thinning, and multifocal nature and
document this information in the examination portion of the
clinical note.5 Certain features of MK morphology are associated
with more severe disease and worse prognosis. Vital et al
described a system that classified keratitis as potentially sight
threatening when infiltrates were more central and larger or caused
more inflammation.6 Other studies have reported that centrality,
depth, and corneal thinning all play a role in MK severity.7–9

As clinicians use electronic health record (EHR) systems
to document findings, it provides the opportunity to study
documentation and build automated systems to extract data from
the EHR. Manual extraction of clinical data by chart review is a
time-consuming task; natural language processing (NLP) can
process the same volume of information automatically and more
efficiently.10 Algorithms that extract key clinical features have
been used to guide medical decision making and improve
quality of care.11–14 Such NLP algorithms have been used in
several fields to identify diseases and their potential risk factors,
adverse effects of drugs, and resistance to treatments.15–19 In
ophthalmology, NLP of the EHR has been used to identify
diseases and extract intraoperative complications and quantita-
tive data related to MK.20–22 However, the use of these
algorithms in ophthalmology is currently limited and prone to
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challenges because of domain-specific vocabulary, structure of
the data, and abbreviations used in documentation.10

The purpose of this study was to use NLP to automate
the extraction of clinical morphological features of MK
documented by ophthalmologists in the EHR and evaluate
the extent of the documentation across patients. A previous
study by the authors illustrated an NLP algorithm that
successfully extracts quantitative measurement information
related to MK from the EHR.22 In this study, an NLP algorithm
was created to extract specific key features that are important in
assessing the severity of MK. Using an automated process to
extract key data has potential to be invaluable in identifying
patterns and triaging patients with severe MK, recognize gaps
in EHR documentation, and improve quality of care.

METHODS
All patients in the University of Michigan (UM) EPIC

EHR from August 1, 2012, to March 30, 2018, were explored
to identify the subset of subjects who interacted with an eye
care provider. This study was approved by the Institutional
Review Board at the University of Michigan. The data from
Henry Ford were deidentified and were approved as exempt.
Of these patients, those with International Classification of
Diseases codes related to MK (ICD-9 370.0; ICD-10 H16.0)
were included for training or validating the NLP algorithm.
Patients with MK with all their clinical encounters were
identified, and data pertaining to patient demographics, current
procedural terminology codes, diagnoses based on ICD billing
codes, and the free text in the corneal examination from the
physician note were extracted into a data set for study. To train
the algorithm, patients with 4 encounters in the first 14 days of
active MK were identified. This specific group was selected
because such patients were likely to have active, changing
features between encounters, hence a high yield of documen-
tation. A random sample of 100 of these patients (each with 4
encounters) was selected to form the training data set for chart
review. A separate set of 100 patients with MK with 1 random
encounter each, from April to December 2018, were identified,
and chart review was performed to serve as an internal
validation set for the NLP algorithm. Finally, an external
validation set of 59 patients from the Henry Ford Health
System (HFHS) diagnosed with MK from April 1, 2016, to
May 1, 2018, identified in the EPIC EHR by study team
members (A.H. and S.A.) in the HFHS ophthalmology
department, were chart reviewed for MK features. Thorough
chart review, by a study team member trained in research
related to MK (N.M.), with oversight by a cornea specialist
(M.W.), was performed on these samples to extract the key
features of MK. Chart review included review of the free text
cornea part of the examination, review of any drawings, other
text within the examination portion of the record, and the
assessment and plan of patients’ charts to identify the clinical
features of MK. The key clinical features of MK included
centrality, depth, and thinning. Each patient encounter was
categorized for each feature as central or not central (where
paracentral, peripheral, and “out of visual axis” were consid-
ered not central), deep or not deep (where depth $50% was
considered deep), and thin or not thin (where thinning $50%

was considered thin). In addition, any references in the chart to
perforation, glue, or seidel positive were categorized as being
thin and deep. The study team member was masked to the
algorithm results at the time of chart review.

Development of the NLP Algorithm
The NLP algorithm was created using the Python

programming language, with use of the re, nltk, spaCy, and
pandas (release 0.23.1) libraries. The development of the NLP
algorithm was an iterative process using the free text in the
corneal examination field of the EHR for all MK encounters
in the training set. First, the cornea specialist reviewed notes
in the training set to identify key phrases or word patterns that
revealed the qualitative aspects of MK. Next, these were
encoded using formal pattern descriptions known as “regular
expressions.” These regular expressions were then applied to
the training set and compared against the ophthalmologist-
determined gold standard. Any errors in the algorithm’s
identification of qualitative aspects were shown to the
ophthalmologist for correction. This process was repeated
until the ophthalmologist determined that any remaining
errors were related to unusual phrasings that would not be
expected to be generalizable. Thus, capturing such phrases
using regular expressions may improve algorithm perfor-
mance in the training set but would not be expected to
improve performance more generally and may introduce
additional errors when applied beyond the training set.

Once the iterative development of the algorithm was
complete, the algorithm was finalized and used to extract MK
features from each sample using the following steps: 1)
preprocessing to handle abbreviations and synonyms (eg,
replacing “endothelium pigment” with “endopigment”), 2)
splitting of sentences and paragraphs into sentence fragments,
3) part-of-speech tagging and syntactic dependency parsing to
identify modifying words (eg, identifying adjectives that
describe the word “scar”), 4) application of regular expres-
sions to identify the qualitative aspects of the lesion, 5)
extraction of numerical percentages describing the degree of
thinning and lesion depth, and 6) aggregation of findings
within sentence fragments at the note level. The code for the
final algorithm is available at https://github.com/ML4LHS/
cornea-nlp-mk-qualitative.

Validation of the NLP Algorithm
After the algorithm was completely trained, its perfor-

mance was evaluated on both internal and external validation
sets. The accuracy of the algorithm was determined by
agreement with gold-standard, manual chart review-
extracted details. Agreement occurred when both methods
extracted the same centrality, depth, or thinning details or also
when neither method found any information regarding the
features individually. Disagreement in MK information
occurred when chart review recorded a feature that NLP did
not, NLP recorded a feature that chart review did not, or chart
review and NLP recorded details that were different. When
the NLP algorithm was inaccurate, the study team evaluated
the case to identify a possible reason underlying the error.
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Statistical Analysis
Descriptive statistics were used to summarize patient

demographics within each training or validation sample.
Categorical measures were summarized with frequencies and
percentages, and continuous measures were summarized with
means and standard deviations. Samples were compared for

differences with one-way analysis of variance, x2, and Fisher
exact test. Ulcer features were compared between NLP
extraction and chart review for agreement. Accuracy, defined
as the percent of features that agreed between the NLP algorithm
and chart review extractions, was calculated. To account for
chance agreement between chart review and NLP algorithm,
kappa statistics are reported with 95% confidence intervals (CI).
Sensitivity, specificity, and positive predictive value were also
calculated and reported with 95% CIs for each of the ulcer
features. All analyses were stratified by the UM training sample,
the UM validation sample, and the external HFHS validation
sample. SAS version 9.4 (SAS Institute, Cary, NC) and R 3.6.1
(Vienna, Austria) were used for all statistical analyses.

RESULTS
A total of 100 patients each with 4 encounters (400

encounters total) were selected for the UM training set, 100
patients with 100 encounters for the UM validation, and 59
patients with 59 encounters for the external validation from
HFHS. Across the samples, patients were on average 45 to 58
years old, 51% to 69% female, and 52% to 85% White
(Table 1). Patients from the HFHS external validation set
were significantly older (58.1 years, SD = 19.7; P = 0.0016),
and a larger percentage were female (69.5%; P = 0.0499) and
Black (33.9%; P , 0.0001) compared with patients from the
UM training set (45.4 years, SD = 20.9; 51% female; 11.0%
Black) and those from the UM validation set (49.7 years,
SD = 22.5; 52.0% female; 8% Black).

TABLE 1. Patient Demographic Characteristics by Training
and Validation Data Sets

Continuous
Variable

UM Training
(n = 100
Patients)

UM Validation
(n = 100
Patients)

HFHS
Validation

(n = 59 Patients)

P*Mean (SD) Mean (SD) Mean (SD)

Age (yr) 45.4 (20.9) 49.7 (22.5) 58.1 (19.7) 0.0016

Categorical variable # (%) # (%) # (%) P†

Sex

Male 49 (49.0) 48 (48.0) 18 (30.5) 0.0499

Female 51 (51.0) 52 (52.0) 41 (69.5)

Race

White 85 (85.0) 82 (82.0) 31 (52.5) ,0.0001

Black 11 (11.0) 8 (8.0) 20 (33.9)

Other 4 (4.0) 10 (10.0) 8 (13.6)

*One-way analysis of variance, ANOVA (post hoc pairwise comparisons with
Tukey adjustment show that HFHS patients are significantly older than both UM
samples, P , 0.05).

†Chi-squared test (sex) and Fisher exact test (race).

TABLE 2. Agreement Between Chart Review and NLP for Identifying Features of Microbial Keratitis From the Electronic Health
Record

NLP

UM Training (n = 400) UM Validation (n = 100) HFHS Validation (n = 59)

Chart Review Chart Review Chart Review

Yes No No Info Yes No No Info Yes No No Info

# (% Total) # (% Total) # (% Total) # (% Total) # (% Total) # (% Total) # (% Total) # (% Total) # (% Total)

Central

Yes 102 (25.5) 4 (1.0) 3 (1.0) 10 (10.0) 3 (3.0) 1 (1.0) 12 (20.3) 0 (0.0) 3 (5.1)

No 6 (1.5) 78 (19.5) 0 (0.0) 1 (1.0) 17 (17.0) 0 (0.0) 2 (3.4) 12 (20.3) 1 (1.7)

No info 19 (4.8) 108 (27.0) 80 (20.0) 9 (9.0) 24 (24.0) 35 (35.0) 4 (6.8) 14 (23.7) 11 (18.6)

Agreement 65.0% (60.3%, 69.7%) 62.0% (52.5%, 71.5%) 59.3% (46.8%, 71.9%)

Kappa 0.50 (0.44, 0.56) 0.41 (0.29, 0.54) 0.41 (0.23, 0.58)

Depth

Yes 35 (8.8) 0 (0.0) 2 (0.5) 6 (6.0) 1 (1.0) 1 (1.0) 5 (8.5) 1 (1.7) 2 (3.4)

No 0 (0.0) 35 (8.8) 2 (0.5) 1 (1.0) 5 (5.0) 2 (2.0) 0 (0.0) 5 (8.5) 1 (1.7)

No info 6 (1.5) 0 (0.0) 320 (80.0) 2 (2.0) 0 (0.0) 82 (82.0) 0 (0.0) 1 (1.7) 44 (74.6)

Agreement 97.5% (96.0%, 99.0%) 93.0% (88.0%, 98.0%) 91.5% (84.4%, 98.6%)

Kappa 0.92 (0.87, 0.97) 0.74 (0.57, 0.91) 0.77 (0.59, 0.96)

Thinning

Yes 110 (27.5) 1 (0.3) 1 (0.3) 20 (20.0) 0 (0.0) 7 (7.0) 15 (25.4) 0 (0.0) 1 (1.7)

No 0 (0.0) 14 (3.5) 0 (0.0) 0 (0.0) 5 (5.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

No info 0 (0.0) 0 (0.0) 274 (68.5) 1 (1.0) 0 (0.0) 67 (67.0) 0 (0.0) 0 (0.0) 43 (72.9)

Agreement 99.5% (98.8%, 100.0%) 92.0% (86.7%, 97.3%) 98.3% (95.0%, 100.0%)

Kappa 0.99 (0.97, 1.00) 0.82 (0.70, 0.94) 0.95 (0.87, 1.00)

Agreement is noted by bolded cells, and overall agreement is reported as percent (95% confidence interval). Kappa statistics are reported as statistic (95% confidence interval).
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Centrality of MK was documented in the chart for 64.0%
to 79.3% of patients, depth for 15.0% to 20.3%, and thinning
for 25.4% to 31.3% across the 3 samples (UM training, UM
validation, and HFHS validation). In comparison, the NLP
algorithm found centrality of MK documented in the free text
cornea part of the examination for 32.0% to 50.9% of patients,
depth for 16.0% to 23.7%, and thinning for 27.1% to 320%
across the 3 samples. Agreement of information found between
chart review and NLP ranged from 59.3% (95% CI,
46.8%–71.9%) to 65.0% (95% CI, 60.3%–69.7%) for ulcer
centrality, 91.5% (95% CI, 84.4%–98.6%) to 97.5% (95% CI,
96.0%–99.0%) for ulcer depth, and 92.0% (95% CI,
86.7%–97.3%) to 99.5% (95% CI, 98.8%–100.0%) for ulcer
thinning (Table 2 and Fig. 1). Similarly, kappa statistics ranged
from 0.41 (95% CI, 0.23–0.58) to 0.50 (95% CI, 0.44–0.56) for
ulcer centrality, 0.74 (95% CI, 0.57–0.91) to 0.92 (95% CI,
0.87–0.97) for ulcer depth, and 0.82 (95% CI, 0.70–0.94) to
0.99 (95% CI, 0.97–1.00) for ulcer thinning.

Compared with chart review, the NLP algorithm had a
sensitivity of 80.3%, 50.0%, and 66.7% for identifying MK
that was documented as central, 85.4%, 66.7%, and 100.0%
for MK that was deep, and 100.0%, 95.2%, and 100% for
MK that was thin, for the training, internal validation, and
external validation samples, respectively (Fig. 2, eTable 1,
Supplemental Digital Content 1, http://links.lww.com/ICO/
B204 includes 95% CIs). The specificity was 41.1%, 38.6%,
and 46.2% for the centrality feature, 100.0%, 83.3%, and
71.4% for the depth feature, and 93.3%, 100.0%, and not
applicable (n = 0) for the thin feature, for the training,
internal validation, and external validation samples, respec-
tively. Sensitivity and specificity of the NLP algorithm for
identifying MK features overall (ie, combined central and
noncentral, deep and not deep, and thin and not thin) are also
reported in eTable 1, Supplemental Digital Content 1, http://
links.lww.com/ICO/B204.

Disagreement between chart review and NLP for
identifying MK features ranged from 0.5% to 40.7% depend-
ing on the sample and feature (Table 3). Disagreement was
categorized into 4 main themes, including chart review
finding information outside the corneal examination note,
complex phrasing in the corneal examination note that NLP
could not interpret, NLP failure, and chart review failure. For
the centrality feature, over the 3 samples, 75.0% to 89.3% of
disagreement was due to information being found outside the
corneal examination note, 5.7% to 16.7% was due to complex
phrasing of the examination note, 4.3% to 8.3% was due to
NLP failures (eg, segmentation issues or information returned
for the unaffected eye), and 0.0% to 0.7% of disagreement
was due to human error in chart review. For depth, most
disagreement between chart review and NLP was due to
either NLP failure (40.0%–42.9% across the 3 samples) or
complex phrasing in the examination note (20.0%–42.9%),
whereas less disagreement was found because of information
found outside the corneal examination note (0.0%–14.3%) or
human error in chart review (0.0%–40.0%). Finally, for MK
thinning, 100% of disagreement between chart review and
NLP for the UM training sample (n = 2) was found to be due
to complex phrasing in the corneal examination note, and

FIGURE 1. Forest plot displaying percent agreement between
chart review and NLP for extracting MK features from the
electronic health record. Agreement is stratified by sample and
MK feature, and displayed with 95% confidence intervals.
Confidence intervals are capped at 100%.

FIGURE 2. Forest plots to display the sensitivity and specificity
of NLP to identify MK features from the electronic health
record, compared with chart review. Sensitivity and specificity
are stratified by sample and MK feature and are displayed with
95% confidence intervals.
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100% of disagreement for the HFHS validation sample
(n = 1) was found to be due to human error in chart review.
For the UM validation sample, 25% disagreement in thinning
was due to information outside the corneal examination note,
37.5% was due to complex phrasing, and 37.5% was due to
NLP failures. Examples of complex phrasing within the
clinician note that the NLP algorithm was not able to
accurately interpret are provided in eTable 2, Supplemental
Digital Content 2, http://links.lww.com/ICO/B205.

DISCUSSION
NLP has been introduced into many disciplines in

medicine and has optimized data extraction for research
studies.20,23 NLP algorithms allow more complete access to
the EHR by accessing free text data. The rich detail in clinical
notes, which houses the experience and knowledge of many
physicians, can help in improving patient care.24 However,
the complexity of data in the clinical record when written in
text and without prespecified fields has limitations. Our NLP
algorithm to identify the key morphologic features of MK in
clinical notes was 50% to 80% sensitive at identifying
centrality, 67% to 100% sensitive for identifying depth, and
95% to 100% sensitive for identifying thinning in internal and
external validation data sets. The lack of precise use of words
in the chart required us to use quantitative numbers (eg.50%
for depth or 90% for thinning) to give even word descriptions
clinical contextual meaning for the algorithm. Disagreement
in feature identification between chart review and NLP was
often because of information that was obtained from outside
the corneal examination text note and from drawings within
the chart. Clinicians often documented MK centrality in
drawings. A study team member reviewing clinical charts
could extract information from a drawing, but the NLP
algorithm could only analyze text notes. Data on MK
centrality were found in drawings or outside the corneal
examination-free text in approximately one-third of encoun-
ters across samples. Data on MK depth and thinning were
most frequently found in the free text corneal examination
note, with few instances of these features found elsewhere in

the EHR (only 1 case of depth and 2 of thinning were
documented outside the corneal examination in the UM
validation sample, and none noted outside the examination
in the other samples).

NLP extraction was challenged by text and phrasing
complexities, including abbreviations, misspellings, and
semantic and syntax errors. In addition, clinicians used a
wide vocabulary to describe similar features, as has been
shown in other domains,25 posing challenges for deciphering
clinical notes. Abbreviations are not standardized and require
interpretation based on the context. This poses a challenge not
only for software-based interpretation but also for clinicians
when 1 patient is managed by multiple health care profes-
sionals over time.24 NLP algorithm failures, resulting from
improper NLP segmentation or long phrasing separating key
adjectives and nouns, occurred in a small portion of the
sample (22 of 559 encounters across samples). Algorithm
refinement to accommodate complex phrasing and specific
failures would likely to overfit the training sample and
potentially to introduce additional errors. The NLP discor-
dance with clinical data emphasizes a need for standardized
terminology and language used to describe MK. Standardi-
zation would benefit clinicians, not just algorithms.

One of the striking aspects of EHR documentation
highlighted in this study was the lack of documentation of
several key features that describe MK. Notably, the centrality
of MK was documented in only 64% to 79% of encounters,
depth in 15% to 20%, and thinning in 25% to 31%, across the
samples. Several studies have shown the burden on clinicians
of EHR documentation.26,27 In this context, patients with MK
are often complex and require urgent in-office needs, poten-
tially hindering detailed documentation compared with other
ophthalmic conditions.28 The fact that centrality is documented
more than other key features likely highlights the prognostic
importance of the ulcer’s location relative to the pupil center.
The lack of documentation of depth and thinning may also
reflect that morphologic features often are not documented in
their absence; they are documented only when they are present.
For example, if MK causes corneal thinning, it would likely be
documented, but if there was no thinning, a clinician is less

TABLE 3. Reasons for Disagreement Between Chart Review (CR) and NLP for Identifying Features of Microbial Keratitis

Ulcer Measurement

N disagree (%)
Information Outside Corneal

Examination Note Complex Phrasing NLP Failure CR Failure

n (% of Total Sample) n (% of Disagree) n (% of Disagree) n (% of Disagree) n (% of Disagree)

UM training (n = 400)

Central 140 (35.0%) 125 (89.3) 8 (5.7) 6 (4.3) 1 (0.7)

Deep 10 (2.5%) 0 (0.0) 4 (40.0) 4 (40.0) 2 (20.0)

Thin 2 (0.5%) 0 (0.0) 2 (100.0) 0 (0.0) 0 (0.0)

UM validation (n = 100)

Central 38 (38.0%) 31 (81.6) 5 (13.2) 2 (5.3) 0 (0.0)

Deep 7 (7.0%) 1 (14.3) 3 (42.9) 3 (42.9) 0 (0.0)

Thin 8 (8.0%) 2 (25.0) 3 (37.5) 3 (37.5) 0 (0.0)

HFHS validation (n = 59)

Central 24 (40.7%) 18 (75.0) 4 (16.7) 2 (8.3) 0 (0.0)

Deep 5 (8.5%) 0 (0.0) 1 (20.0) 2 (40.0) 2 (40.0)

Thin 1 (1.7%) 0 (0.0) 0 (0.0) 0 (0.0) 1 (100.0)
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likely to document “no thinning.” These natural charting
nuances result in less data for analysis of depth and thinning.

The strengths of this study include robust data and
methods to train the algorithm, an external validation data set
to evaluate generalizability, masked analysis, and a detailed
exploration of algorithm discordance with the clinician chart
review. As we highlight in our partner paper inOphthalmology,22

NLP has the potential to improve the use of secondary data
collected for other purposes, such as the Intelligent Research In
Sight (IRIS) registry supported by the American Academy of
Ophthalmology. The limitations of this study include sample size
limitations because of missing chart data from both institutions,
restriction to the cornea free text examination portion of the
health record, and inability to parse long phrases of text
effectively because of the lack of standardization.

NLP shows promise to identify the prognostic fea-
tures of MK from the EHR; however, missing data may
somewhat limit these efforts. Standardization in physician
documentation would aid in robust analyses and help other
clinicians in the comanagement of the patient. Algorithms
that can evaluate text and imaging data simultaneously
would likely be able to overcome limitations of missing
data. In particular, future efforts to detect qualitative
features from ophthalmologic notes should focus on auto-
mated interpretation of clinician drawings, which are a core
part of the documentation.
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