Diffuse idiopathic skeletal hyperostosis causing progressive dysphagia

Parth Y. Patel
Henry Ford Health System

Odaliz E. Abreu Lanfranco
Henry Ford Health System

Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019caserpt

Recommended Citation
Diffuse idiopathic skeletal hyperostosis causing progressive dysphagia

Parth Y. Patel, MD1; Odaliz E. Abreu Lanfranco, MD2
1Department of Radiology, 2Department of Infectious Disease
Henry Ford Health System, Detroit, Michigan

Abstract

Introduction: Diffuse idiopathic skeletal hyperostosis (DISH) of the cervical and upper thoracic spine, a relatively common finding in spinal imaging, is rarely associated with upper esophageal pathology. We present a case of progressive dysphagia due to DISH.

Case Presentation: A 64-year-old male with a history of alcohol abuse and smoking presented to the emergency department with a three-day history of chest pain, cough, and emesis with inability to tolerate oral intake.

- He admitted to an extensive history of alcohol abuse with current everyday use and a 30-year smoking history. He noted increased weight loss over the past couple months with concurrent progressive inability to swallow liquids and solids, increasing hoarseness, and limited neck mobility.
- Initial cardiac workup was negative for any acute abnormalities. Follow up right upper quadrant ultrasound and HIDA scan were negative for acute cholecystitis.
- Esophagastroduodenoscopy was concerning for external compression of the esophagus at the upper esophageal sphincter. Imaging of the spine revealed bulky, flowing osteophytes in the cervical and thoracic spine consistent with diffuse idiopathic skeletal hyperostosis. Dynamic swallow study showed the epiglottis abutting the posterior pharyngeal wall at C2-3 causing incomplete inversion and silent aspiration. He remained nil per os with nutrition supplementation through a nasogastric tube with outpatient neurosurgical follow up.

Conclusions: Diffuse idiopathic skeletal hyperostosis is an abnormal calcification of the anterolateral aspects of the spinal ligaments, and less commonly, the appendicular skeleton. Patients with DISH are usually asymptomatic, but can present with limited cervical mobility, or neck and back pain. Dysphagia is a relatively uncommon finding in DISH. Mild cases are treated conservatively with physical therapy and pain control; however, progressively worsening symptoms or focal deficits require surgical management. Studies have shown that recurrence of osteophytic lesions after surgical management is common.

Background

- Prevalence of dysphagia in persons over 50 years of age is thought to be greater than 20% and as high as 40-60% for those residing in assisted living facilities or nursing homes.
- Dysphagia may be classified anatomically as either oropharyngeal or esophageal:
 - Oropharyngeal dysphagia is related to the initiation of the swallow from the soft palate to the hyoid bone.
 - Esophageal dysphagia refers to any process from the body of the esophagus to the lower esophageal sphincter.
- Swallowing is normally controlled by the various cranial nerves described in three distinct phases: oral, pharyngeal, esophageal.
 - Oral (divided into preparatory and propulsive) is the volitional component which prepares and propels the food (bolus) into the pharynx.
 - Pharyngeal involves closing the airway and projecting the bolus into the esophagus.
 - Esophageal phase further transits the bolus into the stomach via peristalsis.
- Etiologies of dysphagia include structural (strictures, compression, etc.), neurologic (neuropathic, CV, myocardial, and infectious (CMV, HSV, Candida albicans)).
 - Depending on the specific etiology, symptoms associated with dysphagia can include odynophagia, dysphonia, emesis, aspiration, heartburn, and retrosternal chest pain.

• Diffuse idiopathic skeletal hyperostosis, first described in 1950, is a particular type of arthrology hyperostosis of the spine associated with ossification of the anterior and lateral aspects of the vertebral ligaments, most commonly in the cervical and thoracic spine.
- Though less common, DISH can also present with extraspinal hyperostosis, which presents as calcific enthesopathy.
- Common diagnostic criteria (Resnick and Newberry) state that ossifications must span at least four contiguous vertebrae without gross degeneration of the intervertebral disc.
 - Lateral radiographs and sagittal CT images of the spine are sufficient for diagnosis.
- Prevalence of DISH is debated due to alternative proposed diagnostic criteria, though it is estimated to be 12-28%. Studies have shown males, and those over 40 are at highest risk.
- While most cases of DISH are asymptomatic, common presenting symptoms include limited spinal mobility and pain in the associated region.

Case Presentation

- A 64-year-old male presents to the emergency department with a three-day history of chest pain, cough, and emesis with inability to tolerate oral intake.
- He admitted to an extensive history of alcohol abuse with current everyday use and a 30-year smoking history. He noted increased weight loss over the past couple months with concurrent progressive inability to swallow liquids and solids, increasing hoarseness, and limited neck mobility.
- Initial cardiac workup was negative for any acute abnormalities. Follow up right upper quadrant ultrasound and HIDA scan were negative for acute cholecystitis.
- Esophagastroduodenoscopy was concerning for external compression of the esophagus at the upper esophageal sphincter (Figure 4) and esophagitis in the mid- and distal aspects of the esophagus.
- CT imaging of the spine revealed bulky, flowing osteophytes in the cervical and thoracic spine consistent with DISH and the following:
 - Left bulky osteophyte at C2-C3 indenting the posterior aspect of the airway (Figure 1)
 - Left bulky osteophyte at T2-T3 and T4-T5 indenting the posterior esophagus (Figure 2)
- Dynamic swallow study showed delayed swallow initiation, incomplete epiglottic inversion, incomplete laryngeal vestibule closure, reduced laryngeal sensation in the presence of bolus material, decreased base of tongue approximation to the posterior pharyngeal wall, and reduced pharyngeal stripping.
- Epiglottis appeared to abut the posterior pharyngeal wall at C2-C3 (Figure 5)
- MRI Brain was negative for any acute or chronic infarcts. EMG was negative for any neurodegenerative or neuromuscular disorders.
- The patient remained nil per os with nutrition supplementation through a nasogastric tube with outpatient neurosurgical follow up for further management.
- Of note, the patient had a similar episode of dysphagia secondary to compression from osteophytes that required C5-C6 osteophytectomy four years prior.

Images

Figure 1: Sagittal CT of the cervical spine showing anterior osteophyte formation indenting the posterior pharyngeal wall
Figure 2: Sagittal CT of the thoracic spine showing anterior osteophyte formation indenting the esophagus
Figure 3: EGD of a normal upper esophageal sphincter
Figure 4: EGD showing external compression at the upper esophageal sphincter

References