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Dynamic Venous Access Pressure Ratio Test for Hemodialysis
Access Monitoring

Stanley Frinak, MSEE, Gerard Zasuwa, BS, Thomas Dunfee, MD, Anatole Besarab, MD,
and Jerry Yee, MD

● Background: Early recognition of arteriovenous graft (AVG) dysfunction in hemodialysis (HD) patients followed
by prompt corrective procedures reduces AVG thrombosis rates and lengthens access survival. We developed a
method to prospectively monitor AVGs that uses an algorithm to calculate venous access pressure (VAP) during
HD from the venous drip chamber pressure (VDP). Methods: Sham HD with blood was performed using standard
blood tubing and a 1-in. 15-G needle. The pressure needed to overcome circuit resistance at an intra-access
pressure of zero (VDP 0) was recorded at blood flow rates (Q bs) from 0 to 600 mL/min and hematocrits varied in steps
from 38.4% to 18.2%. An equation for VDP 0 was developed. VAP in patients was calculated as VAP � VDP � VDP0.
VAP ratio (VAPR) was defined as VAP/mean arterial pressure (MAP). VAPR was calculated only if MAP was greater
than 75mmHg, Q b was greater than 200mL/min, and VDPwas greater than 20mmHg. A positive VAPR test (VAPRT)
result was defined as three consecutive treatments with VAPR exceeding 0.55 during a given month. Sensitivity and
specificity of VAPRT to predict a graft event, defined by AVG occlusion or requirement for angioplasty, were
calculated. Results: During a 3-month interval, 120 HD patients with AVGs underwent 359 VAPRTs while access
outcomes weremonitored for 6 months. After 3 months, sensitivity and specificity for detection of a graft event were
70% � 8% and 88% � 2% and increased to 74% � 5% and 92% � 3% at 6 months, respectively. Conclusion: The
VAPRT is a valuable tool to prospectively monitor for adverse AVG events.
© 2002 by the National Kidney Foundation, Inc.

INDEXWORDS: Hemodialysis (HD); access pressure ratio test; venous access pressure ratio test (VAPRT).

H EMODIALYSIS (HD) vascular access
monitoring programs have been used to

permit the early detection of evolving stenotic
lesions.1-8 Several studies have shown that early
detection of stenotic lesions followed by timely
corrective procedures reduces the thrombosis
rate and prolongs access survival.1,3,9,10 How-
ever, such monitoring programs are costly, with
equipment, personnel, and data storage and anal-
ysis requirements. We developed an inexpensive
method, the venous access pressure (VAP) ratio
(VAPR) test (VAPRT), to prospectively monitor
for arteriovenous graft (AVG) failure. This com-
puter-based algorithm analyzes blood pressure,
HD venous pressure, and blood pump flow data
to identify patients at risk for access dysfunction
that culminates in either thrombosis or percutane-
ous transluminal angioplasty or surgery to main-
tain AVG patency.

During HD, blood is drawn from theAVG at the
arterial needle site by the dialysis machine’s blood
pump. After traversing the dialyzer, blood passes
through the venous drip chamber and returns to the
access through the venous needle. The pressure
required to infuse blood back into theAVG through
the venous tubing and needle and overcome the
pressure within the AVG is recorded as the venous
drip chamber pressure (VDP). One component of
VDP is the access pressure at the venous needle
site, or VAP. Another component of VDP is the
combined pressure required to overcome the low
resistance to flow through the tubing distal to the
drip chamber and the relatively high resistance
through the venous return needle. VDP is also a
function of needle size, tubing length, and blood
viscosity, represented by hematocrit (Hct). If ve-
nous pressure in anAVG at its needle insertion site
is 0 mm Hg, VDP can be defined as VDP0, ie, the
VDP at which access pressure is zero. Conse-
quently, VDP0 can be calculated for a given dialy-
sis machine, tubing set, and needle size following
measurements of blood flow rate (Qb), Hct, and
VDP. After an equation for VDP0 is determined,
VAPcan be calculated frommeasured VDP.

VAP � VDP � VDP0 (1)

An elevation in VAP indicates stenosis in the
venous outflow limb of the access and correlates
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with an increased probability of access fail-
ure.6,8,11,12To normalize variations in VAP attrib-
uted to changes in mean arterial pressure (MAP),
VAPR is calculated by dividing VAP by MAP.

VAPR � VAP/MAP (2)

The VAPRT algorithm uses an empirically
derived formula to calculate VAP from dynami-
cally obtained measurements of VDP during HD
treatment sessions. The VAPRT algorithm ana-
lyzes VAPR values from each treatment and
identifies individuals with consistently elevated
intra-access pressures at risk for access failure.
To eliminate such treatment errors as needle
reversal or suboptimal needle insertion, which
elevate VDP, we operationally defined an abnor-
mal VAPRT result as VAPR greater than 0.55 at
three consecutive HD treatments.

MATERIALS AND METHODS

Calculation of VDP0
The VAPRT relies on a nonlinear regression formula

developed during in vitro sham HD and calculates VDP0 for
a specific HD blood tubing set and access needle type at
known Qb and Hct (Fig 1), using a Fresenius Model 2008H
hemodialysis machine (Fresenius, Lexington, MA) with the
blood pump calibrated before experiments by means of
standard procedures. Exact flows were not measured during
in vitro experiments because the intention a priori was to

implement a system that used routine HD data obtained
during each session. The reservoir is filled with 500 mL of
human whole blood obtained from the hospital blood bank,
and the blood pump transports blood from a reservoir
through the dialyzer and venous drip chamber to a 15-G
1-in. backeye access needle. The venous needle is inserted
into a section of large-bore tubing open at both ends; one end
of the tubing returns blood to the reservoir, and the other end
is elevated to prevent the escape of blood. This section of the
circuit is designed to forego any resistance to flow at the tip
of the venous access needle that would be recorded as
increased VDP. The access needle is positioned 17 cm below
the venous drip chamber transducer to simulate the average
location of an angioaccess relative to the transducer during a
typical HD treatment. The drip chamber transducer monitors
the pressure created by blood flowing through the circuit,
and VDP0 readings are obtained directly from the HD
machine.

A sample of blood is obtained for Hct determination from
the reservoir. VDP0 is recorded for each incremental in-
crease (50 mL/min) in Qb from 0 to 600 mL/min. A separate
transducer located directly behind the access needle mea-
sures the pressure intrinsic to the access needle resistance,
and blood is diluted with matched human plasma to reduce
Hct by approximately 4%. Blood is permitted to circulate at
500mL/min for 5 minutes to ensure uniformmixing with the
additional plasma before the next sample is obtained for Hct
measurement. VDP0measurements are repeated at Qb varied
from 0 to 600 mL/min. The circulated blood is diluted
sequentially five times, which reduces the original Hct by
approximately 20 percentage points. VDP0 measurements
were conducted at each of the five dilutions.

Description of the Algorithm for the VAPRT
This algorithm identifies persistent VAPR elevations that

may signify an AVG requires additional evaluation. This
algorithm calculates VAPR from VDP and blood pump flow
data routinely collected at HD and determines persistent
increases in VAPR. To limit variability related to differences
in needle gauge, patients with less than 48 HD treatments
were eliminated from analysis because smaller gauge needles
are frequently used to cannulate new or poorly developed
angioaccesses. The program extracts themost recent Hct and
individual treatment data from a database, and VAPR is
calculated when blood pressure is measured during HD at Qb

of 200 mL/min or greater, VDP of 20 mm Hg or greater, and
MAP of 75 mm Hg or greater. Data from the last 60 minutes
of HD are excluded to eliminate the effect of ultrafiltration
on Hct, blood pressure, and changes in systemic and vascu-
lar access resistances. The algorithm is then used to calculate
mean VAPR for each HD session. In the majority of cases,
three or four measurements are available. The VAPRT result
is considered abnormal only after the eighth treatment dur-
ing a given month and determines when VAPR exceeds 0.55
during three consecutive treatments.

Development of Criterion for the VAPRT
To determine the VAPR cutoff value most predictive of

access failure, test data and follow-up data were analyzed
from 117 patients treated at three separate HD facilities

Fig 1. Dialysis circuit used to determine the relation-
ship between blood flow and venous drip chamber
pressure with Hct varied from 38.4% to 18.2%.
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(Greenfield Health System, Southfield, MI), and VAPRs
were correlated with AVG-related events during 6 months of
follow-up because our unpublished observations and that of
Sparks et al13 suggest that the primary unassisted patency for
AVG is 64% at 6 months, with secondary assisted patency of
70% at 6 months. Overall, the conclusion of these studies
indicates that during any 6-month interval, approximately
30% to 36% of AVGs will fail.

A receiver operator curve (ROC) for VAPR was con-
structed with cutoff ratios from 0.2 to 0.8. Respective
sensitivities and specificities were calculated at each VAPR
cutoff level while other test parameters were held constant.
Integration of area under the curve was with Mathcad Plus,
version 6.0 (MathSoft Inc, Cambridge, MA). Clinical data
were analyzed with StatView for Windows, version 5.0
(SAS Institute Inc, Cary, NC) and DeltaGraph 4.0 (SPSS
Inc, Chicago, IL). Grouping variables for unpairedt-tests
were true positive (TP; test predicted intervention or access
clotting), true negative (TN; test correctly predicted the
absence of an access event), false positive (FP; test falsely
predicted an access event would have occurred), and false
negative (FN; test falsely predicted that an access event
would not occur). AVAPR cutoff value of 0.55 was selected
for further clinical testing because it provided a compromise
between sensitivity (75%) and specificity (83%).

Clinical Application of VAPRT
After determining the optimal VAPR cutoff value of 0.55,

a total of 359 VAPRT results were obtained from our stated
HD population from January through March 1999. Data
were analyzed retrospectively from January (n� 112),
February (n� 113), and March (n� 134) 1999. Medical
records were examined to identify individuals who required
intervention for an access event, defined as an obviously low
access flow (�250 mL/min), inability to provide adequate
dialysis within the predetermined treatment time, or neces-

sity for surgical or angioplasty intervention to maintainAVG
patency. Patients tested in January, February, and March
1999 were followed up for 6 months, and outcomes were
evaluated at 3 and 6 months after each test period.

RESULTS

In Vitro Modeling of VAP0
Results of the sham dialysis study are shown

in Fig 2, and mathematical modeling of VDP0

data is described in Appendix A. The analysis
yielded the following second-order polynomial
equation:

VDP0 � 0.00042 � Qb
2

� �0.62116 � Hct2 � 0.01203 � Hct (3)

� 0.12754) � Qb � 17.32509

Equation 3 was evaluated for accuracy by
curve-fitting the raw data to equation 3 with a
nonlinear regression program (DataFit; Oakdale
Engineering, Oakdale, PA). The adjusted coeffi-
cient of multiple determination isr2 � 0.99982.
Note that the common average intercept,
�17.325, was established empirically and is di-
rectly related to the 17-cm difference in height
between the needle and drip chamber transducer
at Qb of 0 mL/min. When pressure is measured
from the transducer proximal to the access needle,
the offset is zero, and the relationship between
pressure and flow remains curvilinear (Fig 2;

Fig 2. Venous drip cham-
ber pressure versus blood
flow in an HD machine blood
circuit for a range of Hct
values. Included is a single
curve showing venous
needle pressure at an Hct of
29.1%. Venous needle pres-
sure is 0 mmHg when Q b is 0
mL/min because the trans-
ducer and venous needle are
at the same height. Venous
drip chamber pressure is ap-
proximately �17 mm Hg
whenQb is 0mL/min because
the venous needle is 17 cm
below the height of the drip
chamber transducer.
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venous needle pressure at Hct of 29.1). Thus,
VDP0 increases in relationship to increasing Qb

and Hct.
Equation 3 can be used to calculate VDP0 for

any Qb at known Hct. For example, at Qb of 500
mL/min and Hct of 18.2%, VDP0 is 163 mm Hg

and increases to 200 mm Hg when Hct is 38.4%.
VAP may be calculated from VDP recorded at
HD by using equation 1, and VAPR is calculated
by using equation 2. At an Hct of 38.4%, Qb of
500 mL/min, VDP of 265 mm Hg, VDP0 of 200
mm Hg, and MAP of 100 mm Hg, VAPR�
0.65� (265� 200)/100.

ROC Evaluation

Patients for whom data were used for ROC
analysis had a mean treatment Qb of 438� 61
mL/min, Hct of 34.0%� 4.2%, MAP of 102�
14 mm Hg, VDP ranging from 48 to 430 mm Hg
(mean, 214� 43 mm Hg), and mean VAPR of
0.64� 0.35 (Fig 3). Area under the curve corre-
sponds to an 82% probability of correctly rank-
ing the two test alternatives, persistence of ac-
cess patency or occurrence of access failure
within 6 months.14,15

Figure 4 shows the distribution of individual
mean treatment VAPR values for all patient
observations with AVGs in January 1999 (see
Appendix B for equations). The monthly mean
VAPR for each patient was calculated from VA-
PRs obtained during each treatment. Patients
with a TP test result by VAPRT had a median
VAPR of 0.89 (mean, 0.91� 0.24) that was

Fig 3. ROC curves for the January 1999 VAPRT
results for grafts (117 results). An area of 1 represents
an ideal test, and an area of 0.5 indicates the test has
only a 50% probability of determining the correct out-
come. An area from 0.80 to 0.90 implies a good test
result.

Fig 4. Distribution of ac-
cess pressure ratio values
within the four possible test
groups: TP, TN, FP, and FN,
for patients with grafts.
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significantly different from the other three possi-
bilities of FP, TN, and FN (Table 1). Patients
with TN test results had a median VAPR of 0.48
(mean, 0.52� 0.15) that differed from FP results
(median VAPR, 0.70; mean, 0.70� 0.13;P �
0.0001), but not from FN results (median VAPR,
0.57; mean, 0.62� 0.23). All test groups had
some VAPR values exceeding 1.0. In this case,
VDP � VDP0 exceeds the MAP for data ob-
tained during treatment andmay reflect problems
of needle-site insertion or needle reversal.

Assessment of VAPRT

Figure 5 shows study results during 3 months
of VAPRTs. Twenty-six of 112 patients (23%)
had a positive VAPRT result in January 1999.

During the next 3 months, 13 individuals (50%)
experienced access failure, which increased by
month 6 to 19 individuals (73%) in the group
with a positive test result. For the January test, 8
patients who ultimately tested negative experi-
enced access failure (FN; 7% of tested popula-
tion). Statistical analysis of the VAPRT is listed
in Table 2 and represents average values ob-
tained 3 and 6 months after each test. For the
3-month follow-up period, themean test sensitiv-
ity of VAPRTwas 70%� 8% and specificity was
88%� 2%, which improved to a mean sensitiv-
ity of 74% � 5% and specificity of 96%� 3%
during the 6-month follow-up period. The
VAPRT’s positive predictive value was 84%�
10%, and the negative predictive value was
92%� 3% during this interval.

DISCUSSION

The location of an access stenosis will deter-
mine in part the ability of a monitoring system to
detect dysfunction. In most AVGs, a stenotic
lesion develops in the region of the venous
anastomosis.10,11,16,17A stenosis at this locus or in
the distal runoff will impede flow and increase
VAP, which is observed as an increase in VDP.
VDP, measured during treatment, represents the
sum of three components: pressure created by
flow through the tubing and needle, static pres-
sure created by the difference in height between
the access site and venous pressure transducer in

Table 1. Comparison of Monthly Mean Graft VAPR
Values for the Different Test Groups

Result Count Mean SD SE

TP 27 0.909 0.237 0.046
TN 67 0.515 0.149 0.018
FP 9 0.616 0.215 0.072
FN 14 0.698 0.125 0.033

Mean Difference P

TP, TN 0.394 �0.0001
TP, FN 0.293 0.0024
TP, FP 0.211 0.0036
TN, FP �0.183 �0.0001
TN, FN �0.102 0.0734
FP, FN 0.082 0.2595

Fig 5. Access pressure
ratio test results for 3 sepa-
rate months of testing. Pa-
tients were followed up for 6
months after each test for an
access failure event.
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the HD machine, and VAP. VDP will vary with
treatment Qb, VAP, and Hct. The difference in
height between the access site and venous pres-
sure transducer also will vary, but will not differ
by more than 5 cm from the value of 17 cm used
in our model in most cases. This results in a
�5.1-mm Hg variation in VAP, and at MAP of
100 mm Hg, a�0.05 variation in VAPR will be
seen. VAP also will vary with MAP, and changes
in MAP will be reflected in VDP. Mapping the
access pressure gradient from the arterial to
venous anastomosis has shown that the slope of
the midgraft pressure gradient increases during
the development of stenosis.11 Therefore, VDP
increases with increasing distance between the
venous needle and venous anastomosis.
Initially, it appears that VAPR values greater

than 1.0 are biologically impossible; however,
all test groups had some VAPR values greater
than 1.0, reflecting that physiologically calcu-
lated VAPexceededMAP. For VAPR data shown
in Fig 4, of all values, 9.8% were greater than
1.0, with 27.9% of these in the TP group. Several
conditions may lead to greater than expected
VAPR values. Reversal of arterial and venous
needles is probably the most common and occurs
in nearly 25% of treatments.18 It also should be
noted that the small diameter of the venous
needle creates turbulent flow in the access and
augments resistance to flow through the access.
The degree of turbulent flow increases when
access flow is reduced from venous stenosis and
results in increased resistance and increasedVAP.
Lodgment of the venous needle against or par-
tially in the access wall will produce an increase
in measured VDP and result in episodically high
VAPR values. Finally, a difference in MAP be-
tween the access extremity and nonaccess arm,
typically used to monitor blood pressure during
HD,19will produce an elevation of VAPR.

To reduce errors in the VAPRT, patient VAPR
values must exceed 0.55 for three consecutive
treatments. Initial dynamic access pressure test-
ing developed by Schwab et al1 used three con-
secutive treatments that exceeded predefined lim-
its to indicate a positive test result. HD treatments
at the end of the month were selected for evalua-
tion because test results were included in a
monthly patient report, and patients may have
had an access intervention during the early part
of the month. Our objective was to maintain a
minimal FP rate to preclude unnecessary evalua-
tions of AVG.
Figure 2 shows problems that must be re-

solved when using dynamic VDP measurements
to monitor access pressure. As blood flow in-
creases, VDP increases, and this is attributable
primarily to augmented resistance created by the
venous needle. Elevation in Hct also will in-
crease VDP. The variability in VDP values from
Qb and Hct can be reduced if measurements are
made at a fixed relatively low blood flow, as
shown by Schwab et al.1

However, the appropriate warning level for
VDP will vary among individuals, depending on
MAP and Hct. For example, with a 15-G needle
and Qb of 200 mL/min, VDP0 is 33 mm Hg at an
Hct of 20% and 42 mm Hg at an Hct of 36%.
Using our criteria that a patient is at risk when
VAPR is greater than 0.55, an MAP of 120 mm
Hg would require an access pressure greater than
66 mm Hg (66/120� 0.55) to receive a warning
for that treatment. Therefore, at Qb of 200 mL/
min, the VDP warning level should be between
99 (�33� 66) and 108 (� 42� 66) mm Hg for
a patient because Hct varies between 20% and
36%. Applying the same criteria, a patient with
an MAP of 75 mm Hg would need a VDP
warning level between 74 and 83 mm Hg. Thus,
it is difficult to select a single VDP warning
value for patients at risk for VDPbetween 74 and
108mmHg.After calculating VAPR, the VAPRT
adjusts the VDP warning level for each access
pressure measurement in relationship to Qb, Hct,
and MAP. Notably, this absolute pressure range
of 74 to 108 mmHg is significantly less than that
originally reported by Schwab et al,1 who used
16-G needles in his investigation. The compo-
nent of VDP caused by flow through the needle
therefore would be expected to be significantly
greater with a 16-G needle.6 Therefore, our algo-

Table 2. Statistical Analysis of the VAPRT for Grafts
Showing Mean Values for 3 Months of Testing

Test Period

0-3 Mon 0-6 Mon

Sensitivity (%) 70 � 8 74 � 5
Specificity (%) 88 � 2 96 � 3
Positive predictive value (%) 52 � 10 84 � 10
Negative predictive value (%) 94 � 2 92 � 3
FP rate (%) 12 � 2 4 � 3
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rithm must be applied only when 1-in. 15-G
needles are used, at least until newer investiga-
tions are completed.
An alternative method of determining VAPR

is to monitor static venous pressures and calcu-
late the static venous access pressure ratio (SVPR)
to test for a functionally significant stenosis.8

Previously, we determined that SVPR was an
accurate method for access monitoring. How-
ever, this method involves intensive training of
HD staff and ongoing monitoring to ensure the
validity of data. The VAPRT does not require
specific training, and the algorithm examines
data currently entered in our patient database and
evaluates the patient’s access at each dialysis
treatment. Last, another method measures static
intra-access pressures directly before HD by us-
ing a proprietary hydrophobic filter.20Thismethod
has not been widely applied.
Stenosis at the arterial input side of the access

or within the access would not be detected by the
VAPRT because this type of lesion reduces ac-
cess flow and VAP simultaneously. Thus, it may
be feasible to detect an arterial stenosis with a
model that examines prepump arterial drip cham-
ber pressure for valuesmore negative than empiri-
cally determined. It also may be possible to
determine the presence of intra-access lesions if
arterial intra-access pressure and VAP can be
determined. In this regard, Polaschegg et al21

described a method to detect and locate an access
stenosis using dynamic arterial andVAPmeasure-
ments.
Access flow measurements, performed in the

HD unit, can determine when there is a clinically
significant reduction in access flow, indicating
the need for intervention. However, the location
of the obstruction to flow cannot be definitively
identified. Disadvantages of flow measurements
include requirements for costly equipment,
trained personnel, and dialysis time for setup and
measurement. Moreover, Paulson et al15,22 indi-
cated that a single access flow measurement is a
relatively poor indicator of graft failure. To
achieve a sensitivity of 80% for predicting throm-
bosis, an unacceptably high FP rate of 58%
would be necessary. The FP rate is high because
the threshold Qb used to predict graft failure
often includes many grafts that function at low
blood flows. Conversely, some grafts with good
flows inexplicably thrombose without warning.

Our analysis shows that at a sensitivity of
80%, the FP rate was 34% for testing grafts. A
low FP rate (20% for grafts) was selected to
avoid a large number of interventions by either
vascular surgeons or interventional radiologists.
Trend analysis, which may be a better predictor
of access failure when using access flow, re-
quires more frequent flow measurements and
greatly increases the cost of monitoring. The
VAPRT calculates a VAPR for each HD treat-
ment, thus rendering it an ideal method for trend
analysis. The current VAPRTmodels VAPR trend
after the eighth treatment of the month. To mini-
mize spurious alarms, we imposed a triplet rule
whereby three consecutive treatments with a
VAPR greater than 0.55 were necessary to elicit
a warning of impending graft failure. Although it
may be possible to improve the VAPRT if trend
analysis of all data is included in the algorithm,
this hypothesis has not been tested. Greater em-
phasis could be placed on the analysis of tempo-
ral trends or implementation of data filters to
exclude clearly erroneousmeasurements. In addi-
tion, analysis of data from two or more consecu-
tive months may increase the accuracy of the
VAPRT to detect access dysfunction.
Results of this study show that the VAPRT is a

valuable noninvasive screening test that identi-
fies HD patients at risk for AVG failure. The key
component in implementing this system is com-
puter access to the required treatment and labora-
tory data. The software algorithm to analyze HD
data is incorporated as a standard end-of-month
report and as an Internet-based accessible vascu-
lar access monitoring system. All patients show-
ing a warning are identified in the database, and
their status is available on-line to create a report
for any HD location or period. Patient care is
enhanced because warning status can be tracked,
permitting immediate follow-up with timely cost-
saving interventions.

APPENDIX A

Data from Fig 2 were analyzed by fitting each
individual curve with an equation of form:

VDP0 � A � Qb
2 � B � Qb � C (1a)

The constant C equals VDP at Qb of 0 mL/
min, and the average value of�17.325 mm Hg
was used during further data analysis. Because
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coefficient A varied minimally from 0.0004232
to 0.0004327, a mean value of 0.00042329 was
used, ie, an increase of only 1.5 mm Hg in VDP0

at Qb of 400 mL/min. Coefficient B varied to a
greater extent, from 0.145289 to 0.231968, as
Hct increased over the range of clinically encoun-
tered Hcts. Raw data then were fit with equation
2a.

VDP0 � 0.00042329� Qb
2

� B � Qb � 17.325 (2a)

Coefficient B values were obtained for each
Hct value. Figure 6 shows the plot of coefficient
B versus Hct, and equation 3a was fit to the data.

B � 0.62116� Hct2 � 0.01203� Hct

� 0.12754 (3a)

Equations (2a) and (3a) were combined to
yield equation (4), which relates VDP0 to Qb and
Hct.

VDP0 � 0.00042� Qb
2 � (0.62116� Hct2

� 0.01203� Hct� 0.12754)

� Qb �17.32509 (4a)

Equation 4a was evaluated for accuracy using
a nonlinear regression program (DataFit). The
adjusted coefficient of multiple determination

r2 � 0.99982 validated the accuracy of equation
4a as a data model.

APPENDIX B

Equations for curves fit to AVG histogram
data from Fig 4.
TN

y � 7.396 e���x � 0.468�2

2
� 4.8952�

� 0.472 e��0.315 � �x � 2.049��

(1)
r2 � 0.9800

TP

y � 21.88 e���x � 0.863�2

2
� 3.4572�

� 0.188 e��0.00012� �x � 3.045��

(2)
r2 � 0.9192

FN

y � 6.440 e���x � 0.512�2

2
� 3.0932�

� 0.192 e��0.291 � �x � 0.083��

(3)
r2 � 0.8754

FP

y � 17.28 e���x � 0.717�2

2
� 7.4222�

� 0.803 e��1.002 � �x � 1.143��

(4)
r2 � 0.9301
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