Critical Review and Consensus Statement for Neural Monitoring in Otolaryngologic Head, Neck, and Endocrine Surgery

Joseph Scharpf
Jeffrey C. Liu
Catherine Sinclair
Michael C. Singer
Whitney Liddy

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/otolaryngology_articles
Authors
Joseph Scharpf, Jeffrey C. Liu, Catherine Sinclair, Michael C. Singer, Whitney Liddy, Lisa Orloff, David Steward, Juliana Bonilla Velez, and Gregory W. Randolph
Critical Review and Consensus Statement for Neural Monitoring in Otolaryngologic Head, Neck, and Endocrine Surgery

Joseph Scharpf, MD1, Jeffrey C. Liu, MD2, Catherine Sinclair, MD3, Michael Singer, MD4, Whitney Liddy, MD5, Lisa Orloff, MD6, David Steward, MD7, Juliana Bonilla Velez, MD8, and Gregory W. Randolph, MD9

Abstract

Background. Enhancing patient outcomes in an array of surgical procedures in the head and neck requires the maintenance of complex regional functions through the protection of cranial nerve integrity. This review and consensus statement cover the scope of cranial nerve monitoring of all cranial nerves that are of practical importance in head, neck, and endocrine surgery except for cranial nerves VII and VIII within the temporal bone. Complete and applied understanding of neurophysiologic principles facilitates the surgeon’s ability to monitor the at-risk nerve.

Methods. The American Academy of Otolaryngology–Head and Neck Surgery (AAO-HNS) identified the need for a consensus statement on cranial nerve monitoring. An AAO-HNS task force was created through soliciting experts on the subject. Relevant domains were identified, including residency education, neurophysiology, application, and various techniques for monitoring pertinent cranial nerves. A document was generated to incorporate and consolidate these domains. The panel used a modified Delphi method for consensus generation.

Results. Consensus was achieved in the domains of education needs and anesthesia considerations, as well as setup, troubleshooting, and documentation. Specific cranial nerve monitoring was evaluated and reached consensus for all cranial nerves in statement 4 with the exception of the spinal accessory nerve. Although the spinal accessory nerve’s value can never be marginalized, the task force did not feel that the existing literature was as robust to support a recommendation of routine monitoring of this nerve. In contrast, there is robust supporting literature cited and consensus for routine monitoring in certain procedures, such as thyroid surgery, to optimize patient outcomes.

Conclusions. The AAO-HNS Cranial Nerve Monitoring Task Force has provided a state-of-the-art review in neural monitoring in otolaryngologic head, neck, and endocrine surgery. The evidence-based review was complemented by consensus statements utilizing a modified Delphi method to prioritize key statements to enhance patient outcomes in an array of surgical procedures in the head and neck. A precise definition of what actually constitutes intraoperative nerve monitoring and its benefits have been provided.

Keywords
nerve monitoring, intraoperative nerve monitoring, endocrine surgery, head and neck nerve monitoring

Received December 16, 2020; accepted March 30, 2021.

Introduction

Enhancing patient outcomes in a wide array of surgical procedures in the head and neck requires the maintenance of complex regional functions through the protection of cranial nerve integrity. In many circumstances, functional nerve information is valuable for optimizing nerve management and, ultimately, in the realization of one of the overarching goals in the standard of care in head and neck surgery, which is to maintain cranial nerve function when possible. Although the exact format may vary, nerve monitoring and stimulation testing are potentially valuable to cranial nerve surgical management and represent a separate additional endeavor concerning equipment, setup, and data interpretation. Electrophysiologic assessment of the pertinent nerves is within the scope of an

1Cleveland Clinic Foundation Head and Neck Institute, Cleveland, Ohio, USA
2Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
3New York Eye and Ear Infirmary of Mount Sinai, New York, New York, USA
4Henry Ford Health System, Detroit, Michigan, USA
5Northwestern University, Chicago, Illinois, USA
6Stanford University, Palo Alto, California, USA
7University of Cincinnati, Cincinnati, Ohio, USA
8Seattle Children’s Hospital, Seattle, Washington, USA
9Massachusetts Eye and Ear, Boston, Massachusetts, USA

Corresponding Author:
Joseph Scharpf, MD, Cleveland Clinic Foundation Head and Neck Institute, 9500 Euclid Avenue/A71, Cleveland, OH 44195, USA.
Email: scharpf@ccf.org
otolaryngology–head and neck surgical practice, and intraoperative nerve monitoring (IONM) is required in the training of residents and fellows by the American Board of Otolaryngology–Head and Neck Surgery. Position statements proposed by the American Academy of Otolaryngology–Head and Neck Surgery (AAO-HNS) Cranial Nerve Monitoring Task Force have been endorsed by the AAO-HNS concerning intraoperative cranial nerve monitoring as well as IONM in otologic surgery. Otolaryngologists are trained to perform, interpret, and strategically utilize intraoperative cranial nerve monitoring and nerve stimulation testing. The benefits of IONM have been accepted and supported through evidence-based guidelines on intraoperative cranial nerve monitoring in vestibular schwannoma surgery, which have been endorsed by the Joint Guidelines Committee of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons. Recommendation for monitoring in all adult patients regardless of tumor size was supported.

This review and consensus statement will cover the scope of cranial nerve monitoring of all cranial nerves that are of practical importance in head, neck, and endocrine surgery except for cranial nerves VII and VIII within the temporal bone, which have been covered by a prior task force on otologic surgery. Otolaryngologists are trained to perform, interpret, and strategically utilize intraoperative cranial nerve monitoring and nerve stimulation testing. The benefits of IONM have been accepted and supported through evidence-based guidelines on intraoperative cranial nerve monitoring in vestibular schwannoma surgery, which have been endorsed by the Joint Guidelines Committee of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons. Recommendation for monitoring in all adult patients regardless of tumor size was supported.

This review and consensus statement will cover the scope of cranial nerve monitoring of all cranial nerves that are of practical importance in head, neck, and endocrine surgery except for cranial nerves VII and VIII within the temporal bone, which have been covered by a prior task force on otologic surgery. Neural stimulation and monitoring encompass a range of techniques that may use a range of muscle or electromyographic (EMG) endpoints. For this review and consensus statement, IONM will be inclusive of the range of techniques employed by practitioners to test cranial nerve functional status. These techniques include gross motor observation, intermittent nerve stimulation with muscle twitch observation and EMG response, and continuous stimulation with continuous response monitoring. IONM provides an additive functional status component as compared with full anesthetic paralysis with only visual identification of the nerve for anatomic preservation.

Complete and applied understanding of neurophysiologic principles facilitates the surgeon’s ability to monitor the at-risk nerve. Intraoperative neural stimulation and nerve monitoring provide optimal neural detection in specific procedures such as thyroid surgery, where the level of evidence for monitoring is strongest. It has been shown to accelerate the learning curve for inexperienced thyroid surgeons, allowing them to approach outcome levels comparable to more experienced surgeons. Furthermore, current evidence supports the cost-effectiveness and benefits of nerve monitoring for patients undergoing thyroidectomy, and benefits with varying levels of evidence quality in the literature have been put forth for parotidectomy and neck dissection as well as hypoglossal nerve stimulator implantation. Although the level for facial nerve monitoring is not as robust as it is for recurrent laryngeal nerve (RLN) monitoring, it does have a more compelling level of supportive evidence than for monitoring of the spinal accessory nerve.

Methods

The AAO-HNS identified the need for a consensus statement on cranial nerve monitoring. An AAO-HNS task force on this subject was created through soliciting experts on the subject. Relevant domains on the subject were identified, including residency education, neurophysiology, application, and various techniques for monitoring specific pertinent cranial nerves. A document was generated to incorporate these domains and consolidate them. The panel then used a modified Delphi method for consensus generation.

Delphi Survey Method Process and Administration

A modified Delphi survey method was utilized to assess consensus for the proposed statements, with multiple anonymous surveys to minimize bias within the expert panel and facilitate consensus. This process was similar to the processes used in other AAO-HNS clinical consensus statements. In our method, a 9-point Likert scale was used to measure agreement, with 7 being the threshold for agreement and consensus. The criteria for consensus were established a priori:

- **Consensus**: Statements achieving a mean score of 7.00 or higher and having no more than 1 outlier,
defined as any rating 2 or more Likert points less than 7.

- **No consensus**: Statements that did not meet the criteria of consensus.

Web-based software (www.surveymonkey.com) was used to administer confidential surveys to panel members. All answers were deidentified and remained confidential; however, names were collected to ensure proper complete response by the 9-person task force.

Overall, 2 Delphi rounds were necessary (Figure 1). The initial survey comprised 6 major statements with 35 substatements, for a total of 41 questions. The surveys were distributed, and responses were aggregated. The results showed no consensus, as defined here, within 2 statement headings across 12 substatement questions. A conference call convened that reviewed these 12 items of no consensus. The statements were discussed with regard to rationale and proposed changes. Following revisions of the statements, a second round of voting with these now modified 12 substatements was performed. All substatements achieved consensus except 1. Further discussion ensued on the remaining statement, with no additional feedback, and a conclusion of no consensus was affirmed.

Conflict of Interest

The authors were required to have no conflicts of interest, with declarations at the project’s inception and at the conclusion of the review. When any conflict of interest was present, that author was recused from participation in all writing, discussion, and editing of the applicable topic.

Grading of Consensus Statements

The statements put forth utilized the 2019 American College of Physicians’ grading system. This system employs a validated scale to critically interpret and evaluate the strength and quality of the evidence. Quality of evidence is evaluated by using the guideline grading system of the American College of Physicians, which is adopted from the GRADE system (Grading of Recommendations, Assessment, Development, and Evaluation).10

Education

Statement 1: Formal didactic programming on the rationale, benefits, and techniques of IONM of the cranial nerves should be incorporated into the otolaryngology resident training curriculum and offered for all otolaryngology surgeons regardless of the level of training. (Moderate-quality evidence)

Consensus was achieved on the first Delphi round of the survey (mean, 8.56) with all substatements achieving consensus (Table 2).

In recent decades, different forms of IONM have been widely adopted for a range of head and neck applications. All of these techniques, whether relying on observable, palpable, or measurable responses (Table 1), are intended to aid in the reduction of injury to cranial nerves at risk during surgery. The use of IONM in thyroid surgery has been most robustly studied. When it was introduced in the mid-1990s, the utility of monitoring the RLN was questioned. However, a series of studies have demonstrated that the adoption of IONM in thyroid surgery has been extensive among general surgeons and otolaryngologists.11-13 Importantly, high-volume surgeons are among those most likely to utilize IONM on a routine basis. This wide use of IONM likely reflects its multidimensional functionality in thyroid surgery, as it can facilitate nerve identification, potentially reduce the risk of neuropraxia and transection injuries, and aid in prognostication of postoperative function. Recent data from academic surgeons in the United States suggest that IONM is used by approximately 80% of otolaryngologists and nearly 50% of general surgeons performing thyroid surgery.14 Neural monitoring has proven value as an educational adjunct. One European study showed younger, less experienced surgeons had improved surgical outcomes equivalent to experienced surgeons with the addition of IONM.4

In surgeons trained in otolaryngology or general surgery–based thyroid fellowships, IONM use is nearly universal.15
The introduction of monitoring has had an impact in changing practice, as seen in the experience of evolving surgical strategy in the groups studied subsequent to its introduction. Utilization of IONM in other head and neck surgical procedures has been less well documented. In parotid surgery, a single study from 2005 found that approximately 60% of
surgeons were using facial nerve monitoring. As with thyroid surgery, utilization during training and higher procedural volume was associated with a higher likelihood of IONM adoption.

Currently, there is little formalized IONM education for head and neck surgery at the resident level. The otolaryngology guidelines of the Accreditation Council for Graduate Medical Education do not mention IONM. While discussion of IONM may be referenced in a module on otologic or thyroid surgery, no discrete module exists on application of, or decision making with, IONM in AcademyU.

In contrast, the American Board of Otolaryngology—Head and Neck Surgery curriculum specifically includes training in the use of IONM for otologic surgery. In the otology learning objectives, there is also a brief mention of techniques for lower cranial nerve monitoring (IX, X, XI, XII). However, no reference is made to IONM as it relates to head and neck training. In addition, several national courses on IONM in thyroid surgery are available, as offered through institutional continuing medical education programs. A recent survey of the American Otological Society, American Neurotology Society, and American Society of Pediatric Otolaryngology evaluated the opinions of IONM for the facial nerve (S Malekzadeh, MD, unpublished data, 2016). In this 10-question survey, IONM of the facial nerve was widely used by otologists/neurotologists.

Despite the absence of IONM from formal training standards and its generally wide adoption, informal instruction is likely occurring during resident training as residents participate in cases that utilize IONM. However, its frequency of use during training is not captured routinely, and the teaching, demonstration, and application of IONM in surgery are not formally specified or captured. With regard to continuing medical education, while select IONM courses are available, there is a paucity of formal courses for physicians on IONM. However, there are multiple detailed published sources in standard recommended high-quality monitoring practices.

Basic Electrophysiology, Anesthesia Considerations, and Setup

Statement 2: IONM should be closely coordinated with anesthesia, for the selection of anesthetic agents and endotracheal tube positioning for vagal and RLN monitoring. Anesthesia concerns during surgery should remain a priority. (Moderate-quality evidence)

Consensus was achieved on the first Delphi round of survey (mean, 8.67) with all substatements achieving consensus (Table 2).

Surgeon comfort with the fundamental principles behind IONM is critical to the successful implementation of this technology. This includes an understanding of the electrophysiology, the standards for equipment setup and coordination with anesthesia, and the application of troubleshooting algorithms.

Figure 2. Adapted from: Randolph G. Surgical anatomy and monitoring of the recurrent laryngeal nerve. In: Randolph G, ed. Surgery of the Thyroid and Parathyroid Glands. Saunders; 2013:306-340.

Electrophysiology: Basic Concepts and Terminology for Peripheral Nerves

An understanding of the waveform morphology is critical to the surgeon’s accurate interpretation of data during intraoperative neural monitoring. The waveform is illustrated in Figure 2.

Key terminology:

- **Waveform morphology**: The basic evoked EMG waveform with neural stimulation is usually biphasic or triphasic, representing the summated action potential of the ipsilateral target muscle.
- **Amplitude**: Corresponds to the height of the apex of the positive waveform deflection to the lowest point in the next opposite polarity phase of the waveform. This reflects the number of muscle fibers participating in depolarization. Amplitude can vary within and among patients due to variation in probe-nerve contact, contact with fluid/blood, coverage with tissue, irrigation temperature, recording electrode position, or nerve integrity.
- **Threshold**: Is the current required to first elicit EMG activity. EMG amplitude at threshold stimulation will be lower than the amplitude at maximum stimulation (when all nerve fibers are depolarized). Increasing current above the maximum stimulation suprathreshold level will not lead to increases in EMG amplitude but can expand the sphere of depolarization around the tip of the probe, which can be helpful when initially searching for the nerve.
- **Latency**: While not uniformly defined in the surgical monitoring literature, EMG latency is generally measured as the time from stimulation spike to the first evoked waveform peak. Latency represents the speed of stimulation-induced depolarization and is dependent on the distance between the stimulation point and the target muscle. For example, given the relative lengths of the RLN to the right and left vagal nerves, mean latency is shorter for the RLN (3.97 ms) than the vagus and shorter for the right
versus left vagus (5.4 vs 8.1 ms) during stimulation in thyroid surgery.20

Waveforms should be interpreted in the context of the nerve being stimulated and confirmed with visual or palpable target muscle contraction to enhance appropriate interpretation of EMG data and avoid potential confusion from far-field artifact waveforms.22

Neural Injury

The mechanism of intraoperative neural injury is variable and commonly results from surgical errors, including ligation, traction, clamping, suction, compression, contusion, electrical or thermal injury, and rarely complete transection of the nerve.23 In the absence of complete transection, functional recovery of the nerve varies and is based on the severity of injury. Some injuries, such as stretch or traction injury (the most common mechanisms of RLN injury during thyroid surgery), are not sudden-onset, all-or-nothing injuries but gradually graded injuries with the potential for reversal/recovery if identified and corrected early. The most frequently used classifications for quantifying the degree of neural injury are those proposed by Seddon and Sunderland,24,25 and a summary of these is presented in Table 3.

Table 3. Seddon and Sunderland Grades of Neural Injury.

<table>
<thead>
<tr>
<th>Sunderland degree of injury</th>
<th>Seddon classification</th>
<th>Physiology</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Neurapraxia</td>
<td>Focal myelin sheath injury resulting in a reversible temporary conduction block. Axonal continuity is preserved.</td>
<td>Generally complete recovery within days to months. No synkinesis.</td>
</tr>
<tr>
<td>II</td>
<td>Axonotmesis</td>
<td>Disruption of the axon, while the continuity of the endoneurium, perineurium, and epineurium remain intact. Wallerian degeneration occurs distal to the injury site, but regeneration within the endoneurial tube ensures preservation of the original innervation pattern.</td>
<td>Generally good functional outcome within months, with little synkinesis.</td>
</tr>
<tr>
<td>III</td>
<td>Axonotmesis</td>
<td>Disruption of the axon and endoneurium, leading to disruption of the internal structure of fasciculi. Wallerian degeneration occurs. Intrafascicular fibrosis can lead to disorganized axonal growth and change the innervation pattern.</td>
<td>Functional outcomes can vary. Can have synkinesis.</td>
</tr>
<tr>
<td>IV</td>
<td>Axonotmesis</td>
<td>Disruption of the axon, endoneurium, and perineurium, leading to alteration of the fascicular structure. Wallerian degeneration occurs. Due to the degree of fibrosis, axonal regrowth can be arrested, limiting spontaneous neural regeneration.</td>
<td>Functional outcomes can vary. Greater risk of synkinesis. A traumatic neuroma may develop. May require surgical exploration, neurolysis, and reconstruction.</td>
</tr>
</tbody>
</table>

Adapted from:

Anesthesia Considerations and Equipment Setup

Partnership with anesthesia is critical for successful and optimal IONM outcomes. Long-acting neuromuscular blockade (NMB) should be avoided after induction of anesthesia, given the potential for reduction in EMG-evoked response and amplitude with the risk of decreased sensitivity for impending neural injury. NMB will also prevent accurate quantitative analysis of EMG data. If short-acting NMB such as succinylcholine is used for induction, the return of full muscular activity should be confirmed as soon as possible after intubation. Aside from avoiding NMB, the anesthesiologist should be able to choose the most appropriate anesthetic for the patient, as very little effect on peripheral nerves and muscles has been
identified with inhalational agents, nitrous oxide, opioids, and propofol.20

While many IONM formats have been utilized and reviewed, standardization of equipment setup and use has been supported to optimize the quality and accuracy of IONM.20 The most widely used monitoring systems typically include EMG with or without a stimulator probe and incorporate either an audio-only system or a system with audio as well as graphic waveform information allowing EMG data analysis. For vagal and RLN monitoring, combined audio and visual systems are preferred by the International Neural Monitoring Study Group given the opportunity for EMG quantification and improved documentation of response.20

IONM employs recording side data and stimulation side data. Recording electrodes are positioned to maximally record the EMG target muscle response for the cranial nerve being monitored—such as needle recording electrodes in the ipsilateral facial muscles (extratemporal CN VII),26 intramuscular needle or adhesive surface electrodes in the trapezius muscle (CN XI),27 or needle electrodes in the tongue (targeting hyoglossus, styloglossus) and floor of mouth (genioglossus) (CN XII).28 Based on simplicity and ease of use, the most common recording electrodes employed for vagal/RLN monitoring are paired endotracheal tube (ET)–based surface electrodes placed between the vocalis muscles (either prefashioned with integrated electrodes or created with adhesive electrodes placed on a regular ET). Recording electrodes must be paired with a corresponding ground electrode (often placed on the shoulder or sternal area) and the associated connections to the monitor and interface-connector box (Figure 3). As the majority of equipment-related problems during RLN/vagal monitoring are due to movement and malpositioning of the ET,29–32 it is critical that confirmation of appropriate placement of the ET recording electrodes be performed after final surgical positioning with neck extension (either through direct glottic visualization or adequate respiratory variation of the EMG baseline) and partnership with anesthesia continue to the end of surgery to ensure continued optimal ET positioning.20,21

The stimulation component of neural monitoring systems typically includes a neural stimulation probe (typically monopolar but may be bipolar or integrated into a dissecting instrument), its corresponding ground electrode (often placed on the shoulder or subternal area), and associated connections to the monitor and interface-connector box (Figure 3). Once setup is complete, monitoring system settings should be checked and verified (eg, impedance values, event threshold settings, stimulator probe current).

<table>
<thead>
<tr>
<th>Table 4. Modified Delphi Results: Round 2.ª</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
</tr>
<tr>
<td>4A-1. IONM of the extratemporal segment of the facial nerve is beneficial in cases where the nerve and its branches are at risk.</td>
</tr>
<tr>
<td>4A-2. IONM of the extratemporal segment of the facial nerve has utility in cases where the nerve and its branches are at risk.</td>
</tr>
<tr>
<td>4C-2. IONM of the vagus nerve has utility in thyroid and parathyroid surgery.</td>
</tr>
<tr>
<td>4C-3. IONM of the vagus nerve is a consideration in thyroid and parathyroid surgery.</td>
</tr>
<tr>
<td>4D-1. IONM of the spinal accessory nerve is beneficial in cases where it is at risk.</td>
</tr>
<tr>
<td>4D-2. IONM of the spinal accessory nerve has utility in cases where it is at risk.</td>
</tr>
<tr>
<td>4D-3. IONM of the spinal accessory nerve is a consideration in cases where it is at risk.</td>
</tr>
<tr>
<td>4E-1. IONM of the hypoglossal nerve is beneficial in cases where it is both at risk and also integral to the outcome of specific cases such as sleep apnea implant surgery or facial reanimation surgery utilizing the nerve in contrast to routine neck dissection or submandibular gland removal.</td>
</tr>
<tr>
<td>4E-2. IONM of the hypoglossal nerve has utility in cases where it is both at risk and also integral to the outcome of specific cases such as sleep apnea implant surgery or facial reanimation surgery utilizing the nerve in contrast to routine neck dissection or submandibular gland removal.</td>
</tr>
<tr>
<td>4E-3. IONM of the hypoglossal nerve is a consideration in cases where it is both at risk and also integral to the outcome of specific cases such as sleep apnea implant surgery or facial reanimation surgery utilizing the nerve in contrast to routine neck dissection or submandibular gland removal.</td>
</tr>
<tr>
<td>5. The final functional status of the nerve after all aspects of the procedure including achievement of hemostasis have been completed is recommended to be ascertained and documented if the surgeon feels it would affect patient management or counseling. This will provide prognostic information for potential further rehabilitation efforts if needed and prevent unnecessary postoperative nerve testing and even nerve reexploration procedures that would be considered if the nerve functional status was unknown at the end of the procedure.</td>
</tr>
<tr>
<td>5A. Prior to closure, after all other aspects of the procedure have been completed, it may be beneficial to assess the response to neural stimulus in the nerve at risk if the surgeon feels it would affect patient management or counseling.</td>
</tr>
</tbody>
</table>

ªA score of 7 indicates consensus. Bold indicates ≥2 outliers.

Abbreviation: IONM, intraoperative nerve monitoring.
Statement 3:
Given the surgical importance of loss of signal, surgeons utilizing neural monitoring must be thoroughly fluent with all facets of waveform analysis and equipment troubleshooting to determine nonneural sources in the setting of loss of signal. (Moderate-quality evidence)

Consensus was achieved on the first Delphi round of survey (mean, 7.78) with all substatements achieving consensus (Table 2).

Troubleshooting
During surgery, if a loss of EMG signal is encountered, algorithms for troubleshooting have been developed to determine if an equipment-related problem or true neural injury has occurred. The basic algorithm for troubleshooting involves separating potential equipment-related failures into recording- and stimulation-side problems. For vagal and RLN monitoring, a critical maneuver to aid in decision making involves palpation of a laryngeal twitch (with the index finger on the back of the larynx at the level of the posterior cricoarytenoid muscle) with ipsilateral neural stimulation. If present, then the nerve is functional, and the problem must be on the recording side (check recording side equipment/connections, most commonly ET malposition). If absent, then either a stimulation side problem has occurred (check equipment and connections, stimulator current, NMB), or there is a true neural injury.

Specific Cranial Nerve Monitoring

Statement 4:
Neural stimulation and monitoring of muscular activity and/or EMG-elicited activity may be considered in all patients undergoing surgery that places the following specific nerves at risk.
1. The facial nerve (CN VII) in its extratemporal bone segment. (Low-quality evidence)
2. The recurrent laryngeal nerve and/or vagus nerve (CN X) during thyroid and parathyroid surgery. IONM may change the extent of surgery and reduce potential significant operative morbidity. (Moderate-quality evidence)
3. The spinal accessory (CN XI) nerve during surgeries that place it at risk. (Low-quality evidence)
4. The hypoglossal nerve (CN XII) during surgeries that place it at risk. (Low-quality evidence)

Particular emphasis for monitoring should be placed on those circumstances when IONM may change the extent of surgery and reduce potential significant operative morbidity.

Consensus was achieved for monitoring of the facial nerve in its temporal bone segment and for monitoring the recurrent laryngeal or vagus nerve during thyroid and parathyroid surgery (Tables 2 and 4).

There was a lack of consensus for monitoring of the spinal accessory nerve (Tables 2 and 4).

Monitoring of the hypoglossal nerve was deemed beneficial and reached consensus for its use in cases where it was integral to the outcome of specific cases, such as hypoglossal nerve stimulator implant surgery or facial reanimation surgery utilizing the nerve in contrast to routine neck dissection or submandibular gland removal (Tables 2 and 4).

Extratemporal Bone Facial Nerve Monitoring (CN VII)
Injury to the extratemporal facial nerve is the most significant and dreaded complication of surgery on the parotid gland. The muscles of facial expression are innervated by the facial nerve, via its dominant frontal, zygomatic, buccal, and marginal branches. Ocular complications from eye exposure and oral incompetence are the most significant impairments. Up to 40% of patients undergoing parotidectomy experience some temporary facial nerve dysfunction, while permanent dysfunction occurs in 0% to 7% of patients. Mechanisms of facial nerve injury are similar to other iatrogenic cranial nerve injuries and include nerve division, stretch, compression, ligature entrapment, thermal and electrical injury, and ischemia.

Recent studies indicate that the majority of otolaryngologists and head and neck surgeons in the United States and United Kingdom utilize nerve monitoring during parotid surgery. Facial nerve monitoring is accomplished by either visual monitoring of facial movements or electromyologic monitoring of facial muscle EMG activity. The latter, which is the more sensitive, specific, and quantifiable of the 2 methods, is achieved by placing transcutaneous needle electrodes into the facial muscles innervated by the 4 dominant branches, along with ground and stimulator anode electrodes. Neuromuscular blockade is avoided. Passive, mechanically
evoked responses during surgical dissection can provide immediate feedback to the surgeon regarding the proximity and manipulation of the nerve. Active stimulation of the nerve trunk or its branches is achieved via a sterile pulsed-current stimulation probe, initially set to a stimulus intensity of 0.5 mA, duration of 100 microseconds, rate of 4 bursts/second, and event threshold of 100 microvolts.

As with the monitoring of other cranial nerves, the absence of an electrically evoked response does not exclude the possibility that the stimulated tissue is the facial nerve. Anatomic information and clinical judgment should complement and synergize with electrophysiologic data. The goals of facial nerve monitoring during parotidectomy are the same as the general goals of cranial nerve monitoring: early nerve identification, warning of unexpected nerve stimulation, mapping of the course of the nerve, reduction of mechanical trauma to the nerve, and evaluation and prognosis of nerve function at the conclusion of the procedure. A growing body of literature on surgeon-performed facial nerve monitoring supports its routine use during parotidectomy. However, most studies are retrospective nonrandomized single-institution studies with relatively small sample sizes, and patient and monitoring parameters are heterogeneous. The limited prospective study results available suggest a reduction in duration of surgery when monitoring is employed, without a significant difference in long-term facial nerve outcomes. A meta-analysis of 7 studies involving 546 parotidectomies noted a reduction in temporary postoperative facial nerve paralysis and a trend but not a significant reduction in permanent facial nerve paralysis in monitored surgery.

Conflicting results exist on outcomes in primary versus reoperative surgery and in partial versus total parotidectomy. A multi-institutional prospective randomized study of sufficient size and statistical power to potentially demonstrate the benefit of facial nerve monitoring in reducing the frequency of facial nerve paralysis has yet to be performed. Still, independent of statistics on surgery duration and facial nerve outcomes, most studies cite several advantages of monitoring: (1) improved ability to determine the topographical identity of the facial nerve and its distal branches, (2) improved ability to differentiate the facial nerve from other tissue, (3) improved dynamic actionable awareness of potentially injurious manipulation of the facial nerve, and (4) acquisition of prognostic information about facial nerve function during surgery.

Glossopharyngeal Nerve (CN IX)
The glossopharyngeal nerve has primarily sensory function but does innervate the stylopharyngeus muscle, which is involved with elevating the larynx and dilating the pharynx during swallowing. Of the lower cranial nerves with motor function, the glossopharyngeal is less commonly at risk during swallowing. Of the lower cranial nerves with motor involvement with elevating the larynx and dilating the pharynx during swallowing, the glossopharyngeal nerve has primarily sensory function during the course of the nerve, reduction of mechanical trauma to the nerve, and evaluation and prognosis of nerve function at the conclusion of the procedure. A growing body of literature on surgeon-performed facial nerve monitoring supports its routine use during parotidectomy. However, most studies are retrospective nonrandomized single-institution studies with relatively small sample sizes, and patient and monitoring parameters are heterogeneous. The limited prospective study results available suggest a reduction in duration of surgery when monitoring is employed, without a significant difference in long-term facial nerve outcomes. A meta-analysis of 7 studies involving 546 parotidectomies noted a reduction in temporary postoperative facial nerve paralysis and a trend but not a significant reduction in permanent facial nerve paralysis in monitored surgery.

Recurrent Laryngeal Nerve/Vagus (CN X)
In thyroid and parathyroid surgery, the immediate proximity of the RLN and external branch of the superior laryngeal nerve (EBSLN) to the operative field places them at potential risk of injury. Traditionally, rates of nerve injury during thyroid and parathyroid procedures have been reportedly low (3%-5%); however, this is likely a significant underestimation of the true incidence, with many recent series quoting rates closer to 10%. Similarly, although the actual incidence of EBSLN injury remains unknown, it has been reported as high as 58%. These inconsistencies in injury rates may result from a lack of standardization of pre- and postoperative laryngeal examination practices, the often subtle and variable nature of nerve palsy symptoms, and reporting biases from large thyroid centers where complication rates are low. Several large national databases in the United Kingdom and Europe have shown that the rate of RLN paralysis is significantly underreported in part due to the variable rates of postoperative laryngeal examination. Vocal cord paralysis rates from a large meta-analysis of >25,000 patients and large Medicare population found an immediate vocal cord paralysis rate after surgery of approximately 9%. Factors increasing the risk include age, comorbidity, advanced stage of the disease, extensive dissection, and lesser surgical experience.

Clinical implications of unilateral RLN injury revolve around breathing, phonation, and swallowing with a range of severity from mild to severe impairment. Vocal cord paralysis can engender dysphonia, aspiration, dysphagia, ineffective cough, and difficulty in maneuvers requiring glottic closure such as lifting. It is independently predictive of hospital readmission, length of stay, respiratory tract infection, and increased risk for gastrostomy and tracheotomy. Furthermore, bilateral RLN injury can lead to significant respiratory distress and necessitate the placement of a tracheostomy. Similarly, clinical symptoms of EBSLN injury can be significant and are often out of proportion to examination findings. Such changes include vocal fatigue and alterations in vocal range and pitch, all of which can significantly impair quality of life and livelihood. Vaginal and/or RLN nerve monitoring during neck endocrine surgery aims to minimize the risk of iatrogenic nerve injuries by various means, including neural mapping/early nerve detection, differentiation between neural and nonneural tissue, and dynamic awareness of neural presence and function during surgery. Furthermore, it enhances the identification of atypical nerve branching patterns and neural function prognostication with the recognition and potential prevention of impending neuropaxia and loss of signal.

Techniques for monitoring of the RLN during thyroid and parathyroid surgery range from direct assessment of posterior cricoarytenoid muscle contraction with palpation to near-continuous EMG assessment of the course of the complete
RLN. While some surgeons utilize hook wire electrodes for EMG RLN monitoring, surface electrodes placed on an ET are the most widely adopted methodology. These ET electrodes are positioned to contact the true vocal cords, assessing the evoked response of the thyroarytenoid and lateral cricoarytenoid muscles from stimulation of the RLN. RLN stimulation can be achieved either directly or, alternatively, by stimulation of the vagus nerve. Vagus nerve stimulation allows the complete neural course of the RLN to be tested and may provide improved real-time intraoperative predictive information, which preliminarily seems to be extrapolated to lower rates of nerve injury. Safety analysis of the world literature of 4000 patients receiving repetitive vagal stimulation may provide improved real-time intraoperative predictive events.85,86

Currently, intermittent stimulation of the RLN is the most widely adopted method of IONM.12,13 The International Neural Monitoring Study Group has published guidelines for a standardized method for this type of IONM that results in consistently reliable data.20 Continuous IONM, in which stimulation of the nerve occurs more frequently, has also been recently described.84,87 Continuous IONM, as performed with a lead placed on the vagus nerve, provides near real-time feedback on the functional status of the RLN with the potential advantage of identifying impending neuropraxia before it results in a loss of signal. In addition to the RLN, IONM can aid in the preservation of the EBSLN, which is critical for pitch modulation and voice projection.19 IONM with intermittent RLN stimulation can facilitate nerve dissection. Circumstances where this strategy may be particularly useful include patients exhibiting aberrant RLN branching patterns and revision surgery. Most important, in contrast to visual evaluation only, intermittent IONM assesses the dynamic awareness of the structural presence and functional status of the RLN and provides potentially critical prognostic information to inform intraoperative decisions and postoperative counseling. The loss of signal correlates highly with postoperative vocal cord paralysis.88 In planned bilateral surgery, intraoperative recognition of loss of signal on the first side of surgery can alert surgeons to the possibility of bilateral vocal cord paralysis if they were to proceed onto the contralateral side. Crucially, in many cases, this can lead to the consideration of ending the surgery, avoiding any possibility of bilateral RLN injury and consequent airway compromise.20,89 This permits further discussion with the patient, reassessment of the need for completion surgery, and, if absolutely indicated, staging to allow the initial RLN to recover function potentially. Furthermore, if IONM is used and loss of signal occurs, postoperative counseling can be facilitated and early intervention initiated, including voice therapy and early vocal cord augmentation procedures for symptomatic hoarseness.

When continuous IONM is performed with a vagus nerve electrode, EMG amplitude and latency variations can suggest an impending loss of EMG signal and RLN injury. By changing or stopping the surgical maneuver that led to the amplitude/latency variations, loss of signal and vocal cord paralysis may be avoided. Early investigations of continuous IONM have demonstrated remarkably low rates of temporary and permanent RLN injury.19,90 In addition, these studies have shown that changes in RLN EMG waveforms during surgical maneuvers commonly performed in thyroid surgery occur more frequently than previously recognized with intermittent nerve monitoring alone.

Numerous guidelines and consensus statements have been published discussing the application and appropriate use of vagus nerve/RLN IONM in thyroid surgery. Highlights from these various statements are summarized in turn.

The International Neural Monitoring Study Group is an international multidisciplinary collaboration established to develop the best practices for the preservation of the laryngeal nerves during surgery. A consensus guideline in 2 parts was designed to guide best practices in the management of laryngeal nerve preservation.91,92 Recapitulation of this nearly 75-page 2-part document would be redundant here, but certain major themes are worthy of mention. The data are robust that RLN injury remains a persistent problem in parathyroid/thyroid surgery, with significant impact. IONM provides key functional information on the status of the RLN and allows for intraoperative decision making when changes to RLN functional status evolve during surgery. Signal loss during IONM can vary from signal changes indicating impending neuropraxia to evolving neuropraxia and significant injury. Intraoperative decision making depending on the degree of RLN signal change is discussed, including the context of the injury and whether the patient has fully functional bilateral vocal cord function preoperatively or preoperative paresis or paralysis. The use of surgical staging, either planned or unplanned, in the case of intraoperative loss of signal is discussed as are the pros and cons of stimulatory versus continuous vagus nerve monitoring.

The International Neural Monitoring Study Group document is extensive and comprehensive as well as technically rich. Two important recommendations from part 1 of the document include recommendation 1: neural monitoring information should be obtained and utilized in the strategy of a planned bilateral procedure by staging the surgery in the setting of ipsilateral loss of signal. This algorithm should be shared and discussed with the patient during the preoperative informed consent process. Moreover, recommendation 2 is that the surgeon should prioritize concern for the obvious significant medical and psychological morbidity of bilateral vocal cord paralysis and possible tracheotomy, even temporary, over perceived surgical convenience. It is discouraged to routinely perform the entirety of the planned operation; rather, there should be an open acknowledgment of the surgical complication of ipsilateral loss of signal. The full benefit of neural monitoring information in this surgical setting is appreciated through optimization of the patient’s quality of life as well as surgical cost.

Multiple consensus guidelines have been published by the American Head and Neck Society–Endocrine Section, including the management of well-differentiated thyroid cancer,93 recurrent thyroid cancer,94 and the central compartment in well-differentiated thyroid cancer.95 All reflect similar
themes on the application of IONM in thyroid surgery for cancer. Preoperative evaluation of vocal cord function and voice function is strongly recommended in this evaluation prior to surgery, with flexible transnasal laryngoscopy being the optimal examination modality.96 Most guideline statements agree that preoperative laryngoscopy is essential in patients with vocal hoarseness, prior neck surgery on the ipsilateral side, or prior neck malignancy. Intraoperative decision making with IONM is discussed in the context of preoperative vocal cord mobility status—in general, preservation of the RLN is favored in patients with preoperatively normal vocal cord function, and avoidance of tracheostomy is encouraged. When oncologic priorities conflict with functional priorities, selection of a surgical strategy that avoids tracheostomy but optimizes oncologic outcomes is preferred.

The 2015 American Thyroid Association guidelines97 state that all patients undergoing thyroid surgery should have preoperative voice assessment as part of their preoperative physical examination and that the preoperative laryngeal examination should be performed in all patients with voice abnormalities, history of cervical or upper chest surgery, and known thyroid carcinoma with posterior extrathyroidal extension or extensive central nodal metastases. With regard to IONM, these guidelines provide minimal guidance to its benefits but do state that IONM may be a useful technique for intraoperative decision making and management of the RLN. Finally, the AAO-HNS has published a clinical practice guideline on improving voice outcomes following thyroid surgery.78 These guidelines recommend preoperative laryngoscopy for similar indications as the American Thyroid Association guidelines. In addition, clinical practice guideline statement 7 recommends IONM application as an option in thyroid/parathyroid surgery with special utility in revision surgery and surgery on an only functioning nerve.

Overall, multiple guidelines reference the valuable information provided by IONM in intraoperative decision making during thyroid surgery. Particular circumstances that may benefit from IONM include the presence of preoperative vocal cord paresis/paralysis with or without malignancy, management of thyroid malignancy with extrathyroidal extension, and revision/recurrent thyroid surgery with or without malignancy. A common consensus theme is a focus on preservation of laryngeal function and avoidance of tracheostomy. With neural monitoring, ipsilateral nerve function can be established definitively prior to operating on the second side. With this information, the application of neural monitoring is recommended for all bilateral thyroid surgery.5

Spinal Accessory Nerve (CN XI)
The spinal accessory nerve (CN XI) innervates the sternocleidomastoid and trapezius muscles, which are critical for maintenance of shoulder function.98-100 Intraoperative nerve stimulation can discriminate between the sternocleidomastoid and trapezius branches and determine which cervical branches contribute motor function.98,99 The spinal accessory nerve is at risk during any surgery involving the lateral neck, particularly during lymph node biopsy or cervical lymphadenectomy, and intraoperative nerve stimulation and monitoring have been shown to be safe and effective.101-104 IONM during neck dissection was associated with better trapezius EMG values 6 months postoperatively for nerves monitored versus not monitored in a prospective controlled study.103 Shoulder dysfunction was significantly greater for patients with reduced neuromuscular stimulation response at the end of dissection as compared with the time of nerve identification.102 Postoperative recovery of shoulder dysfunction was greater for those with better postdissection stimulation response102 and better postoperative trapezius EMG values.100 Despite these data, the overall data are limited and of variable quality, as noted in a recent systematic review.105

Hypoglossal Nerve (CN XII)
The hypoglossal nerve (CN XII) provides primary innervation to the tongue, and its function is critical for speaking, swallowing, and maintenance of the oropharyngeal airway.106 The hypoglossal nerve is vulnerable to injury involving surgery of the tongue and upper neck. Recently, hypoglossal nerve stimulation and monitoring have become critical to the correct placement of the cuff electrode for hypoglossal nerve stimulator implantation for obstructive sleep apnea.107-112 Perhaps in no other surgery involving the lower cranial motor nerves is direct surgeon stimulation and EMG monitoring of the various branches of the hypoglossal nerve more critical to a successful outcome of surgery.8,107,109,112 Failure to include the branch to the genioglossus muscle (which protrudes the tongue) or failure to exclude the styloglossus and hyoglossus muscles (which retract the tongue) within the cuff electrode will result in failure to correct tongue collapse and obstructive apnea with implantation.8,109,111

Statement 5:
When a cranial nerve is monitored, the final functional status of the nerve is best determined after all aspects of the procedure have been completed, including achievement of hemostasis, and it is recommended to be documented and incorporated into patient management and counseling. (Moderate-quality evidence)

Consensus was achieved for the ascertainment of the final functional status of the nerve (Tables 2 and 4) if it would affect patient management and counseling.

A risk of a false-negative test can exist, as represented by an intraoperative EMG or other aforementioned nerve evaluation test (Table 1) suggesting that nerve function is intact. Postoperatively, a nerve weakness can be observed if there is injury after the last stimulation. The surgeon would feel confident that the nerve’s functional status was intact, but he or she may cause subsequent injury after that last evaluation through traction during examination of the wound or injury through maneuvers to achieve hemostasis, such as cautery, suture tying, or vessel ligation. If no further evaluation was done of the nerve, the surgeon could be unaware of the injury. There would be an unpleasant surprise to observe nerve weakness in the postoperative period.
Consensus was achieved regarding the role and unique position of the operating surgeon in nerve monitoring (Table 2).

Guidelines published for the standardization and optimization of IONM have emphasized the importance of active surgeon or designee participation with the required knowledge of anesthesia concerns, standardized equipment setup, real-time interpretation of electrophysiologic data, and intraoperative troubleshooting algorithms. This fundamental role of the operating surgeon in IONM allows for instantaneous interpretation of EMG signal by the person who (1) has the most in-depth knowledge of the anatomy and pathology of the surgical procedure and cranial nerves involved and (2) is performing the intraoperative maneuvers directly responsible for potential changes in IONM signal. Consequently, surgeon control of IONM removes the potential for delayed/failed communication of a potential detrimental change in IONM signal by a middle party sitting across the operating room or even outside of the hospital.

Surgeon documentation of IONM should align with its recognition as a separate service during the course of surgery requiring separate expertise, setup, and interpretation. An option to achieve this goal could be the provision of a short additional procedure note separate from the operative note, with basic information including clinical data such as pre- and postoperative diagnosis, basic equipment setup, baseline electrophysiologic data, and a short description of the IONM procedure. Equipment costs for nerve monitoring are variable and hard to quantify. Fixed costs such as a nerve-monitoring ETs with surface electrodes exist and are around $400 currently per ET per case. The cost of paralytic agents is variable and dependent on the strategy being used for any particular case as determined between the surgeon and anesthesiologist.

While criteria for commercial payers vary, Medicare rules currently allow billing for IONM from the following providers: (1) a physician who is not performing the surgery; (2) an audiologist trained and certified in electrophysiologic monitoring; (3) a physical therapist trained and certified in electrophysiologic monitoring; and (4) a neurophysiologist, neurologist, or physiatrist. This has historically omitted the operating surgeon from billing for IONM.

Conclusion

The AAO-HNS Cranial Nerve Monitoring Task Force has provided a state-of-the-art review in neural monitoring in otolaryngologic head, neck, and endocrine surgery. The evidence-based review was complemented by consensus statements utilizing a modified Delphi method to prioritize key statements to enhance patient outcomes in an array of surgical procedures in the head and neck. A precise definition of what actually constitutes IONM and its benefits have been provided.

Consensus was achieved in the domains of education needs and anesthesia considerations, as well as setup, troubleshooting, and documentation. Specific cranial nerve monitoring was evaluated and reached consensus level for all cranial nerves in statement 4 with the exception of the spinal accessory nerve. Although the spinal accessory nerve’s value can never be marginalized, the task force did not feel that the existing literature was as robust to support a recommendation of routine monitoring of this nerve. In contrast, there is robust supporting literature cited and consensus for routine monitoring in certain procedures such as thyroid surgery to optimize patient outcomes. Future advancements and outcome reporting will undoubtedly be additive to the existing literature and consensus statements reflected in this report.

Acknowledgment

We acknowledge and thank Dr Jennifer Shin of the Harvard Medical School. Dr Shin is thanked for substantial contributions to the design, analysis, and interpretation of the work; revising the work critically for important intellectual content; approval of the version to be published; and agreeing to be accountable for the work.

We also thank Adrienne Deneal and Nui Dhepyasuwan of the AAO-HNS who greatly assisted us with the survey administration.

Author Contributions

Joseph Scharpf; contributed to conception and design, acquisition of data, and analysis of data; drafting and critical revision of article; final approval of the version to be published; agreement to be accountable for all aspects of the work; Jeffrey C. Liu; contributed to conception and design, acquisition of data, and analysis of data; drafting and critical revision of article; final approval of the version to be published; agreement to be accountable for all aspects of the work; Catherine Sinclair; contributed to conception and design, acquisition of data, and analysis of data; drafting and critical revision of article; final approval of the version to be published; agreement to be accountable for all aspects of the work; Michael Singer; contributed to conception and design, acquisition of data, and analysis of data; drafting and critical revision of article; final approval of the version to be published; agreement to be accountable for all aspects of the work; Whitney Liddy; contributed to conception and design, acquisition of data, and analysis of data; drafting and critical revision of article; final approval of the version to be published; agreement to be accountable for all aspects of the work; Lisa Orloff; contributed to conception and design, acquisition of data, and analysis of data; drafting and critical revision of article; final approval of the version to be published; agreement to be accountable for all aspects of the work; David Steward; contributed to conception and design, acquisition
of data, and analysis of data; drafting and critical revision of article; final approval of the version to be published; agreement to be accountable for all aspects of the work; **Juliana Bonilla Velez**; contributed to conception and design, acquisition of data, and analysis of data; drafting and critical revision of article; final approval of the version to be published; agreement to be accountable for all aspects of the work; **Gregory W. Randolph**; contributed to conception and design, acquisition of data, and analysis of data; drafting and critical revision of article; final approval of the version to be published; agreement to be accountable for all aspects of the work.

Disclosures

Competing interests: None.

Sponsorships: None.

Funding source: None.

References

51. Anon JP, Lipman SP, Thumbart W, Sibly DA. Parotidectomy with the nerve integrity monitor II. Eur Arch Otorhinolaryngol. 1994 Dec;S385-S386.

recurrent laryngeal nerve management for invasive thyroid cancer-incorporation of surgical, laryngeal, and neural electrophysiologic data. Laryngoscope. 2018;128(suppl 3):S18-S27.

