Stimulant medication cessation in the setting of non-compaction cardiomyopathy

Adan Khan
Henry Ford Health System

Lisa MacLean
Henry Ford Health System

Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019caserpt

Recommended Citation
Khan, Adan and MacLean, Lisa, "Stimulant medication cessation in the setting of non-compaction cardiomyopathy" (2019). *Case Reports*. 89.
Stimulant Discontinuation for ADHD Treatment in a Patient with Non-Compaction Cardiomyopathy
Adan Khan M.D. & Lisa MacLean M.D., Department of Psychiatry Henry Ford Hospital, Detroit, Michigan

Introduction
Non-compaction cardiomyopathy (NCM) is largely a genetic condition due to failure of left ventricular compaction resulting in extensions of bundles of muscle (trabeculations) into the chamber. This impairs the ability of cardiac muscle to contract or relax adequately (4).

Diagnosis for NCM can occur at any age. Patients may be asymptomatic though there is a risk of complications including cardiac arrest, blood clots and heart failure (4).

ADHD is defined as a persistent pattern of inattention and/or hyperactivity/impulsivity that interferes with functioning which is inappropriate for an individual’s developmental level (1).

ADHD contributes to academic, social and occupational functioning and is prevalent in 4.4% of adults in the United States (3).

Psychostimulants and non-stimulant medications may be used to treat symptoms of ADHD.

Stimulant medications may impact heart rate, heart rhythm, blood pressure and QTc which can increase risk of cardiovascular complications including sudden death. (Figure 2).

Cardiovascular safety of ADHD medications in adults is not completely understood with variance of results.

In adults aged 25 – 64 years old, the US Food and Drug Administration (FDA) did not find an increased risk of myocardial infarction, stroke or sudden cardiac death with stimulant use for ADHD (FDA).

FDA does not recommend stimulant use in patients with heart problems, problematic elevated blood pressure or heart rate.

Development of cardiomyopathy in patients using stimulants is rare in younger individuals, arrhythmias, prolonged QT, hypertrophic cardiomyopathy, genetic cardiac conditions, Marfan syndrome, etc.)

Physical exam
Full evaluation done with workup only notable for speckled pattern ANA. Trialed buspirone 7.5mg twice daily, but this was discontinued 2 weeks later due to emotional lability.

Stimulant discontinuation for ADHD treatment in a patient with non-compaction cardiomyopathy

Objectives
• To understand the importance of monitoring and screening for cardiovascular risk factors in patients prescribed stimulants for treatment of Attention Deficit/Hyperactive Disorder (ADHD).
• To recognize that cardiac issues can impact stimulant prescribing and may result in life threatening complications.
• To develop an appreciation of the repercussions of complications and untreated ADHD symptoms from discontinuation of stimulants.
• To recognize the importance of collaborative care across specialties in treating patients.

Patient Presentation
31-year-old female with a past medical history of ADHD, low BMI and clubbed feet. She was evaluated on an outpatient basis with the following timeline:
• Referred to HFH Behavioral Health Services in 2016 and diagnosed with ADHD (combined type).
• Prior medications trials included dextroamphetamine-amphetamine IR and XR formulations (though benefited only with IR). Started on dextroamphetamine-amphetamine IR 20mg twice daily.
• At follow up 4 months later she was noted to be tachycardic to 120 beats per minute. Dose adjusted to dextroamphetamine-amphetamine IR 10mg twice daily. EKGs showed right axis deviation, possible left atrial enlargement, non-specific T-wave abnormality and QTc of 483ms (on repeat 1 month later was 425ms).
• Referred to Rheumatology
 • Full evaluation done with workup only notable for speckled pattern ANA. Remaining studies unremarkable. Lupus felt to be unlikely.
 • Referred to Cardiology
 • Initial workup included ECHO which showed EF of 34.7%, left wall hypokinesis, mild diastolic dysfunction of LV, upper normal right ventricular size and moderately reduced RV systolic pressure.
 • Event monitor for 7 days which only showed sinus tachycardia.
 • Eventually started on carvedilol 3.15mg twice daily and lisinopril 2.5mg daily.
 • Later diagnosed with Generalized Anxiety Disorder and started on buspirone 7.5mg twice daily, but this was discontinued 2 weeks later due to emotional lability.
 • Trialed other stimulants included atomoxetine (discontinued due to drowsiness) as well as methylphenidate. Initially did well on methylphenidate at 72mg with improvement in both tachycardia and ADHD symptoms, but tachycardia later returned and persisted despite decreases in dosing.
 • Given cardiac issues all stimulants were then discontinued. Since then has had symptoms of ADHD, struggles with employment stressors and learned that she is unable to have children due to cardiac issues.

Cardiovascular Risks Of Stimulant Medications

Figure 1: Comparison of normal heart (left) and heart with left ventricular non-compaction cardiomyopathy (right) (4).

• ADHD is defined as a persistent pattern of inattention and/or hyperactivity/impulsivity that interferes with functioning which is inappropriate for an individual’s developmental level (1).

• ADHD contributes to academic, social and occupational functioning and is prevalent in 4.4% of adults in the United States (3).

• Psychostimulants and non-stimulant medications may be used to treat symptoms of ADHD.

• Stimulant medications may impact heart rate, heart rhythm, blood pressure and QTc which can increase risk of cardiovascular complications including sudden death. (Figure 2).

• Cardiovascular safety of ADHD medications in adults is not completely understood with variance of results.

• In adults aged 25 – 64 years old, the US Food and Drug Administration (FDA) did not find an increased risk of myocardial infarction, stroke or sudden cardiac death with stimulant use for ADHD (FDA).

• FDA does not recommend stimulant use in patients with heart problems, problematic elevated blood pressure or heart rate.

• Development of cardiomyopathy in patients using stimulants is rare in younger individuals, arrhythmias, prolonged QT, hypertrophic cardiomyopathy, genetic cardiac conditions, Marfan syndrome, etc.)

• Physical exam
 • Vitalis (heart rate and blood pressure) should be checked prior to starting stimulant medications and routinely during treatment.
 • Routine EKG for screening is not required for each patient. However, it should be obtained if cardiac risk factors or clinically warranted due to symptoms.

• Consider cardiology consultation if indicated by history, physical exam and work-up.

Discussion
• Etiology of NCM is unclear and it is unknown if stimulant medications contributed to patient’s presentation.
• Given risk of increasing heart rate which may exacerbate cardiac issues, stimulant medications were held.
• It is important to monitor patients on stimulant medications for cardiovascular complication throughout their treatment.
• Stimulant use for treatment of ADHD requires evaluation of risks and benefits at initiation, continuation and discontinuation of medications.

• There is no specific set of guidelines available for prescribing stimulants.

However, if a patient is noted to have cardiovascular risk factors then further evaluation, medication adjustment and cardiology consultation should be considered.

• Further research is needed to understand the cardiovascular risk of patients in the setting of stimulant use to make appropriate risk-benefit decisions.

Current Recommendations For Stimulant Use
• No widely accepted recommendations for screening/monitoring in setting of stimulant use for treatment of ADHD.
• Given the varying opinions, it is important to:
 • Obtain thorough medical, social and family history (especially of sudden death in young individuals, arrhythmias, prolonged QT, hypertrophic cardiomyopathy, genetic cardiac conditions, Marfan syndrome, etc.)
 • Physical exam
 • Vitalis (heart rate and blood pressure) should be checked prior to starting stimulant medications and routinely during treatment.
 • Routine EKG for screening is not required for each patient. However, it should be obtained if cardiac risk factors or clinically warranted due to symptoms.
 • Consider cardiology consultation if indicated by history, physical exam and work-up.

References