Significant Improvement in Pain and ASES Scores After PartialThickness Rotator Cuff Repair with Augmentation Using a Xenograft Collagen Bioinductive Implant

Paul Rodenhouse
Henry Ford Health System

Shariff Bishai
Henry Ford Health System

Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019caserpt

Recommended Citation
Introduction: Rotor cuff tears (RCT) range from partial thickness to full thickness tears and are common problems creating significant pain and morbidity among sufferers. Even with the increasing prevalence of partial thickness RCTs, much of the literature focuses on full-thickness RCTs and treatment. Partial thickness RCTs are unique and affect a wide range of patients. Furthermore, a significant percentage of partial thickness RCTs, up to 35%, propagate to full-thickness RCTs. Accepted treatments for partial thickness RCTs include arthroscopic debridement, conversion repairs, and in-situ transtendon repairs. While all have been shown to benefit some patients, none has shown significant outcome benefits over the others. Due to the lack of literature on management of partial thickness RCTs and the fact that one treatment option has not proven itself superior to the others, we looked at the treatment of partial thickness RCT with augmentation using a xenograft collagen bioinductive implant.

Methods: Using data collected from a single surgeon, we evaluated both visual analog scale (VAS) pain scores as well as ASES (American Shoulder and Elbow Surgeons) functional scores pre-operatively and at 6 weeks, 3 months, and 6 months post rotator cuff repair using a xenograft collagen implant. Results: Pre-operative VAS scores averaged 6.05 and followed a nearly linear decline to 2.08 at the 6 month post-operative visit. ASES functional scores pre-operatively averaged 35.49 and followed a linear progression to reach 69.49 at 6 months post-op, a 95% improvement. Conclusions: Using the xenograft collagen implant is a novel treatment option for the management of partial thickness rotator cuff tears. It provides a buttress to the rotator cuff and dissipates strain at the injury site allowing time for healing while incorporating into the tendon itself creating more robust rotator cuff tissue.

Etiology

Partial thickness RCTs are unique and affect a wide range of patients from sedentary individuals to elite athletes. Despite their high prevalence, the diagnosis and treatment remain controversial due to the literature focus on full-thickness tears. Sher et al reported a 20% prevalence of partial-thickness tears on MRI in 96 asymptomatic shoulders. Based on cadaveric and imaging studies, partial thickness tears have been shown to affect approximately 13% to 32% of people with a strong correlation to age. Milgrom et al showed a linear increase in prevalence after the 5th decade of life. Demonstrating that no age group or population is immune to partial thickness RCTs, Conner et al. performed shoulder MRIs of asymptomatic elite overhead athletes and 40% had partial or full-thickness tears. Accepted treatments for partial thickness RCTs include arthroscopic debridement, conversion repairs, and in-situ transtendon repairs. While all have been shown to benefit some patients, none has shown significant outcome benefits over the others. Due to the lack of literature on management of partial thickness RCTs and the fact that one treatment option has not proven itself superior to the others, we looked at the treatment of partial thickness RCT with augmentation using a xenograft collagen bioinductive implant.

Etiology

The etiology of partial thickness RCTs is multifactorial. The intrinsic factors leading to tears include hypocellularity, fascicular thinning, and the formation of granulation tissue. All of these can decrease the vascularity of tissue which in turn predisposes the tendon to degenerative tearing. The extrinsic factors include subacromial impingement, glenohumeral instability, and internal impingement. These lead to tensile overload and also can cause the rotator cuff tendon fibers to tear. Increases in tendon strain due to presence of a tear lead to propagation and increases in tear size over time. Often partial thickness tears progress to full-thickness tears. One study of 40 patients with partial thickness cuff tears followed for a mean of 13.5 months showed 80% of lesions enlarged or progressed to full-thickness lesions.

Background Research Rationale

A finite-element study demonstrated increasing the thickness of the bursal side of supraspinatus by 2mm can decrease intra-tendinous strain by 47% in Bursal sided tears and 40% on articular sided tears. The bioinductive xenograft implant decreases local tendon strain and provides a scaffold for new tendon tissue to grow. Boker et al showed a mean increase in tendon thickness of 2.2mm at 3 months post-op which persisted for 24 months and was indistinguishable from normal cuff tissue by MRI. Arnoczky et al published in 2016 that biopsies of the collagen implants retrieved from 7 patients on second look arthroscopies showed cellular incorporation, tissue maturation, implant resorption and biocompatibility to that of normal rotator cuff tissue.

Abstract

Significant Improvement in Pain and ASES Scores After Partial Thickness Rotator Cuff Repair with Augmentation Using a Xenograft Collagen Bioinductive Implant

Paul Rodenhouse, DO, Shariff K. Bishai, DO, MS, FAOAO
Henry Ford Macomb Hospital, Clinton Township, Michigan

Introduction

Partial thickness RCTs are unique and affect a wide range of patients from sedentary individuals to elite athletes. Despite their high prevalence, the diagnosis and treatment remain controversial due to the literature focus on full-thickness tears. Sher et al reported a 20% prevalence of partial-thickness tears on MRI in 96 asymptomatic shoulders. Based on cadaveric and imaging studies, partial thickness tears have been shown to affect approximately 13% to 32% of people with a strong correlation to age. Milgrom et al showed a linear increase in prevalence after the 5th decade of life. Demonstrating that no age group or population is immune to partial thickness RCTs, Conner et al. performed shoulder MRIs of asymptomatic elite overhead athletes and 40% had partial or full-thickness tears. Accepted treatments for partial thickness RCTs include arthroscopic debridement, conversion repairs, and in-situ transtendon repairs. While all have been shown to benefit some patients, none has shown significant outcome benefits over the others. Due to the lack of literature on management of partial thickness RCTs and the fact that one treatment option has not proven itself superior to the others, we looked at the treatment of partial thickness RCT with augmentation using a xenograft collagen bioinductive implant.

Methods

Using data collected from a single surgeon, we evaluated both visual analog scale (VAS) pain scores as well as ASES (American Shoulder and Elbow Surgeons) functional scores pre-operatively and at 6 weeks, 3 months, and 6 months post rotator cuff repair using a xenograft collagen implant. Results: Pre-operative VAS scores averaged 6.05 and followed a nearly linear decline to 2.08 at the 6 month post-operative visit. ASES functional scores pre-operatively averaged 35.49 and followed a linear progression to reach 69.49 at 6 months post-op, a 95% improvement. Conclusions: Using the xenograft collagen implant is a novel treatment option for the management of partial thickness rotator cuff tears. It provides a buttress to the rotator cuff and dissipates strain at the injury site allowing time for healing while incorporating into the tendon itself creating more robust rotator cuff tissue.

Etiology

The etiology of partial thickness RCTs is multifactorial. The intrinsic factors leading to tears include hypocellularity, fascicular thinning, and the formation of granulation tissue. All of these can decrease the vascularity of tissue which in turn predisposes the tendon to degenerative tearing. The extrinsic factors include subacromial impingement, glenohumeral instability, and internal impingement. These lead to tensile overload and also can cause the rotator cuff tendon fibers to tear. Increases in tendon strain due to presence of a tear lead to propagation and increases in tear size over time. Often partial thickness tears progress to full-thickness tears. One study of 40 patients with partial thickness cuff tears followed for a mean of 13.5 months showed 80% of lesions enlarged or progressed to full-thickness lesions.

Data

Figure 1. Demonstrates the affects of both bursal and articular sided tears and the peak strain on the supraspinatus tendon.

Figure 2. Average VAS scores of patients at the given time points. Scale is 0-10.

Figure 3. Average ASES functional scores of patients at given time points. Scale is 0-100.

Results

The average pre-operative VAS and ASES scores for the included patients were 6.03 and 35.49, respectively. The average 6 month post-operative VAS and ASES scores were 2.08 and 69.49, respectively. There was a near linear decrease in VAS scores over time from pre-op to 6 months. The VAS scores decreased on average 3.95 points by 6 months compared to pre-op, a 66% reduction. The ASES scores also followed a linear improvement. The ASES scores improved 34 points at the 6 month visit for a 95% improvement in patient perceived function.

Conclusion

We believe that the xenograft collagen implant is a novel treatment option for the management of partial thickness rotator cuff tears. It provides a buttress to the rotator cuff and dissipates strain at the injury site allowing time for healing while incorporating into the tendon itself creating more robust rotator cuff tissue. This study from a single surgeon using the xenograft implant for repair of partial thickness rotator cuff tears shows significant improvement in VAS and ASES scores at 6 months post-operatively.

Figure 4. An illustration of the bioinductive xenograft implant, courtesy of Rotation Medical/Smith and Nephew.

References