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A B S T R A C T   

Posttraumatic stress disorder (PTSD) is associated with lower gray matter volume (GMV) in brain regions critical 
for extinction of learned threat. However, relationships among volume, extinction learning, and PTSD symptom 
development remain unclear. We investigated subcortical brain volumes in regions supporting extinction 
learning and fear-potentiated startle (FPS) to understand brain-behavior interactions that may impact PTSD 
symptom development in recently traumatized individuals. Participants (N = 99) completed magnetic resonance 
imaging and threat conditioning two weeks following trauma exposure as part of a multisite observational study 
to understand the neuropsychiatric effects of trauma (AURORA Study). Participants completed self-assessments 
of PTSD (PTSD Checklist for DSM-5; PCL-5), dissociation, and depression symptoms two- and eight-weeks post- 
trauma. We completed multiple regressions to investigate relationships between FPS during late extinction, 
GMV, and PTSD symptom development. The interaction between thalamic GMV and FPS during late extinction at 
two weeks post-trauma predicted PCL-5 scores eight weeks (t (75) = 2.49, β = 0.28, p = 0.015) post-trauma. 
Higher FPS predicted higher PCL-5 scores in the setting of increased thalamic GMV. Meanwhile, lower FPS 
also predicted higher PCL-5 scores in the setting of decreased thalamic GMV. Thalamic GMV and FPS interactions 
also predicted posttraumatic dissociative and depressive symptoms. Amygdala and hippocampus GMV by FPS 
interactions were not associated with posttraumatic symptom development. Taken together, thalamic GMV and 
FPS during late extinction interact to contribute to adverse posttraumatic neuropsychiatric outcomes. Multi-
modal assessments soon after trauma have the potential to distinguish key phenotypes vulnerable to post-
traumatic neuropsychiatric outcomes.   

1. Introduction 

Posttraumatic stress disorder (PTSD) affects approximately 6.8% of 
the United States population (Kessler et al., 2005) with consequences for 
individuals and society (Kessler, 2000). Early interventions improve and 
mitigate the development of PTSD (Kearns et al., 2012; Rothbaum et al., 
2012). However, the high rate of trauma exposures in the general pop-
ulation and variability in individual susceptibility to PTSD make it costly 
and inefficient to provide intensive early interventions to every trau-
matized individual (Kilpatrick et al., 2013). Early identification of in-
dividuals susceptible to PTSD following trauma exposure is thus crucial 
for the development of efficient early intervention strategies (Kearns 
et al., 2012; McLean et al., 2019). 

Chronic PTSD is associated with disruptions in threat learning pro-
cesses that are commonly studied with Pavlovian fear conditioning. In 
healthy adaptive learning, individuals both acquire new threat mem-
ories when danger is present and extinguish the memory once danger 
has passed. Individuals with PTSD, however, show an enhanced ability 
to acquire, but a reduced ability to extinguish, fear conditioned mem-
ories (Jovanovic et al., 2012; Norrholm et al., 2011). 

Fear-potentiated startle (FPS) is a robust psychophysiological mea-
sure of threat learning and autonomic reactivity, indexed by an 
increased startle response in the presence of a danger signal. PTSD is 
associated with exaggerated FPS to a conditioned stimulus (CS) during 
acquisition that persists during extinction (Grillon and Morgan, 1999; 
Jovanovic et al., 2012; Norrholm and Jovanovic, 2018). However, 
increasing attention is being paid to heterogeneity within PTSD, with 
differences in extinction patterns potentially aiding in defining PTSD 
subgroups (Galatzer-Levy et al., 2013; Seligowski et al., 2019). 

Subcortical/deep cortical neural circuitry, including the amygdala, 
hippocampus, and thalamus, play an important role in the acquisition, 
expression, and extinction of conditioned fear (Barad et al., 2006; 

Fanselow and Ledoux, 1999; Maren, 2001; Phelps et al., 2004). The 
basolateral nucleus of the amygdala receives sensory input from the 
thalamus and cortex (Senn et al., 2014) and connects to the central 
nucleus of the amygdala, which mediates autonomic responses to threat 
(Gafford and Ressler, 2016; Krabbe et al., 2018). Amygdala-dependent 
extinction learning is then modulated by the hippocampus to facilitate 
the formation and contextualization of extinction memories (Ji and 
Maren, 2007; Knight et al., 2004; LaBar and Phelps, 2005; Liu et al., 
2012; Rudy et al., 2004; Senn et al., 2014). Thalamic connections to the 
amygdala and hippocampus also critically relay extinction-related sen-
sory information necessary to form an inhibitory memory (Fanselow and 
Ledoux, 1999; Galatzer-Levy et al., 2013; Lee et al., 2019; Lee et al., 
2012; Ramanathan and Maren, 2019; Troyner et al., 2018). Together, 
the amygdala, hippocampus, and thalamus constitute key subcortical 
circuitry for extinction learning. 

This set of regions show structural morphometric alterations in 
chronic PTSD. Decreased amygdala gray matter volume (GMV) have 
been seen in those with prior trauma histories and PTSD (Ganzel et al., 
2008; Logue et al., 2018; O’Doherty et al., 2015). Meta-analyses have 
demonstrated diminished hippocampal GMV in PTSD (Bromis et al., 
2018; Kitayama et al., 2005; Kühn and Gallinat, 2013; Logue et al., 
2018; Woon et al., 2010). Although decreased thalamic GMV was not 
observed in meta-analyses of PTSD that combined military and civilian 
trauma (Bromis et al., 2018; Kitayama et al., 2005; Logue et al., 2018), 
smaller thalamic GMVs have been observed in civilians with PTSD 
(O’Doherty et al., 2017), dissociation (Daniels et al., 2015), and intru-
sion symptoms (Shucard et al., 2012). In sum, lower volumes of the 
amygdala, hippocampus, and thalamus have been consistently linked 
with trauma exposure and PTSD symptoms. 

No prior work has assessed for a potential relationship between GMV 
and FPS during extinction in the acute aftermath of trauma or if asso-
ciations between GMV and FPS relate to future posttraumatic symptom 
expression. We thus hypothesized that examining both behaviors and 
brain structures in the early aftermath of trauma exposure and evalu-
ating their association with later PTSD symptom development would 1 Dr. Harnett and Dr. Stevens should be considered joint senior authors. 
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help identify posttraumatic stress vulnerability phenotypes. By focusing 
on neural integrity in regions critically implicated in extinction, we may 
gain mechanistic insight regarding neurophysiological mechanisms 
acutely that are relevant to the maintenance of later chronic symptoms. 

In the present study, we investigated putative relationships among 
subcortical GMV, physiological reactivity (indexed via FPS), and acute 
PTSD symptoms following trauma exposure. Late extinction, the time 
when inhibitory learning should be strongest, has been utilized as a 
marker of treatment success for PTSD (Rousseau et al., 2019). We 
therefore hypothesized that FPS during late extinction would relate to 
lower amygdala, hippocampus, and thalamus GMV. Further, we postu-
lated that the interaction of thalamus, amygdala, and hippocampus 
GMV and FPS during late extinction would be prospectively associated 
with PTSD symptom severity eight-weeks following trauma exposure. 
The interaction of GMV-FPS on dissociation and depression symptoms 
was also examined to consider posttraumatic neuropsychiatric 
dysfunction more broadly. 

2. Methods and materials 

2.1. Participants 

Volunteers were recruited as part of a larger, ongoing, multisite 
longitudinal study of posttraumatic outcomes – the AURORA study 
(McLean et al., 2019). Participants were recruited from 22 Emergency 
Departments (EDs) across the United States following trauma exposure. 
Exposures included motor vehicle collision, physical assault, sexual as-
sault, fall greater than 10 feet, mass casualty incidents, or other plau-
sible exposure to threatened or actual injury, violence, or death. For 
more details of inclusion and exclusion criteria, please refer to the 
methodology paper describing the AURORA study (McLean et al., 2019) 
and the supplement. Structural MRI and psychophysiological assessment 
were completed within approximately two-weeks of recruitment at one 
of four locations (McLean Hospital, Emory University, Temple Univer-
sity, or Wayne State University). All participants gave written informed 
consent as approved by each study site’s Institutional Review Board. 
Trauma-exposed adults (N = 126) with complete MRI data at the time of 
analysis were included in the present study. Twenty-seven participants 
were excluded from analyses due to noise artifact in FPS data during 
extinction. Therefore, 99 participants were included in the present 
analysis (M = 35.95 years, SD = 13.58 years, range = 18–75; n = 64 
females; Table 1). 

2.2. Self-report measures 

The PTSD Checklist for DSM-5 (PCL-5) was used to assess the pres-
ence and severity of PTSD symptoms at two- and eight-weeks post- 
trauma and is scored out of 80 points (Weathers et al., 2013). Note, of 
participants who provided PCL-5 data at two-weeks post-trauma, 33 
participants (33%) scored higher than 32 on the PCL-5, indicative of 
subacute PTSD. Of participants who provided PCL-5 data at eight-weeks 
post-trauma, 35 participants (35.4%) scored higher than 32 on the 
PCL-5 indicative of probable PTSD. Dissociative symptoms were exam-
ined with a modified version of the Brief Dissociative Experiences Scale 
scored out of eight points (DES-B; Dalenberg and Carlson, 2010), see 
supplement for details. Depression symptoms were assessed with the 
Patient-Reported Outcomes Measurement Information System 
(PROMIS) Depression instrument (Pilkonis et al., 2011) which is T-score 
converted. PTSD, dissociation, and depression symptoms were evalu-
ated for the past 2 weeks at the two-week time point and for the past 
month at the eight-week time point. Some participants did not provide 
self-report data; please see the sample description in Supplemental 
Table 1 for more information. Additionally, the Life Events Checklist 
(Weathers et al., 2013) was utilized to assess for prior traumatic expe-
riences. Responses were summed to create a composite trauma score and 
correlated with subcortical GMVs to consider the role of prior traumas 

on GMV (see supplement). 

2.3. MRI acquisition and processing 

Anatomical T1-weighted MRI scans were acquired on 3T Siemens 
MRI systems at four neuroimaging centers (Supplemental Table 2). 
Image processing was completed at Emory University utilizing standard 
procedures in fMRIPrep (Esteban et al., 2019), see supplement for de-
tails. All segmentations were visually inspected with special attention to 
individual regions whose volume fell outside ± 1.5 times the inter-
quartile range for the sample. Regional volumes were excluded from 
analysis if there was a clear segmentation error by Freesurfer (listed by 

Table 1 
Sample characteristics of included participants (N = 99).    

N (%) M (SD) 

Sex Male 35 
(35.4)   

Female 64 
(64.6)  

Race/Ethnicity Hispanic 20 
(20.2)   

Non-Hispanic White 39 
(39.4)   

Non-Hispanic Black 35 
(35.4)   

Non-Hispanic Other 5 (5.1)  
Educational 

Attainment 
Some high school 4 (4.0)   

High school graduate 16 
(16.2)   

GED or equivalent 13 
(13.1)   

Some college, no degree 32 
(32.3)   

Associate degree, technical/ 
occupational/vocational program 

5 (5.1)   

Associate degree, academic 
program 

6 (6.1)   

Bachelor’s degree 18 
(18.2)   

Master’s degree 4 (4.0)   
Professional school degree 1 (1.0)  

Site Emory University 7 (7.1)   
McLean Hospital 51 

(51.5)   
Temple University 18 

(18.2)   
Wayne State University 23 

(23.2)  
GMV ROI Proportion 

of Total ICV 
Thalamus 98 0.49 

(0.04)  
Amygdala 95 0.11 

(0.01)  
Hippocampus 98 0.26 

(0.03) 
Late Extinction FPS CS+ 98 20.18 

(44.97)  
CS- 97 13.83 

(43.47)  
(CS+) – (CS-) 96 6.50 

(27.28) 
PCL-5 Scores 2 weeks post-trauma 89 28.53 

(15.42)  
8 weeks post-trauma 86 27.63 

(16.68) 
Dissociation total 

Scores 
2 weeks post-trauma 91 1.43 

(1.68)  
8 weeks post-trauma 88 1.53 (2.0) 

PROMIS Depression 
T-Scores 

2 weeks post-trauma 90 54.08 
(8.85)  

8 weeks post-trauma 87 55.02 
(9.71) 

GMV: gray matter volume; ROI: region of interest; ICV: intracranial volume; FPS: 
fear-potentiated startle; CS: conditioned stimulus. 
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region in Supplemental Table 1). 

2.4. Stimuli and task design 

Psychophysiological data were collected within approximately two 
weeks of trauma exposure using a Pavlovian fear conditioning procedure 
described in prior reports (Glover et al., 2011; Jovanovic et al., 2012; 
Norrholm et al., 2011). Briefly, a shape on a computer screen (a blue 
square; CS+) was repeatedly paired with an aversive unconditioned 
stimulus (US) (140 psi airblast to the larynx, 250 ms duration). A 
different shape (a purple triangle; CS-) was never paired with the 
aversive stimulus. The paradigm included a 108 dB white noise startle 
probe that elicited the eyeblink startle response. The startle probe was 
presented during CS+ and CS- trials, and on its own (noise alone [NA] 
trials) to assess individual baseline startle response. See supplement for 
further details on the paradigm. Following habituation (see supple-
ment), acquisition consisted of three conditioning blocks with four trials 
of each type (NA, CS + paired with US, CS-) in each block. Ten minutes 
after acquisition, the extinction phase consisted of four blocks with four 
trials of each type (CS+, CS-, NA), wherein the airblast never occurred 
(20 min in duration). Due to its relevance in the development of PTSD 
symptoms, the focus of this study was on extinction, thus analyses were 
limited to late extinction, defined as the last two blocks of extinction. 

2.5. Fear-potentiated startle response 

FPS was measured using surface electromyography (EMG) of the 
right orbicularis oculi muscle using a Biopac MP160 physiological 
recording system (Biopac Systems, Inc. Aero Camino, CA). FPS was 
defined as the maximal orbicularis oculi contraction 20–200 ms 
following the startle probe presentation. EMG data were analyzed using 
MindWare software (MindWare Technologies, Inc.; Gahanna, OH). FPS 
was calculated by subtracting the average startle magnitude to the noise 
probe alone from the startle magnitude to each CS in each block of the 
experiment (Norrholm et al., 2011), see supplement for details. In-
dividuals who had less than 75% useable data as identified during visual 
inspection were excluded from analyses, as above (Supplemental 
Table 1). 

2.6. Statistical analysis 

Statistical analyses were completed using SPSS software (IBM Cor-
poration, version 24, Armonk, NY). Individual multiple regression an-
alyses were completed to assess the relationship between FPS to the CS+
and subcortical GMV in each a priori region of interest (i.e., amygdala, 
hippocampus, and thalamus). Regional volumes were normalized as a 
proportion of total intracranial volume (ICV) to adjust for potential 
global ICV differences among participants. GMV for each region was 
averaged across hemispheres given our lack of a priori hypotheses on 
laterality and the high correlations between hemispheres per region (see 
supplement). Exploratory post-hoc analyses assessed the relationship 
with other subcortical regions including bilateral lateral ventricles, 
globus pallidus, caudate, putamen, and nucleus accumbens. 

Second, multiple regression analyses were completed to assess the 
relationship between FPS during late extinction and subcortical volume 
on PCL-5 total scores at eight-weeks post-trauma. The regression models 
(type 3 sums of squares approach) included mean-centered regressors 
for FPS, GMV, and an FPS by GMV interaction as independent variables 
with PCL-5, modified DES-B, and PROMIS Depression scores at eight- 
weeks as the respective dependent variables. FPS and GMV were 
analyzed as continuous variables. However, to aid in interpretation of 
the interaction effects, FPS was divided into low and high groupings 
based on median split where noted. Age, sex, and scan site were included 
as covariates within the models. We applied a Bonferroni correction for 
multiple comparisons across the three GMV regions studied at the eight- 
week timepoint, as this was the primary aim of the study, with a 

threshold p-value of 0.017. We completed post-hoc regression analyses 
that included two-week scores as a covariate to determine if observed 
effects were specific to the eight-week timepoint. Further, supplemen-
tary follow-up analyses evaluating interactions at two-weeks post- 
trauma exposure were completed. Additional exploratory post-hoc an-
alyses investigated the relationship with supplementary subcortical re-
gions at two- and eight-weeks following trauma exposure (Supplemental 
Tables 4 and 5). Additional exploratory analyses tested interactions with 
dissociation and depression symptoms. 

3. Results 

3.1. Associations between GMV and FPS 

We first assessed whether GMV related to FPS during late extinction. 
No significant associations were observed between FPS and GMV in the 
amygdala, hippocampus, or thalamus (amygdala: t (92) = 0.08, β =
0.01, B = 30.76, 95% CI [-733.94, 795.46], p = 0.936; hippocampus: t 
(95) = − 0.40, β = − 0.04, B = − 61.77, 95% CI [-366.69, 243.15], p =
0.688; thalamus: t (95) = − 0.20, β = − 0.02, B = − 20.62, 95% CI 
[-229.46, 188.22], p = 0.845). Exploratory analyses examining the 
interaction between FPS and nucleus accumbens, caudate, putamen, 
globus pallidus, and lateral ventricles GMV did not reach significance 
(Supplemental Table 3). 

3.2. Interaction of GMV and FPS on posttraumatic symptoms 

We next investigated the effect of GMV and FPS during late extinc-
tion on PCL-5 scores eight-weeks following trauma exposure. (Table 2). 
We observed a significant interaction between thalamus GMV and FPS 
on PCL-5 scores at eight weeks post-trauma after controlling for multiple 
comparisons (t(75) = 2.49, β = 0.28, B = 2.90, 95% CI [0.58, 5.22], p =
0.015). No significant main effects of GMV or FPS on PCL-5 scores were 
observed (GMV: t (75) = − 0.99, β = − 0.13, B = − 51.93, 95% CI 
[-156.96, 53.10], p = 0.328, FPS: t (75) = − 0.16, β = − 0.02, B = − 0.01, 
95% CI [-0.09, 0.07], p = 0.870). Both greater thalamic GMV with 
higher FPS, as well as decreased thalamic GMV with lower FPS during 
late extinction related to greater PCL-5 scores following trauma expo-
sure (Fig. 1). Follow-up correlation analyses were completed separately 
for low and high FPS groups, defined by median split, to disentangle the 
interaction effects. The high FPS group show a non-significant positive 
correlation (r = 0.22, p = 0.18) while the low FPS group showed a 
significant negative correlation (r = − 0.43, p = 0.010), between 
thalamic GMV and PCL-5 scores at eight-weeks post-trauma. There was 
no interaction between amygdala or hippocampus GMV and FPS on 
eight-week PCL-5 scores (amygdala: t (72) = 1.61, β = 0.19, B = 7.48, 
95% CI [-1.76, 16.71], p = 0.111; hippocampus: t (75) = 1.50, β = 0.17, 
B = 2.98, 95% CI [-0.98, 6.95], p = 0.138) (Table 2). 

When two-week PCL-5 scores were included in the eight-week 
model, the GMV-FPS interaction term lost significance, likely due to 
the high correlation of PCL-5 scores between timepoints (r = 0.65, p <
0.001). To delve further into these findings, additional analyses focused 
on the two-week timepoint were undertaken. In brief, a similar inter-
action between thalamus GMV and FPS on PCL-5 scores two-weeks post- 

Table 2 
Interaction of subcortical GMV and FPS to the CS+ during late extinction on 
PCL-5 scores eight-weeks post-trauma.  

FPS Eight Weeks 

β t (p) 

Amygdala 0.19 1.61 (0.111) 
Hippocampus 0.17 1.50 (0.138) 
Thalamus 0.28 2.50 (0.015a) 

FPS, fear-potentiated startle; CS, conditioned stimulus. 
a p < 0.05, two-sided test. 
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trauma emerged (see supplemental results). Overall, these data suggest 
that the interaction between thalamic GMV and FPS on PCL-5 scores 
develops two weeks following trauma exposure, with significant effects 
persisting weeks later. 

Additional analyses involving supplemental subcortical structures 

demonstrated that at eight weeks post-trauma, an interaction between 
nucleus accumbens volume and FPS on PCL-5 scores emerged (t (76) =
2.12, β = 0.28, B = 17.18, 95% CI [1.04, 33.32], p = 0.037) as did an 
interaction between lateral ventricle volume and FPS on PCL-5 scores (t 
(76) = − 2.03, β = − 0.32, B = − 0.54, 95% CI [-1.08, − 0.01], p = 0.046) 
(Supplemental Table 6). 

3.3. Dissociation/depression symptoms at eight-weeks post-trauma 

To establish if the above brain-behavior profiles were associated with 
other posttraumatic outcomes, we also assessed dissociation and 
depression symptoms using multiple regressions. PCL-5 and modified 
DES-B scores were highly correlated at each time point (two-week: r =
0.62, p < 0.001; eight-week: r = 0.73, p < 0.001). Similar to PCL-5 
scores, the thalamic GMV-FPS interaction was associated with modi-
fied DES-B scores at eight weeks following trauma exposure (t(77) =
2.54, β = 0.27, B = 0.34, 95% CI [0.07, 0.61], p = 0.013). No significant 
main effects of GMV or FPS on DES-B scores were observed (GMV: t (77) 
= − 1.36, β = − 0.17, B = − 8.11, 95% CI [-20.02, 3.81], p = 0.179, FPS: t 
(77) = − 0.56, β = − 0.06, B = 0.00, 95% CI [-0.01, 0.01], p = 0.576). 
Greater thalamic GMV with higher FPS during late extinction and 
decreased thalamic GMV with lower FPS were both related to higher 
modified DES-B scores (Fig. 2a). 

PCL-5 and PROMIS Depression scores were also highly correlated 
(two-week: r = 0.74, p = < 0.001; eight-week: r = 0.71, p = < 0.001). 
The interaction between thalamic GMV and FPS during late extinction 
related to depression severity at eight weeks following trauma (t(76) =
2.40, β = 0.27, B = 1.75, 95% CI [0.30, 3.20], p = 0.019). There were no 
significant main effects of GMV or FPS on depression scores (GMV: t 
(76) = − 0.95, β = − 0.13, B = − 30.58, 95% CI [-94.91, 33.75], p =
0.347, FPS: t (76) = − 0.60, β = − 0.07, B = − 0.02, 95% CI [-0.07, 0.04], 
p = 0.553). Greater thalamic GMV with higher FPS during late extinc-
tion and decreased thalamic GMV with lower FPS were both related to 
higher depressive symptom severity (Fig. 2b). 

These data suggest that the thalamic GMV-FPS interactions may 
reflect general posttraumatic dysfunction acutely following trauma. 

Fig. 1. Significant interaction of FPS to the CS + during late extinction 
and thalamic GMV on posttraumatic symptom severities at eight-weeks 
following trauma exposure. FPS is median split here for visual clarity, but 
analyzed as a continuous variable in the analysis. Confidence intervals shown 
represent the 68% CI ( ±1 SE of the regression line). For PCL-5 scores, greater 
thalamic GMV coupled with higher FPS to danger cue (CS+) during late 
extinction was associated with greater symptom severity at eight-weeks 
following trauma exposure; conversely decreased thalamic GMV and low FPS 
to CS+ during late extinction also related to higher scores post-trauma. FPS: 
Fear-potentiated startle; GMV: Gray matter volume; ICV: Intracranial volume; 
PCL-5: PTSD Checklist for DSM-5. 

Fig. 2. Interaction of FPS to the CS + during late extinction and thalamic GMV on dissociation and depression symptom severities at eight-weeks 
following trauma exposure. FPS is median split here for visual clarity, but analyzed as a continuous variable in the analysis. Confidence intervals shown repre-
sent the 68% CI ( ±1 SE of the regression line). For modified DES-B and PROMIS Depression Inventory scores, greater thalamic GMV coupled with higher FPS to 
danger cue (CS+) during late extinction was associated with greater symptom severity at eight-weeks following trauma exposure; conversely decreased thalamic 
GMV and low FPS to CS+ during late extinction also related to higher scores post-trauma. A) Interaction of FPS x thalamic GMV predicting modified DES-B scores 
eight weeks following trauma. B) Interaction of FPS x thalamic GMV predicting PROMIS Depression T-scores eight weeks following trauma. DES-B: Dissociative 
Experiences Scale- Brief; FPS: Fear-potentiated startle; GMV: Gray matter volume; ICV: Intracranial volume; PROMIS: Patient-Reported Outcomes Measurement 
Information System. 
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However, given the high degree of comorbidity of dissociation, 
depression, and PTSD symptoms, when PCL-5 scores were included as a 
covariate, the interaction terms were no longer significant (eight-week 
modified DES-B: (t (74) = 1.03, β = 0.08, B = 0.10, 95% CI [-0.09, 0.30], 
p = 0.304; eight-week PROMIS Depression: (t (73) = 0.75, β = 0.06, B =
0.42, 95% CI [-0.70, 1.53], p = 0.458). 

3.4. Assessing FPS stability throughout extinction 

As a post-hoc analysis, we sought to determine, among participants 
with elevated PCL-5 scores, defined by a PCL-5 score of greater than 32, 
if low FPS in late extinction was reflective of enhanced learning (a 
change over the course of extinction) or a persistent behavioral 
response. Only the high FPS group had a significant intercept term for 
FPS, (High: t (14) = 3.88, p = 0.002; Low: t (16) = − 0.76, p = 0.46), 
indicating only the high FPS group potentiated relative to baseline 
startle, consistent with fear learning. Individuals with low FPS during 
late extinction were persistently low throughout extinction, while those 
with high FPS during late extinction were also persistently increased 
(see supplement). Most critically, low FPS reactivity during late 
extinction was a marker of low initial psychophysiological reactivity 
maintained throughout extinction. 

4. Discussion 

We investigated subcortical GMV and extinction-related FPS in 
recently traumatized individuals to identify brain-behavior relation-
ships associated with acute PTSD symptom development. Interactions 
between thalamic GMV and FPS during late extinction showed a sig-
nificant effect on PTSD, dissociation, and depression symptom severity 
at two- and eight-weeks following trauma exposure. While FPS and GMV 
appear to be independent of one another during the acute posttraumatic 
phase, these measures in combination were informative of susceptibility 
to posttraumatic dysfunction. Among participants experiencing post-
traumatic stress symptoms, two distinct brain-behavior profiles 
emerged, indicative that neither GMV nor FPS data alone sufficiently 
characterized the risk for posttraumatic symptom development. 

Our findings that subcortical GMV did not vary with autonomic 
reactivity are inconsistent with prior human functional (Cheng et al., 
2006; Harnett et al., 2015; Knight et al., 2004) and structural (Hartley 
et al., 2011) MRI research demonstrating relationships between the 
amygdala and hippocampus and skin conductance responses (SCRs) 
during fear acquisition (Pohlack et al., 2012). Although both SCR and 
FPS index psychophysiological arousal, they have differing neural sub-
strates that may lead to different brain-behavior relationships (Abend 
et al., 2020; Glover et al., 2011; Lindner et al., 2015; Young et al., 2018), 
potentially underlying the discrepant findings. Additionally, we focused 
on extinction learning only, which involves new learning reliant on 
related, but distinct, neural mechanisms (Phelps et al., 2004). 

While subcortical GMVs were independent of FPS during late 
extinction, an interaction between thalamic GMV and FPS was related to 
future (i.e., eight-week) PTSD symptom severity. Two distinct brain- 
behavior phenotypes were associated with greater PTSD symptoms 
following trauma: 1) individuals with greater thalamic GMV in combi-
nation with higher FPS, and 2) individuals with decreased thalamic 
GMV in combination with lower FPS. We speculate that the group high 
GMV/FPS may relate to the ‘classical’ concept of PTSD symptomatology, 
namely patients unable to extinguish the fear response during safety. 
Conversely, the group with low GMV/FPS may represent individuals 
with consistently blunted behavioral responses (e.g., a more emotionally 
numb or avoidant subtype). These results highlight the utility of 
multimodal approaches to better characterize individual PTSD pheno-
types and to potentially inform optimal preventive/treatment 
interventions. 

To contextualize these findings, prior translational evidence links 
thalamic activity and FPS responses to threat cues and PTSD (Davis, 

2006; Lindner et al., 2015). The thalamus integrates sensory signals and 
projects directly and indirectly to the medial prefrontal cortex (mPFC) 
(Lee et al., 2019; Lindner et al., 2015; Ramanathan et al., 2018; Ram-
anathan and Maren, 2019), an area central to the formation of extinction 
memories (Mitchell, 2015; Ouhaz et al., 2018). Importantly, several 
thalamic subregions are heavily implicated in extinction circuitry. The 
nucleus reuniens is a key site where mPFC signals converge to regulate 
the suppression or retrieval of threat memories (Giustino and Maren, 
2015). It is also linked to sleep-related memory consolidation (Hauer 
et al., 2019), with sleep disruptions thought to significantly contribute 
to the development of PTSD symptoms (Neylan et al., 2020). Addi-
tionally, the dorsal medial thalamus is tied to extinction learning. When 
dorsal medial thalamic projections to the amygdala are suppressed, 
extinction is promoted, outlining the critical function this region plays in 
extinction (Ramanathan et al., 2018). Our findings could point to hy-
pertrophy or atrophy of either of these subregions, leading to dysfunc-
tion in the circuitry underlying extinction learning. While the T1w 
imaging used here accurately segments the thalamus en bloc, further 
dissection requires diffusion tensor imaging (Battistella et al., 2017) or 
7T imaging (Xiao et al., 2016). As advanced methodologies become 
validated, further subsegmentation of the thalamus to delineate its ef-
fects on posttraumatic outcomes is warranted. 

Interestingly, the GMV-FPS interaction also predicted dissociation 
and depression symptom severity. PTSD is often comorbid with both 
dissociation (Stein et al., 2014) and depression (Bleich et al., 1997; 
Breslau et al., 2000; Shalev et al., 1998). Due to its role in sensory 
integration and relay, the thalamus is heavily implicated in dissociative 
disorders (Krause-Utz et al., 2017), with differences observed in both 
structural and perfusion studies (Schlumpf et al., 2014; Shucard et al., 
2012). Additionally, volumetric data shows mixed results with both 
greater and smaller thalamic volumes associated with depression 
(Ancelin et al., 2019; Young et al., 2008) compared to controls. Our data 
demonstrate both groups at risk for depression and dissociation symp-
toms following trauma, illustrating the importance of multimodal 
analysis when considering morphometric data in heterogeneous and 
complicated clinical populations. 

Our findings should be considered in light of several limitations. 
While the comorbidity in our sample is quite common in the clinical 
realm and is representative of a naturalistic sample, it limited our ability 
to examine each symptom cluster in isolation. Thus, while our findings 
highlight brain-behavior interactions in relation to general post-
traumatic dysfunction, we are unable to identify specific neural sub-
strates unique to PTSD, or other related disorder, symptom 
development. Second, the sample included relatively low PTSD severity, 
as reported on the PCL-5, which may limit extrapolation to a more 
clinically severe population. Additionally, the dissociation scale used 
included only two items from the DES-B, thus likely not capturing all 
volunteers with dissociation symptoms. Lastly, the present study did not 
include a non-traumatized control group to assess whether these brain- 
behavior relationships are only observed in the early aftermath of 
trauma or may also be observed in the general population. 

5. Conclusion 

In this sample of recently traumatized individuals, subcortical GMV 
and FPS during late extinction interacted to significantly relate to broad 
posttraumatic neuropsychiatric symptoms (i.e., PTSD, dissociation, and 
depression) at eight-weeks following trauma exposure. Our observation 
of high posttraumatic symptoms in both low GMV/FPS and high GMV/ 
FPS groups suggest different neural mechanisms mediate different sub-
types of posttraumatic sequalae. An appreciation for the complex 
interplay of brain structure and psychophysiology may help to inform 
effective, individualized interventions for those at risk for adverse out-
comes following trauma. 
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