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RESEARCH Open Access

A metabolomic approach to identifying platinum
resistance in ovarian cancer
Laila M Poisson1,2,3, Adnan Munkarah3,4, Hala Madi4, Indrani Datta1,2, Sharon Hensley-Alford2,3, Calvin Tebbe4,
Thomas Buekers4, Shailendra Giri3,5 and Ramandeep Rattan3,4*

Abstract

Background: Acquisition of metabolic alterations has been shown to be essential for the unremitting growth of
cancer, yet the relation of such alterations to chemosensitivity has not been investigated. In the present study our
aim was to identify the metabolic alterations that are specifically associated with platinum resistance in ovarian
cancer. A global metabolic analysis of the A2780 platinum-sensitive and its platinum-resistant derivative C200
ovarian cancer cell line was performed utilizing ultra-high performance liquid chromatography/mass spectroscopy
and gas chromatography/mass spectroscopy. Per-metabolite comparisons were made between cell lines and an
interpretive analysis was carried out using the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic library
and the Ingenuity exogenous molecule library.

Results: We observed 288 identified metabolites, of which 179 were found to be significantly different (t-test p < 0.05)
between A2780 and C200 cells. Of these, 70 had increased and 109 had decreased levels in platinum resistant C200
cells. The top altered KEGG pathways based on number or impact of alterations involved the cysteine and methionine
metabolism. An Ingenuity Pathway Analysis also revealed that the methionine degradation super-pathway and cysteine
biosynthesis are the top two canonical pathways affected. The highest scoring network of altered metabolites was
related to carbohydrate metabolism, energy production, and small molecule biochemistry. Compilation of KEGG
analysis and the common network molecules revealed methionine and associated pathways of glutathione synthesis
and polyamine biosynthesis to be most significantly altered.

Conclusion: Our findings disclose that the chemoresistant C200 ovarian cancer cells have distinct metabolic alterations
that may contribute to its platinum resistance. This distinct metabolic profile of platinum resistance is a first step
towards biomarker development for the detection of chemoresistant disease and metabolism-based drug targets
specific for chemoresistant tumors.

Keywords: Metabolomics, Ovarian cancer, Platinum resistance, A2780, C200, Methionine metabolism

Background
Ovarian cancer is responsible for the highest mortality
of all cancers of the female reproductive system. It ac-
counts for approximately 3% of all cancers in women
and is the fifth leading cause of cancer related death
among women in the United States [1]. Ovarian cancers
are generally sensitive to chemotherapy and often ini-
tially respond well to standard primary treatment with
surgery and first-line platinum and taxane-based

chemotherapy. However, approximately 70% of the pa-
tients experience disease relapse within 2 years of the
initial treatment. Of these, only a few benefit from sub-
sequent therapies using a platinum and taxane combin-
ation. Patients with a short time to disease progression
and with no benefit to further platinum-based therapy are
classified as having platinum-resistant disease, whereas
those with long-lasting response to primary treatment
and/or response to second-line platinum-based therapy
are said to have platinum-sensitive disease. Even though
the presence or development of platinum resistance is a
major obstacle in successful ovarian cancer treatment,
platinum therapy is still the principal treatment for recur-
rent tumors [2].
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The antitumor activity of platinum has been shown to
be due to the formation of intra-strand DNA adducts,
which are irreparable and will eventually lead to cell
apoptosis [3]. Additionally, cisplatin, a commonly used
platinum-compound chemotherapy, is known to induce
oxidative stress and endoplasmic reticulum stress, but
the extent to which these pathways contribute to cell
death is not yet established [4,5]. Platinum resistance has
been attributed to reduced drug accumulation, improved
drug efflux, drug inactivation, enhanced DNA repair abil-
ity and upregulation of anti-apoptotic or other survival
genes [6,7]. While advancements have been made in un-
derstanding the molecular deregulation underlying che-
moresistance, these have not translated into clinical
applications to enhance the therapeutic outcome of plat-
inum resistant tumors. Therefore, strategies addressing
the identification of chemoresistant tumors that can be
directly translated to clinic are required.
Metabolomics is a new discipline which evaluates di-

verse metabolite concentrations in biological specimens
to gain insight into the ongoing metabolism. Metabolites
are the end product of various metabolic pathways and
may have application as biomarkers for cancer diagnosis,
prognosis, and therapeutic evaluation [8]. Apart from re-
vealing diagnostic and prognostic biomarkers, this pro-
file of cell functioning at the metabolite level will help
obtain an elementary understanding of the process of
carcinogenesis and chemoresistance that may provide
opportunities for early diagnosis and treatment.
Recent metabolomic based studies in ovarian cancer

have been applied to the screening of urine, plasma, and
tumor tissue from ovarian cancer patients and control
populations [9-14]. These studies have endeavored to
discriminate between healthy and ovarian cancer pa-
tients [9-11], profile malignant and borderline ovarian
tumors [10], and detect recurrent tumors [12,14]. All of
these studies clearly demonstrate that metabolomic pro-
files in the urine, plasma, or tumor tissue can distinctly
separate healthy women from those with benign or ma-
lignant ovarian tumors, indicating that the science of
metabolomics can be successfully applied for ovarian
cancer characterization and identification.
Since all chemotherapeutic drugs are metabolically

processed, it can be extrapolated that metabolism plays a
vital role in chemoresponse of the tumors. Cell death
whether by apoptosis or necrosis requires energy from the
cell and involves regulation by various metabolic enzymes.
Targeting of metabolic enzymes from key metabolic path-
ways, like glycolysis [15], fatty acid synthesis [16], and glu-
cose transport [17], have been shown to enhance the
cytotoxicity of various chemotherapeutic agents and
radiotherapy. Moreover, cisplatin treatment has recently
been shown to induce intracellular metabolic changes
[18]. Thus, it can be postulated that chemoresistant tumor

cells will have specific altered metabolism compared to
chemosensitive tumor cells that could be detected by
comparing their metabolites.
We designed our metabolomics-based study to identify

metabolite variations that distinguish between platinum
resistant and sensitive ovarian cancer cells. By using
platinum sensitive A2780 and resistant C200 ovarian
cancer cell lines, we are able to show that metabolite al-
terations can clearly separate the cells based on their
platinum sensitivity. We identified significant metabolite
variations in 6 different metabolic pathways participating
in various signaling networks, with methionine metabol-
ism and its associated metabolites being the centrally af-
fected pathway.

Methods
Cell lines
A2780 and C200 cell lines were a kind gift from Dr.
Thomas Hamilton, Fox Chase Cancer Center, PA. The cell
lines were maintained in Roswell Park Memorial Institute
media (HyClone-ThermoScientific; Waltham, MA) sup-
plemented with 10% fetal bovine serum (BioAbChem;
Ladson, SC) and insulin. For preparation of cells, cells
were grown for 48 hours in insulin free media. Ten million
cells were counted, washed with phosphate buffered saline
and snap frozen.

Metabolite assessment
Metabolomic profiling analysis was performed by Metabo-
lon Inc. (Durham, NC) as previously described [19-22].
Briefly, sample preparation was conducted using an aque-
ous methanol extraction and the resulting extract were ana-
lyzed by ultra-performance liquid chromatography/mass
spectroscopy (positive and negative modes) and gas chro-
matography/ mass spectroscopy. Raw data were extracted,
peak-identified and quality control processed using Meta-
bolon’s hardware and software. Compounds were identified
by comparison to library entries of purified standards or re-
current unknown entities based on 3 criteria: retention
index within a narrow retention index window of the pro-
posed identification, nominal mass match to the library +/−
0.2 atomic mass units, and the mass spectroscopy/mass
spectroscopy forward and reverse scores between the ex-
perimental data and authentic standards.

Data analysis
To control for sample concentration, each metabolite in-
tensity value was standardized as a ratio against the
Bradford protein measure for that sample. Missing values
which indicate a limit of detection by the mass spectrom-
eter were replaced with a small value (one half the study
minimum) for analysis. The data were visualized by plot-
ting the first and second components of a partial least
squares discriminant analysis (PLS-DA) model. A z-score
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plot was generated by plotting each metabolite intensity of
the resistant C200 cells relative to the mean and standard
deviation of the sensitive (A2780) cells. A one-unit change
indicated a one standard deviation change in intensity
away from the A2780 mean. Each observation represents
1 point on this z-score plot. The observations were orga-
nized by metabolites (rows) within super-pathway and
sub-pathway. Metabolite intensities were compared be-
tween lines by a two-sample t-test per metabolite allowing
for unequal variance on a log2 scale. Significant metabo-
lites (at p < 0.01) were selected for inclusion in the heat-
map. Metabolites (rows) were ordered first by super-
pathway and then by direction of change. The columns
(samples) are ordered by hierarchical clustering using
Pearson correlation and complete linkage. Overrepresen-
tation of changed molecules within super-pathway and
sub-pathway was tested using a Fisher’s exact test per
grouping. Change determined from the per-metabolite t-
tests (p < 0.05) was classified according to direction of
change from control, i.e., up, down, and unchanged.

Pathway analysis
Pathway analysis was conducted in MetaboAnalyst (2.0;
last accessed April 2013) using the Human Metabolon
Database compound IDs to map to the 80 KEGG human
reference pathways. The metabolites were ranked ac-
cording to the t-test result. The Global Test for con-
certed change and the impact factor were calculated for
these pathways. The impact factor used ‘betweenness’
centrality as the measure of impact, thus if altered,
those molecules which act as hubs within a pathway
contribute more strongly to the impact factor. Further
functional analysis was conducted using the Ingenuity
Pathway Analysis (IPA) core analysis of metabolites
(QIAGEN, Redwood City, CA, USA; last accessed
September 2014) is based on the Biocyc pathways and
the proprietary Ingenuity knowledgebase. We used a p-
value threshold of 0.05 and the set of all endogenous com-
pounds as the reference group for the Fisher’s exact tests.
The Human Metabolon Database number, the KEGG
compound ID, or the PubChem ID numbers were used,
with that order of preference, to map the metabolites to
the IPA knowledgebase. Interactions from both experi-
mentally validated and high confidence predictions were
used. No restrictions were made on cell type or species.

Results
Metabolomic profile of platinum sensitive A2780 and
resistant C200 cells lines
We performed a global metabolic analysis of the plat-
inum sensitive ovarian cancer cell line A2780 and its iso-
geneic platinum resistant derivative cell line C200 [23].
For these cell lines 288 metabolites were identified. The
missing value rate was only 10.6% per sample on average

(range: 8.3%-13.2%). The PLS-DA combines features
from principle component analysis and multiple regres-
sion and transforms a large number of potentially corre-
lated variables into a smaller number of orthogonal
variables (i.e. component 1, component 2) that discrimi-
nates between classes. We observed that a clear separ-
ation of A2780 and C200 cells can be achieved
indicating that unique metabolite profiles are present
for the sensitive and resistant cell lines (Figure 1A). The
z-score plot showcases the extent of the metabolite al-
terations, where the intensities of the resistant C200
cells (red dots, z-score range −17 to +130, truncated at
25) are plotted relative to the distribution of the inten-
sities in the sensitive A2780 cells (blue dots, Figure 1B).
Each dot in the z-score plot represents 1 observation
per single metabolite (rows), standardized against the
mean and standard deviation of the A2780 cells and or-
ganized by major metabolic pathway. Formal testing,
per-metabolite by two-sample t-tests, shows that there
are 179 metabolites with differences in mean intensity
at p < 0.05 (Additional file 1: Table S1). Of these, 70
were at higher concentrations and 109 were at lower
concentration in the resistant C200, compared to the
sensitive A2780 cells. The heatmap (Figure 1C) depicts
the most altered metabolites (t-test p < 0.01). Here the
metabolites (rows) are ordered by super-pathway and
then by direction of change.
Collection of metabolites by super-pathway, revealed

that most altered metabolites belonged to the lipid
(36.87%) and amino acid (25.7%) pathways, followed by
the carbohydrate (12.29%), nucleotide (8.94%), peptide
(7.26%), cofactors and vitamins (4.47%), energy (2.79%),
and xenobiotics (1.68%) (Figure 2). Metabolites were fur-
ther classified into sub-pathways. Lipids showed the most
changes in long chain fatty acids (24.24%) and lysolipids
(21.21%) (Figure 2A). Metabolites of the cysteine, methio-
nine, taurine (19.57%) and alanine-aspartate and glutamate
(13.04% each) were most affected in the amino acids super-
pathway (Figure 2B). Carbohydrate metabolites most
altered belonged to the sub-pathways of nucleotide sugars
and pentose (36.36%) and glycolysis-gluconeogenesis
(36.36%) (Figure 2C). Purine metabolism–adenine contain-
ing (43.75%) sub-pathways were largely altered in the
nucleotide super-pathways (Figure 2D). Dipeptides
(84.62%) were most numerously changed in peptide
pathway (Figure 2E). In energy metabolism, Krebs cycle
metabolites (80%) were the most altered (Figure 2F).
Amongst cofactors and vitamins, nicotinates (37.5%) were
more altered (Figure 2G), while chemicals (66.67%) were
more changed in the xenobiotic mediated metabolites
(Figure 2H). Overall, the platinum sensitive A2780 and
resistant C200 ovarian cancer cell lines showed distinct
metabolite changes associated with various metabolic
pathways.
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Metabolic pathway analysis of altered profiles
To understand the functional role of the profile alter-
ations, the KEGG metabolic library [24] was analyzed
using MetaboAnalyst [25] (Figure 3). Of the 288 mea-
sured metabolites, 73% were able to be mapped to the
KEGG pathways. Both the correlated change of metabol-
ite intensities within pathway between condition (Global
Test) [26], and the impact of the changed metabolites on
the function of the pathway through alterations in critical
junction points of the pathway (relative betweenness cen-
trality) were assessed. Results of each of the 80 human
pathways of KEGG were simultaneously plotted (Figure 3A)
to show the most significant pathways in terms of Global
Test p-value (vertical axis, shades of red) and impact (hori-
zontal axis, circle diameter), Additional file 2: Table S2 [24].
The top 6 pathways that emerged with low p-values (−LN
(P) > 15) and with “high” impact (impact > 0.3) are indicated

in Figure 3A: 1) cysteine and methionine; 2) D-arginine and
ornithine; 3) starch and sucrose; 4) amino sugar and nu-
cleotide; 5) pyrimidine; and 6) glutathione (GSH) pathways.
The log mean concentrations of the metabolites consid-
ered under each pathway are depicted in Figure 3B-F.
The significantly altered metabolites categorized under
cysteine and methionine metabolism included: 5-
methylthioadenosine, cystathione, cysteine, cysteine sul-
funic acid, cysteine and methionine that were present in
reduced levels in the resistant C200 cells compared to
A2780 cells; while alanine, aspartate, reduced GSH, S-
formyl-L-methionine and pyruvate were increased in
C200 cells (Figure 3B). Arginine was reduced and orni-
thine levels were at increased levels in the resistant cells
(Figure 3C). Most of the metabolites grouped under starch
and sugar metabolism and amino sugar and nucleotide
metabolism were same as earlier pathway categories

Figure 1 Metabolomics profiling of platinum sensitive A2780 and resistant C200 cell lines. (A) Partial least squares discriminant analysis
(PLS-DA) score plot shows clear separation of metabolic profile of platinum sensitive A2780 and resistant C200. (B) Z-score plot of C200 metabolite
intensities (RED, z-score range −18 to +174, truncated at 25) against A2780 metabolites (BLUE), taken as mean. Each dot represents 1 metabolite per
observation. (C) Unsupervised hierarchical clustering of signature metabolites (N = 179) that separate A2780 vs C200 cells (t-test, p < 0.05). Yellow and
blue indicate increased and decreased levels, respectively, with coloring for each metabolite relative to its mean observed intensity.
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(fructose, glucose, glucose 1-phosphate, glucose 6-
phosphate, N-acetyl neuraminate and UDP-glucunorate),
and were decreased in the resistant C200 cells, except
xylose and N-acetyl glucosamine, which were increased
(Figure 3D and E). Pyrimidine metabolites 5,6-dihydro ura-
cil, beta-alanine, glutamine, urea, uridine 5-diphosphate and
uridine 5-triphosphate were significantly lower in resistant
C200 cells while cytidine, thymidine 5-monophosphate and
uridine 3,5-monophosphate were significantly higher com-
pared to sensitive A2780 cells (Figure 3F). Metabolites of
the GSH metabolism, including cysteine, cysteinylglycine,
reduced GSH and oxidized GSH, which are downstream
products of the cysteine metabolism, were at higher concen-
trations in the C200 cells (Figure 3G). Metabolite products
from the polyamine biosynthesis included putrescine,
which was increased, and spermidine and spermine, which

were decreased in the resistant C200 compared to the sen-
sitive A2780 cells (Figure 3G). Thus, the most altered
metabolic pathways shared many common metabolites,
suggesting a link between the important altered metabolic
pathways.

Ingenuity pathway analysis (IPA)
To gain biologically related molecule networks, 217 of
288 molecules were mapped into the IPA knowledge-
base. The top 5 canonical pathways observed were
1) super-pathway of methionine degradation; 2) cysteine
biosynthesis III; 3) urea cycle; 4) taurine biosynthesis;
and 5) citrulline-nitric oxide cycle (Figure 4A; Additional
file 3: Table S3). The methionine degradation and cyst-
eine biosynthesis pathway metabolite alterations align
with the cysteine and methionine metabolism pathway

Figure 2 Metabolic super-pathways and sub-pathways altered in platinum sensitive A2780 and resistant C200 cell lines. To describe the
altered metabolites observed in this study, each is classified into major classes of (A) Lipids, (B) Amino acids, (C) Carbohydrate, (D) Nucleotide,
(E) Peptide, (F) Vitamins and co-factors, (G) Energy and (H) xenobiotics, then further into sub-pathways. CoA: Coenzyme A; FA: fatty acids;
SAM: S-adenosylmethionine.
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Figure 3 (See legend on next page.)
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that had the lowest p-value and the most impact value
in the MetaboAnalyst analysis (Figure 3), further sup-
porting that it could be the most significant metabolic
pathway in our system. The top 5 altered bio-functions
in terms of molecular and cellular functions were cell
signaling (p-value range: < 0.0001 to 0.0335); molecular
transport (p-value range: < 0.0001 to 0.0409); vitamin
and mineral metabolism (p-value range: < 0.0001 to
0.0386); lipid metabolism (p-value range: < 0.0001 to
0.0386), and small molecule biochemistry (p-value range: <
0.0001 to 0.0386) (Additional file 3: Table S3).

IPA network analysis, using the proprietary Ingenuity
knowledgebase, constructs networks of altered mole-
cules which are not limited by canonical pathway
boundaries. Eleven networks were constructed as reported
in Additional file 3: Table S3. The top network uses 19 mol-
ecules and focuses on carbohydrate metabolism, energy
production, and small molecule biochemistry (Figure 4B).
Containing metabolites like glucose-6-phosphate (down in
C200), pyruvate (high in C200) and citric acid (high in
C200) from energy metabolism pathway and various lipids
like oleic acid, malic acid, palmitate, linoleic acid, etc. (all

(See figure on previous page.)
Figure 3 MetaboAnalyst analysis. (A) Human pathways of Kyoto Encyclopedia of Genes and Genomes (KEGG) (80) are simultaneously plotted
to show the most significant pathways in terms of Global Test p-value (vertical axis, shades of red) and impact (horizontal axis, circle diameter).
The top 6 pathways that arise with low p-values (−LN(P) > 15) and with “high” impact (impact > 0.3) are indicated in the table. Log mean of the
individual metabolites altered within each metabolic pathway are represented as bar graphs. (B) Cysteine and methionine pathway; (C) D-arginine
and ornithine metabolism; (D) starch and sucrose metabolism; (E) amino sugar and nucleotide sugar metabolism; (F) pyrimidine metabolism; and
(G) glutathione metabolism. *p < 0.05. Abbreviations: Comps: compounds; FDR: false discovery rate.

Figure 4 Ingenuity Pathway Analysis (IPA) analysis. (A) Top 5 canonical pathways enriched by observed metabolite alterations. (B) The top
network includes aspects of carbohydrate metabolism, energy production, and small molecule biochemistry. Networks, constructed from the IPA
knowledgebase by connecting the altered molecules, are not limited by canonical pathway boundaries. Abbreviations: ERK 1/2: extracellular-signal-related
kinases 1 and 2; CPT1:.carnitine palmitoyltransferase 1; ACAC: acetyl CoA carboxylase; sPLA2: soluble phospholipase A2; PmCa: plasma membrane calcium
ATPase; HMGCoA: 3-hydroxy-3-methyl-glutaryl-CoA; Acox: acyl CoA; Ces: cholesterol esters.
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low in C200); it has hubs at the signaling molecule
extracellular-signal-related kinases1/2 (ERK) (Figure 4B).
ERKs participate in the Ras-Raf-MEK-ERK signaling path-
way and is reported to be up-regulated in almost all cancers
[27]. Network 2 uses 20 molecules and focuses on drug me-
tabolism, molecular transport, and small molecule bio-
chemistry. Most of the metabolites in this network are
derived from the methionine-cysteine metabolism and re-
lated to amino acids that centralize on GSH (up in C200)
and Akt as the signaling molecule (Additional file 4: Figure
S1), that is a constituent of one of the most dysfunctional
signal transduction pathways described in various cancers
[28]. Network 3 included 16 metabolites of pyrimidine me-
tabolism to generate a linkage of nucleic acid metabolism
and small molecule biochemistry (Additional file 5: Figure
S2, Additional file 3: Table S3). The signaling hubs were cal-
cium ions and epidermal growth factor receptor. Network
4 uses 15 molecules and focuses on free radical scavenging,
lipid metabolism and small molecule biochemistry. Metab-
olites in this network are from methionine metabolism,
phospholipids and nucleic acid metabolism, superoxide and
GSH (Additional file 6: Figure S3). Network 5 with 12 me-
tabolites was convened as carbohydrate metabolism, lipid
metabolism and molecular transport. All metabolites except
sn-glycerol3-phosphate were lower in C200 cells, including
the central molecule, D-glucose. The lipids stearic acid and
cholesterol were also lower in the C200 cells. The network
revealed connections leading to pro-oncogenic signaling
molecules like mammalian target of rapamycin complex 1
(mTORC1), c-Jun N-terminal kinases, VEGF and Peroxi-
some proliferator activator receptor (Additional file 7:
Figure S4). Overall, the networks analysis suggests that al-
tered metabolites of energy metabolism, methionine metab-
olism and lipids are linked with tumor promoting signaling
molecules.

Discussion
Our metabolomics analysis demonstrated that distinct
metabolic profiles can be detected for platinum sensitive
A2780 and resistant C200 ovarian cancer cells (Figure 1).
The altered metabolites encompassed all major molecu-
lar categories and metabolic pathways (Figure 2) and ap-
peared to be inter-connected. Arranging the significantly
altered metabolites from the KEGG metabolic pathways
and the top canonical pathways from IPA into a single
map revealed a high level of connectivity and inter-
dependence among the pathways (Figure 5). For ex-
ample, the glycolysis-to-citrate cycle not only generates
adenosine triphosphate, which is required for all biosyn-
thetic pathways to occur, but also synthesizes essential
metabolites such as glyceraldehyde 3-phosphate, a pre-
cursor for the generation of amino acid serine. Serine
then enters the methionine pathway to produce cysteine,
leading to GSH production. GSH, apart from protecting

cells from oxidative stress, also maintains the NADPH/
NADP+ ratio, which is required by the folate cycle and
nucleotide biosynthesis, among others [29]. Cysteine can
be converted back to pyruvate by transamination [29].
The glycolysis-to–pentose phosphate pathway metabo-
lites are also the sources for precursors of nucleotides
and modifiers of lipids, purine and protein modifica-
tions. Thus the metabolism of a cell runs its own ‘cycle
of life’ in unison that sustains the cell function and
growth. Most of the altered metabolites participate in
more than 1 pathway in significant ways and the change
in that 1 metabolite could have a resonating effect for
other pathways.
Collectively the largely significant altered metabolites

belonged to the methionine-cysteine metabolism and
one of its downstream metabolic tributaries of the GSH
pathway (Figure 6). The methionine pathway along with
folate and transulfuration pathways constitutes the one-
carbon metabolism [29,30]. The one-carbon metabolism
is known as a metabolic integrator that assimilates prod-
ucts from the glucose pathway and amino acids to fulfill
integral and essential cellular biosynthesis for biological
functions, such as cellular turnover and proliferation.
The one-carbon metabolism pathway has also been in-
vestigated as a major contributor to the process of onco-
genesis [30]. Studies have shown that methionine levels
are directly involved in promoting proliferation of cancer
cells [31] and in protecting the cancer cells against che-
motherapeutic drugs like Fluorouracil [32]. Methionine
deprivation has been shown to inhibit tumor cell growth
in various cancers both in in vitro and in vivo models
along with chemo-sensitizing cancer cells [33-36]. We
observed decreased levels of methionine in resistant
C200 cells, which could indicate its increased utilization
(Figure 3B), and could suggest the presence of ‘methio-
nine dependency’ in the resistant cells. Methionine-
dependency is defined as inability or reduced ability of
cancer cells to proliferate even when methionine is re-
placed by its precursor homocysteine, this phenotype
has been demonstrated in several cancers like prostate
and lymphoma [37,38]. Since methionine is an integral
participant of various metabolic pathways, the exact
mechanism underlying methionine-dependence of vari-
ous cancer cells has been difficult to elucidate [37].
Homocysteine is an important metabolite of the methio-
nine pathway that is coupled with the folate cycle and
on gaining a methyl group from methyl THF converts
back to methionine [29,39]. Methionine can also be pro-
duced by the salvage pathway via the crucial enzyme
methylthioadenosine phosphorylase (MTAP), which has
been shown to be deleted in various cancers [40].
Methylthioadenosine, the substrate for MTAP, was ob-
served to be present in lower quantities in C200 cells
compared to A2780 (Figure 3B), which could again
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suggest use and diversion of methionine to other path-
way end-product metabolites like GSH or putrescine
(discussed below), rather than the normal metabolic
cycle. Homocysteine through transsulfuration reactions
also gives rise to cysteine. One of the most important
roles for cysteine is to act as the limiting factor for syn-
thesis of the antioxidant GSH [39,41,42]. GSH is the
main endogenous antioxidant and protects the cells
from metabolic stresses by nonenzymatically reducing
substances like peroxides and free radicals and maintain-
ing an intracellular reducing environment. It also acti-
vates GSH s-transferase and detoxifies xenobiotics and
other cell damaging compounds [42]. GSH has been
established as a protective mechanism against the in-
creased oxidative stress encountered by the cancer cells
[42,43], which has been implicated as a contributing fac-
tor to chemoresistance development in cancer cells [41].
GSH is present in 2 forms: the reduced and the oxidized
GSH disulfide forms. C200 cells displayed higher levels
of both forms of GSH with the oxidized form being
higher than the reduced form (Figure 3G). This could
indicate a higher level of oxidative stress in the C200
cells and a very active GSH mediated antioxidant system
that is offering added protection to the cells. Thus is our
system, the lowered methionine levels could also

indicate its eventual utilization to maintain the high
levels of GSH observed in the C200, as a means to en-
counter the assault of chemotherapeutic drugs.
A central metabolite S-adenosylmethionine (SAM) from

the methionine pathway, acts as a donor for methylation
reactions involving methylation of histones, DNA, RNA
and all general protein methylations [39,44], and also par-
ticipates in biosynthesis of phosphatidylcholine, the major
component of cell membranes, by forming the polar head
group with choline [30]. Methylation processes have been
widely implicated in cancer progression, including ovarian
[45,46]. Aberrant methylation has also been proposed as
a contributing factor for acquisition of chemoresistance,
especially in resistance against DNA-damaging plat-
inum drugs [47,48]. Recently, a cisplatin-resistant cell
line derived from the sensitive A2780 ovarian cancer
cell lines were shown to preferentially select for DNA-
hypermethylation and the obtained methylated gene sig-
nature was found to partially hold validation in a small
subset of patient relapsed ovarian tumors [49]. Thus it
is possible that the chemoresistance in C200 ovarian
cancer cells could be a result of increased methylation
of selective genes, which could be reflected in its altered
metabolism. SAM also provides methyl groups for bio-
synthesis of polyamines, a vital class of products

Figure 5 Interconnected altered metabolic pathways. Altered metabolites from the top 6 MetaboAnalyst analysis and the top 3 Ingenuity
Pathway Analysis are charted within their own metabolic pathway along with their cross-participation in other metabolic pathways. RED text
metabolites represent elevated mean intensity in C200 cells compared to A2780 cells, whereas GREEN text represent reduced intensity.
Abbreviations: CoA: Coenzyme A; THF: tetrahydrofolate; GSH: reduced glutathione; GSSH: oxidized glutathione; UDP: uridine diphosphate.
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involved in cell proliferation, and have been shown to be
increased during malignancy [50]. Polyamines include pu-
trescine and its derivatives spermidine and spermine,
which are synthesized from ornithine and shown to be re-
quired for proliferation [50-52]. On one hand, inhibition
of polyamine synthesis has been shown to inhibit cancer
cells, but on the other hand recent studies have reported
decreased levels of spermine as a metabolic biomarker for
cancer cells [50,53]. We observed an increased level of pu-
trescine and decreased levels of spermine and spermidine
(Figure 3G). This could either indicate a block after pu-
trescine formation or increased utilization of these metab-
olites. Ornithine decarboxylase (ODC) is the first
enzyme required for polyamine synthesis and is regu-
lated by Myc oncogene [50,54]. Induction of spermi-
dine/spermine N1-acetyltransferase 1(SAT1), the key
enzyme regulating catabolism of polyamines has been
reported to result in decreased spermine and spermi-
dine and increased putrescine levels [55], similar to our
observation in C200 cells (Figure 3G). ODC and SAT1
have been shown to be overexpressed in neoplastic
prostate tissue [56]. Platinum drugs have also been
shown to regulate polyamine metabolism enzymes in-
cluding SAT1 [18]. Thus acquisition of platinum resist-
ance in C200 cells could be related to perturbations in
the enzymatic makeup of polyamine metabolism.

Our observations are similar to other studies where
the altered methionine pathway has been advocated to
play a role in ovarian and other cancers and its metabo-
lites presented as biomarkers. Alteration of methionine
pathway was suggested early in ovarian cancer [57], where
accumulated homocysteine in ascites was an indicator of
malignancy. A recent study has shown cisplatin treatment
of embryonic mouse cells to induce significant changes in
the methionine degradation pathway, including GSH and
polyamine metabolism, along with other methionine asso-
ciated pathways [18]. Sarcosine (n-methylglycine), a prod-
uct of the methionine degradation pathway was reported
as a biomarker in urine of metastatic prostate cancer pa-
tients [19]. Comparison of metabolites from early recur-
rence (within 2 years of surgery) and recurrence free
(more than 5 years) prostate cancer patients found ele-
vated products of methionine catabolism in serum, which
included sarcosine, cysteine, cystathionine and homocyst-
eine [58]. Targeting of the methionine pathway is being ac-
tively investigated in cancer therapeutics. Targeting the
epigenetic status by inhibiting methylation of various
genes in tumors is one of the earliest and most pursued
chemotherapeutic approaches [59-61]. SAM-mediated
methylation and polyamine synthesis is being actively in-
vestigated in preclinical studies of various cancers [53,62].
Inhibition of GSH activity is also a major area under

Figure 6 Methionine metabolism pathway. A bio-chart of the methionine metabolism pathway and the related pathways of folate, glutathione and
polyamine biosynthesis. RED text metabolites represent elevated mean intensity in C200 cells compared to A2780 cells, whereas GREEN text represent
reduced intensity. The catalyzing enzymes are texted BROWN. BLUE arrows and text convey the requirement of that pathway metabolite towards the
indicated macromolecule synthesis. Abbreviations: DHF: dihydrofolate; THF: tetrahydrofolate; f-THF: formate-THF; m-THF: methylene-THF; SAM:
S-adenosylmethionine; SAH: S-adenosylhomocysteine; CH3: methyl group; GSH: glutathione, GSSG: oxidized glutathione.

Poisson et al. Journal of Ovarian Research  (2015) 8:13 Page 10 of 14



consideration for specific targeting of chemoresistance
[42]. Thus the methionine pathway metabolites appear
to have the potential to act as biomarkers specifically
for metastatic or recurrent tumors. Together, with the
observation that most recurrent tumors are also che-
moresistant and our findings, surfacing of the methio-
nine pathway as an indicator of chemoresistance in
ovarian cancer is significant. Thus, an in-depth analysis
of the methionine metabolism encompassing and inte-
grating the levels of input, intermediate and outcome
metabolites flux, along with the expression and activa-
tion status of the enzymes catalyzing these reactions
will provide a complete picture in understanding the
functional significance of this pathway in platinum
chemoresistance of ovarian cancer.
While lipids were the most altered class of com-

pounds (36.87%) observed between the resistant and
sensitive cell lines, they were not well represented in the
KEGG pathways. However, 78% of the lipids had at least
1 identifier recognizable by IPA where lipid metabolism
was the fourth altered biofunction. Additionally, all of
the top 5 networks had substantial participation of lipid
metabolites, related enzymes and downstream effectors.
Approximately 70% of the lipids were decreased in
C200 cells, which could be suggestive of a decreased
turnover or a decrease in the metabolism of membrane
lipids. Decreased circulating phospholipids (plasmenyl-
phosphoethanolamine and lysophosphadylcholine) and
increased levels of lysophosphatidic acid (LPA) have
been proposed as biomarkers for ovarian cancer [63,64].
LPA has been shown to be a potent mitogen for ovarian
cancer cells and are found in increased amount within

ascites [63]. Plasmenylphosphoethanolamine can act as
an antioxidant and its absence may be a consequence of
a higher oxidative environment associated with che-
moresistant cells. Lysophosphadylcholine is a main
membrane component and could be utilized as a build-
ing block for increased proliferation of cancer cells [63].
The largest group affected was the long chain fatty
acids, which included palmitate, oleate, stearate, etc.
(Figure 7). Alternatively, since fatty acids are the major
building blocks for the synthesis of triacylglycerides,
which are mainly used for energy storage, this could
also indicate an increased breakdown of the fatty acids
by the mitochondria for energy production. The IPA
network analysis projected energy metabolism and lipid
metabolism metabolites as contributors in 3 of the 5 top
networks (Figures 4B and Additional file 7: Figure S4;
Additional file 3: Table S3). A closer look at the involved
molecules supports an altered energy metabolism be-
tween the resistant C200 and sensitive A2780 cells. The
C200 cells have higher levels of metabolites from the
tricarboxylic acidcycle (pyruvate, citric acid and succinic
acid) and lower fatty acids (palmitic, oleic and linoleic
acid) and links to the enzymes from the respective path-
ways (tricarboxylic acid cycle: aconitase, succinate de-
hydrogenase, lactate dehydrogenase; fatty acid oxidation:
Carnitine palmitoyltransferase-1, Acetyl CoA Carboxylase)
(Figure 6). Therefore the lower levels of overall lipids may
be indicative of either decreased biosynthesis or increased
utilization of lipids. This could suggest a further alteration
in the energy metabolism of the chemoresistant cells,
along with the already altered metabolism established in
cancer cells [65].

Figure 7 Long chain fatty acid levels. Log10 mean of the significantly (p < 0.05) altered individual long chain fatty acids and their metabolites
are represented as bar graphs.
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Conclusions
The altered metabolism of cancer cells has been well
established. Our data shows that platinum sensitive and
resistant ovarian cancer cells can be distinguished based
on their metabolite profiles. This suggests that chemore-
sistance is associated with its own set of metabolic
changes that can be exploited for biomarker and tar-
geted therapeutic approaches. Based on our data, we
propose the altered methionine pathway metabolites as
the potential biomarkers for platinum resistance in ovar-
ian cancer cells. Most of these metabolites are measur-
able in body fluids like urine or serum, which would
make their translation into clinical practice easier, once
they have been extensively validated in subsets of ovarian
cancer patients. Although our study is limited by using an
isolated in vitro cell line system, we observed alterations in
metabolites similar to those reported to be associated with
malignancy, specifically metastatic and recurrent tumors.
While our data await further validation, a comprehensive
analysis of the altered pathways may not only provide bio-
markers of chemoresistance but can also provide clues of
the biology underlying platinum resistance in ovarian can-
cer cells and offer plausible therapeutic targets to specific-
ally target chemoresistance
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analysis results.
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Additional file 4: Figure S1. Ingenuity Pathway Analysis (IPA) network
2. The second network contains components of drug metabolism,
molecular transport, and small molecule biochemistry. Constructed from
the IPA knowledgebase using altered molecules, these networks are not
limited by canonical pathway boundaries. Abbreviations: ALT : alanine
amino transferase; CYP: cytochrome P450; GABA: gamma –aminobutyric
acid; HDL: high- density lipoprotein; LDL: low density lipoprotein; Sod:
superoxide dismutase; Ggt: gamma-glutamyl transferase; Na: Sodium.

Additional file 5: Figure S2. Ingenuity Pathway Analysis (IPA) network 3.
The third network contains components of nucleic acid metabolism and
small molecule biochemistry. Constructed from the IPA knowledgebase
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receptor, nicotin alpha 1; Ca: calcium; PKC: protein kinase C; DuoX1: dual
oxidase 1; EGFR: epidermal growth factor receptor 1; IFNG: interferon
gamma; THOP1: human endopeptidase 1; APOBEC: DNA cytosine
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Additional file 6: Figure S3. Ingenuity Pathway Analysis (IPA) network
4. The fourth network contains components of free radical scavenging,
lipid metabolism and small molecule biochemistry. Constructed from the
IPA knowledgebase using altered molecules, these networks are not
limited by canonical pathway boundaries. Abbreviations: Cu: copper;
UDP: uridine diphosphate; MTUS1: mitochondrial tumor suppressor 1;
NDUFS1: NADH-ubiquinone oxidoreductase iron-sulfur protein 1;
CDKN1A: cyclin dependent kinase inhibitor 1A; CYP2C8: cytochrome 2C8;
SLC22A6: solute carrier family 22 member 6.

Additional file 7: Figure S4. Ingenuity Pathway Analysis (IPA) network
5. The fifth network contains components of carbohydrate metabolism,
lipid metabolism and molecular transport. Constructed from the IPA
knowledgebase using altered molecules, these networks are not limited
by canonical pathway boundaries. Abbreviations: DPP4: dipeptidyl
peptidase 4; VEGF: vascular endothelial growth factor; MTORC1:
mammalian target of rapamycin complex1; JNK: c-jun N-terminal kinase;
PPARA: peroxisome proliferator-activated receptor alpha; IDH1: isocitrate
dehydrogenase 1; MOGAT2:acyl CoA: monoacylglycerol acyltransferase;
TALDO1: transaldolase1; FBP2: phosphofruckokinase 2; CCK: cholecystokinin;
PFKFB1: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4; HSD11B1:
11-beta-hydroxysteroid dehydrogenase type 1; TKTL1: transketolase 1;
ATP5G2: ATP synthase; PL1N2: perilipin 2; CA5A: carbonic anhydrase VA.
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