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ORIGINAL PAPER
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Abstract Currently available markers routinely used in

clinical practice are of limited value to patients with estrogen

receptor-negative (ER-) breast cancer [basal-like and

HER2neu-positive (HER?)], an aggressive subtype. Our aim

was to uncover molecular pathways and signaling networks

exposed by differentially methylated genes informative of the

biology of ER- breast cancer (BC) subtypes versus ER-

positive (ER?). Whole-genome methylation array analysis

was carried out using the Illumina Infinium HumanMethy-

lation27 BeadChip on 14 primary BC: five ER?, four triple-

negative (TNBC), and five ER-HER2?. Degree of methy-

lation was calculated as a b-value (ranging from 0 to 1), and

M-values [log (b/(1 - b)] were used for significance tests.

To identify methylated genes associated with ER- subtypes

(TNBC and ER-HER2?) and distinct from ER?, a weighted

algorithm, developed to increase statistical rigor, called out

genes in which methylation changed dramatically between

ER? and ER- subtypes. Differentially methylated gene lists

examined using Ingenuity Pathway Analysis called out

canonical pathways and networks with clues to biological

distinctiveness as well as relatedness between ER- subtypes

as compared to ER?BC. The study highlights the interplay of

ER- subtype-specific genes and their signaling pathways as

potential putative fingerprints in refining classification of BC

subtypes and as potential biological markers designed to hit

multiple targets.

Keywords Breast cancers subtypes � Differential
methylation � Canonical pathways � Networks

Introduction

Despite advances in breast cancer (BC) treatment and out-

come over the last two decades, women continue to relapse

and die of advanced disease. Currently available markers

routinely used in clinical practice are of limited value to pa-

tients with estrogen receptor-negative (ER-) BC [basal-like

and HER2neu (HER2)-positive (HER?)], an aggressive

subtype. Gene expression studies using DNA microarrays

have identified subtypes of BC that were not apparent using

traditional histopathologic methods [1, 2]. Four common

subtypes have been identified: two of these are derived from

ER- tumors (basal-like andHER2?) and twoare derived from

ER-positive (ER?) tumor subtypes of luminal A and B [2, 3].

Though the ‘‘basal-like’’ category of breast tumors (BLBC) is

composed almost entirely of ‘‘triple-negative’’ breast cancers

[4] (TNBC) [i.e., tumors that are ER-, progesterone receptor-

negative (PR-), and HER2-negative (HER2-)], TNBC is a

term based on immunohistochemistry (IHC) assays for ER,

PR, and HER2, whereas basal-like is a molecular phenotype

initially defined using cDNAmicroarrays [1, 2]. Thoughmost

TNBC cluster within the basal-like subgroup, these terms are

not synonymous; there is up to 30 % discordance between the

two groups [5–8].

Up to now, the major BC subtypes have been charac-

terized as distinct entities based on genomic, transcriptomic,

and proteomic levels [1, 2]. The biological significance of

DNA methylation in the regulation of gene expression and
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its role in cancer are increasingly recognized. Utilizing

global approaches, the goal was to identify aberrantly

methylated genes that underlie the pathogenesis of ER-BC

(ER-PR-HER2- and ER-PR-HER2?) and to uncover

molecular pathways and signaling networks exposed by

differentially methylated genes (DMG) informative of the

biology of ER-BC subtypes vs ER?BC.

Materials and methods

Patient cohort

The study cohort comprised fresh-frozen samples from 14

primary BC: five ER-positive (ER?), four triple-negative

(TNBC), and five ER-HER2?. DNA was extracted ac-

cording to the manufacturer’s protocol (Qiagen Inc,

Chatsworth, CA, USA). This study was approved by the

Henry Ford Health System Institutional Review Board.

Genome-wide methylation

Whole-genome methylation array analysis was carried out

using the Illumina Infinium HumanMethylation27 Bead-

Chip to quantify the proportion of methylated cytosines

(5mC) to total cytosines at 27,578 different CpG dinu-

cleotides located in more than 14,000 gene promoters. The

methylation score for each CpG is represented as a beta (b)
value according to the fluorescent intensity ratio. Every b
value is accompanied by a detection p value. b values may

take any value between 0 (non-methylated) and 1 (com-

pletely methylated) and were determined using the

GenomeStudio (Illumina, San Diego, USA). Probes are

discarded if this detection p value is more than 0.05. The

only corrections that are made to the data are background

subtraction and normalization. The resulting beta values

were exported into Microsoft Excel and JMP (SAS Insti-

tute, USA) for data analysis. All genome-wide comparisons

were corrected for multiple comparisons using the method

of Benjamini and Hochberg [9, 10].

Data analysis

Data were analyzed by GenomeStudio software (Illumina).

Degree of methylation was calculated as a b-value (ranging
from 0 to 1), and M-values [log (b/(1 - b)] were used for

significance tests. To identify methylated genes associated

with ER- subtypes (TNBC and ER-HER2?) and distinct

from ER?, a downsizing algorithm utilizing a three-tiered

approach was developed to call out genes in which methy-

lation changed dramatically between ER? and ER- subtypes

was used. Tier 1 computed adaptive FDR (aFDR) [9] values

for all CpGs/(or their averages for each gene) to be 0.05 or

lower. Tier 2 included Tier 1 CpGs/genes with a twofold

change (ratio C 2.0 or ratio B 0.5). Tier 3 required an ad-

ditional restriction to include Tier 2 CpGs/genes with an

absolute difference between the mean b s of C0.2. Tier 3

differentially methylated gene lists between ER? and ER-

groups/subtypes were examined using Ingenuity Pathway

Analysis (IPA) software.

Pathway analysis

To determine the biological processes enriched within ge-

nes differentially methylated in our comparisons, gene lists

were uploaded into Ingenuity Pathway Analysis (IPA; In-

genuity Systems, Inc.). IPA integrates genes and molecules

which are part of the same biological functions or regula-

tory networks interacting together. Core analyses of sta-

tistically significantly differentially methylated Tier 3 gene

lists were undertaken for comparison groups ER? versus

ER-, TNBC versus ER?, and ER-HER2? versus ER?

using IPA’s ‘‘genes only knowledge base,’’ with default

parameters including validation options like ‘‘experimen-

tally validated’’ and ‘‘highly predicted.’’

Results

Differentially methylated genes

Genes along the X and Y chromosomes were removed for a

total of 13,890 genes [11]. Data analysis accounted for

DMG among four separate groups to include (1) ER-

versus ER?, (2) TNBC versus ER?, (3) ER-HER2? versus

ER?, and (4) TNBC versus ER-HER2?. Differentially

methylated genes for comparison groups at each Tier level

are provided in Table 1.

At Tier 3, there were 207 DMG for ER- versus ER?,

191 DMGs for TNBC versus ER?, and 99 DMGs for

ER-HER2? versus ER?. For TNBC versus ER-HER2?,

only two Tier 3 genes, CYBA and COL21A1, were noted.

IPA pathway analysis

IPA individual reports for each comparison group/subtype

analyses for ER? and ER- samples provided the most

enriched canonical pathways with enrichment p values and

ratio (number of molecules from a dataset with total

number of molecules in that particular pathway) and as-

sociated networks with score in each analyses.

The top canonical pathways (Table 2) and networks

(Table 4) called out by the differentially methylated Tier 3

genes among comparison subtypes for ER- versus ER? are

detailed in Tables 2 and 4. The two Tier 3 DMG between
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Table 1 Differentially

methylated genes (X,

Y chromosomes removed; total

genes = 13890)

Comparison group Differentially methylated genes Hypermethylated Hypomethylated

ER-(all) versus ER?

Tier 1 1782 1070 712

Tier 2 331 28 303

Tier 3 207 19 188

TNBC versus ER?

Tier 1 1995 1157 838

Tier 2 305 41 264

Tier 3 191 27 164

ER-HER2? versus ER?

Tier 1 761 428 333

Tier 2 144 59 85

Tier 3 99 31 68

TNBC versus ER-HER2?

Tier 1 432 208 224

Tier 2 35 3 32

Tier 3 2: (CYBA, COL21A1) 1(COL21A1) 1(CYBA)

Table 2 Comparison of Top Canonical pathways (with pathway p value ranking and ratio of # of differentially methylated genes among total

pathway genes)

ER- versus ER?: 207 differentially

methylated genes

TNBC versus ER?: 191 differentially

methylated genes

ER-HER2? versus ER?: 99 differentially

methylated genes

Axonal Guidance Signaling 1.12E-03,

13/464 (0.028)a
Axonal Guidance Signaling 4.85E-03, 11/464,

(0.024)a
Tryptophan Degradation III (Eukaryotic)

5.25E-03, 2/21, (0.095)

CDK5 Signaling 3.09E-03, 5/90, (0.056) Transcriptional Regulatory Network in

Embryonic Stem Cells 7.95E-03, 3/40,

(0.075)a

Transcriptional Regulatory Network in

Embryonic Stem Cells 1.83E-02, 2/40,

(0.05)a

Protein Kinase A Signaling 3.78E-03,

11/387, (0.028)

GABA Receptor Signaling 1.24E-02, 3/47,

(0.064)

Axonal Guidance Signaling 2.42E-02, 6/464,

(0.013)a

Erythropoietin Signaling 6.75E-03, 4/74,

(0.054)

Human Embryonic Stem Cell Pluripotency

1.24E-02, 5/152, (0.033)

P2Y Purigenic Receptor Signaling Pathway

2.56E-02, 3/129, (0.023)

Dopamine-DARPP32 Feedback in cAMP

Signaling 1.02E-02, 6/167, (0.036)

CDK5 Signaling 1.28E-02, 4/90, (0.044) CMP-N-acetylneuraminate Biosynthesis I

(Eukaryotes) 2.57E-02, 1/5, (0.2)

a shared canonical pathways

Table 3 Shared canonical pathway genes (bolded)

Comparison Groups/# genes/total

pathway genes

Axonal guidance signaling pathway genes: total 464 genes in pathway

ER- versus ER?/13/464 PAPPA2, WNT3A, PRKCQ, ADAM12, UNC5A, WNT9B, NTRK3, EPHB2, ARHGEF7, PRKAR1B,
NGF, ADAMTS2, PRKCB

TBNC versus ER?/11/464 PAPPA2, WNT3A, WNT9B, ADAM12, NTRK3, ARHGEF7, ADAM19, NGF, ADAMTS2, WNT2

ER-HER2? versus ER?/6/464 GNG4, WNT3A, RHOD, NGF, HKR1, ADAMTS2

Transcriptional Regulatory Network in Embryonic Stem Cells: total 40 genes in pathway

ER- versus ER?/2/40 ISL1, HAND1

TBNC versus ER?/2/40 ISL1, HAND1

ER-HER2? versus ER?/3/40 ISL1, HAND1, GSX2

Bolded shared genes among comparison groups

Un-bolded unique genes
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TNBC versus ER-HER2? CYBA and COL21A1 were ex-

cluded from IPA analysis (due to inadequate number of

genes).

There was some overlap of top canonical pathways

among ER-BC groups as compared to ER? (Table 2). For

example, the axonal guidance signaling pathway was the

top-ranked pathway in ER- versus ER? BC and in TNBC

versus ER? and ranked second in ER-HER2? versus ER?.

Of the 464 genes in this pathway, 13 of the 207 DMG

between ER- and ER? were represented in this canonical

pathway (Table 3). Of these 13 genes, 9 genes PAPPA2,

WNT3A, PRKCQ, ADAM12, WNT9B, NTRK3, ARHGEF7,

NGF, and ADAMTS2 were common to TNBC versus ER?

and three genes WNT3A, NGF, and ADAMTS2 to

ER-HER2? versus ER? (Table 3). For TNBC versus ER?,

of the 11 genes in the pathway, two were unique to the

TNBC subtype (ADAM19, WNT2); for the ER-HER2?

versus ER? group, of the six genes in the pathway, three

were unique (GNG4, RHOD, and HKR1).

Similarly, the Transcriptional Regulatory Network in

Embryonic Stem Cells pathway common to ER-negative

subtypes TNBC versus ER? and ER-Her2? versus ER?

also showed similar ranking. Of the 40 genes in this

pathway, ISL1 and HAND1 were common to both com-

parison groups ER-HER2? versus ER? (Fig. 1a highlights

2/40 genes) and TNBC versus ER? (Fig. 1b highlights 3/40

genes: ISL1, HAND1, and GSX2). This pathway was not

ranked among the top five for ER- versus ER?.

Comparison of top networks among the three compar-

ison groups indicates distinct networks. However, several

biological activities spelled out within a network’s anno-

tation such as cellular development are common among the

three comparison groups (Table 4).

Discussion

Most cancers represent complex diseases characterized by

multiple- rather than single-gene alterations. The com-

plexity of BC is further compounded by its high hetero-

geneity making progress for improved diagnosis and

treatment a major challenge. Current clinical methods

based on anatomic staging (tumor size and node status) and

on a few immunohistochemical markers are unable to ac-

curately classify subtypes and develop appropriate treat-

ment plans. Because of availability and price, IHC is

commonly used to infer tumor subtype; however, it is less

accurate than gene expression profiling. Genomics has

shown that BC is a spectrum of disease with distinct

molecular alterations accounting for differences in treat-

ment response and outcome [12–14]. This information has

allowed us to improve prognostic accuracy in early-stage

BC and has redefined how we manage estrogen receptor-

positive disease [15, 16]. Conversely, estrogen receptor-

negative BC is more aggressive than ER? with an overall

worse prognosis and few targeted treatment options.

Subtype classification by the PAM50 gene expression

signature shows at least two distinct subtypes of ER-,

referred to as basal-like and HER2-enriched (HER2E).

[90 % of Basal-like tumors are triple-negative (ER-/

PR-/HER2-); however, approximately one-third of tri-

ple-negative cancers are something other than basal-like.

The cancer genome atlas (TCGA) network using multiple

platforms to investigate BC subgroups concluded that

diverse genetic and epigenetic alterations converge phe-

notypically into four major expression-only breast tumor

subgroups, i.e., luminal A, luminal B, HER2-positive, and

triple-negative [17].

Recent cancer genome sequencing efforts, including

those of BC, have led to the identification of novel cancer

genes and previously unrecognized signatures of muta-

tional processes [18, 19]. These studies highlight acquired

mutations often affecting genes involved in regulating

chromatin dynamics or the processing of epigenetic marks

as seen in various cancer types [17, 19], supporting the

importance of the epigenome in cancer development.

However, there is a dearth of knowledge about the con-

tribution of epigenetic changes to the development of

biologically distinct BC subtypes. This is mainly due to a

lack of comprehensive profiling technologies or a lack of

validated clinical relevance in independent patient cohorts

[17, 20].

We report on DMG not only between ER? and ER- but

also between ER-negative subtypes of TNBC and

ER-HER? subtypes using the Illumina 27 K platform and

provide a glimpse of their biological activities based on

pathway analysis. With the advent of high-throughput

platforms, large-scale structure of genomic methylation

patterns is available through genome-wide scans and

tremendous amount of DNA methylation data have been

recently generated. However, sophisticated statistical

methods to handle complex DNA methylation data are very

limited. For this study, we proposed a weighted model-

based approach of a 3-Tier strategy. Our goal for a 3-Tier

system was to provide a framework to increase statistical

rigor in the detection of biologically relevant methylation

markers. The latter achieves two outcomes: (1) exclusion

of CpGs likely to increase the risk of false discoveries and

(2) serves as a strategy to reduce the number of genes/

CpGs for confirmation especially for study cohorts with

DNA and RNA sources challenged by formalin fixation or

cFig. 1 Canonical pathway: Transcriptional Regulatory Network in

Embryonic Stem Cells a ER-HER2? versus ER?: 2/40 genes in

pathway: ISL1, HAND1, b TNBC versus ER?: 3/40 genes in pathway:

ISL1, HAND1, and GSX2
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meager amounts of tissue availability for molecular

characterization.

Pathway analysis has become the first choice for ex-

tracting and explaining the underlying biology for high-

throughput molecular measurements, as it reduces com-

plexity and has increased explanatory power. A pathway-

level understanding of genomic perturbations to better

decipher changes observed in cancer cells is supported by

recent pilot studies by TCGA and others [21, 22],

demonstrating that even when patients harbor genomic

alterations or aberrant expression in different genes, these

genes often participate in a common pathway [23].

A limitation of this study was the small number of

samples particularly for the ER-negative subtypes. Re-

gardless, DMG met the Tier 3 bar among all comparison

groups. Top-ranked canonical pathways and networks

suggest biological distinctiveness as well as relatedness

between ER- subtypes as compared to ER? BC. The latter

is illustrated for axonal guidance signaling and the Tran-

scriptional Regulatory Network in Embryonic Stem Cells

canonical pathways.

Axon guidance is integral to organogenesis, regen-

eration, wound healing, and other basic cellular processes

[24, 25]. This signaling pathway is comprised of genes

with important regulatory roles in normal neuronal mi-

gration and positioning during embryonic development.

More recently, axon guidance pathway genes have been

implicated in cancer cell growth, survival, invasion, and

angiogenesis [26, 27]; however, the incidence of aberra-

tions in these genes in cancer is largely unknown. In pan-

creatic cancer, the widespread genomic aberrations

observed in axon guidance genes suggest involvement of

axon guidance genes in pancreatic carcinogenesis [26]. The

DMG observed here in axon guidance suggests that they

may have a role in ER-BC, particularly with respect to

providing further differentiation among ER- subtypes of

TNBC and ER-HER2?.

The Transcriptional Regulatory Network in Embryonic

Stem Cells canonical pathways also ranked highly for ER-

subtypes TNBC versus ER? and ER-HER2? versus ER?.

Pluripotency and self-renewal are two defining properties

of embryonic stem (ES) cells. Pluripotency is the capacity

to generate all cell types, while self-renewal is the capacity

to maintain ES cells in a proliferative state for extended

periods [28]. Breast cancer stem cells were first identified

as a CD44hi/CD24lo population with enhanced ability to

initiate tumor growth when xenografted into immuno-

compromised mice [29]. The CD44hi/CD24lo phenotype

has been found to be associated with the basal-like BC

tumor subgroup [30] and BRCA1 tumors [30, 31], sug-

gesting that it might be indicative of aggressive molecular

subtypes.

For TNBC versus ER-HER2?, only two Tier 3 genes,

CYBA and COL21A1, were noted and were not interrogated

in IPA due to a paucity of genes. The CYBA gene regulates

immune system cells and autophagy through phagocytic

clearance and was recently reported in pathways associated

with pancreatic cancer [32]. COL21A1 was among 14 ge-

nes in the pancreatic cancer study whose expression cor-

related strongly and universally with that of heme

oxygenase-1 (HO-1) [33]. HO-1 is expressed in many

cancers and promotes growth and survival of neoplastic

cells and has been implicated in tumor cell invasion and

metastasis [34]. Deregulation of collagen genes including

COL21A1 has been reported in ovarian cancer [35].

Recent studies show that genes differentially methylated

between clinically important tumor subsets play roles in

differentiation, development, and tumor growth and may be

critical to establishing and maintaining tumor phenotypes

and clinical outcomes [36]. A 2014 study assessing

Table 4 Comparison of top networks (with score in parenthesis)

ER- versus ER?: 207 differentially

methylated genes

TNBC versus ER?: 191 differentially

methylated genes

ER-HER2? versus ER?: 99 differentially

methylated genes

Cellular development, nervous system

development and function,

neurological disease (48)

Nervous system development and function,

organ morphology, cellular movement (49)

Tissue morphology, cardiovascular system

development and function, organismal

development (45)

Nutritional disease, cancer,

cardiovascular system development

and function (41)

Cellular development, nervous system

development and function, tissue

development (49)

Cellular assembly and organization, nervous system

development and function, cellular growth and

proliferation (21)

Psychological disorders, cell

morphology, cancer (34)

Cellular compromise, cardiovascular disease,

organismal injury and abnormalities (26)

Organismal development, cell-to-cell signaling and

interaction, cellular growth and proliferation (19)

Cell-to-cell signaling and interaction,

infectious disease, cell death and

survival (18)

Cellular development, gene expression,

nervous system development and function

(18)

Gene expression, organismal survival, organ

morphology (19)

Cellular development, gene expression,

organismal development (16)

Cell morphology, skeletal and muscular

system development and function, cell death

and survival (18)

Drug metabolism, lipid metabolism, small molecule

biochemistry (17)
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differentially methylated CpGs supports distinct mechan-

isms leading to changes in CpGmethylation states operative

in different BC subtypes [37], where DNA methylation

patterns (CpGs) were linked to the luminal B subtype char-

acterized by CpG island promoter methylation events.

In our study, the biological processes enriched within

genes differentially methylated at the Tier 3 level in our

comparisons become clearly delineated in top-ranked

canonical pathways and networks. Signaling events in the

cell play a critical role in the execution of key biological

functions providing clues to how complex cellular signal-

ing cascades and networks may be programmed in ER-

subtypes as compared to ER? BC. This pilot study high-

lights the interplay of ER- subtype-specific genes and their

signaling pathways as potential putative fingerprints in

refining classification of BC subtypes and as potential

biological markers designed to hit multiple targets.
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