Imaging Findings in Non-Neoplastic Sinonasal Disease: Review of Imaging Features With Endoscopic Correlates

Neo Poyiadji
Henry Ford Health System, npoyiad1@hfhs.org

Ting Li
Henry Ford Health System, tli2@hfhs.org

John Craig
Henry Ford Health System, JCraig1@hfhs.org

Matthew Rheinboldt
Henry Ford Health System, matthewr@rad.hfh.edu

Suresh C. Patel
Henry Ford Health System, spatel@rad.hfh.edu

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/radiology_articles

Recommended Citation

This Article is brought to you for free and open access by the Diagnostic Radiology at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Diagnostic Radiology Articles by an authorized administrator of Henry Ford Health System Scholarly Commons.
Authors
Neo Poyiadji, Ting Li, John Craig, Matthew Rheinboldt, Suresh C. Patel, Horia Marin, and Brent Griffith
Imaging Findings in Non-Neoplastic Sinonasal Disease: Review of Imaging Features With Endoscopic Correlates

Neo Poyiadji, MD, Ting Li, MD, John Craig, MD, Matthew Rheinboldt, MD, Suresh Patel, MD, Horia Marin, MD, Brent Griffith, MD

A B S T R A C T

Non-neoplastic sinonasal disease is common and imaging often plays an important role in establishing the proper diagnosis, guiding clinical management, and evaluating for complications. Both computed tomography and magnetic resonance imaging are commonly employed in the imaging evaluation and it is important to understand the imaging characteristics of the unique types of pathology affecting the sinonasal cavities. This article reviews a variety of infectious, inflammatory, and other non-neoplastic sinonasal pathologies, highlighting imaging features that aid in their differentiation.

Introduction

Non-neoplastic sinonasal disease is common and imaging often plays an important role in establishing the proper diagnosis, guiding clinical management, and evaluating for complications.1,2 Both computed tomography (CT) and magnetic resonance imaging (MRI) are commonly employed in the imaging evaluation and it is important to understand the imaging characteristics of the unique types of pathology affecting the sinonasal cavities. Using representative cases from a single institution, this article reviews the imaging findings of a broad spectrum of non-neoplastic sinonasal disease.

Infectious Pathologies

Acute and Chronic Rhinosinusitis

Acute and chronic rhinosinusitis are defined by the presence of sinonasal symptoms with objective inflammation or infection on nasal endoscopy or imaging. Both acute and chronic rhinosinusitis can present with any combination of the following symptoms: Nasal discharge, facial pain/pressure, nasal obstruction, and loss of smell. Acute rhinosinusitis is classified by symptoms lasting <4 weeks, while chronic rhinosinusitis is defined as symptoms lasting >3 months.3

Although plain radiographs have been used for initial screening for sinonasal disease, CT is the imaging modality of choice.4 Imaging features of acute rhinosinusitis include air-fluid levels, mucosal thickening, sinus opacification, and frothy secretions (Fig 1).5 Sclerotic and thickened sinus walls are seen in chronic rhinosinusitis and represent prolonged mucoperiosteal reaction.6 MRI features of sinusitis are variable and depend on the protein concentration and hydration of the sinus contents. Sinus disease with low protein content demonstrates hypointense T2 and hyperintense T1 signal, while high protein concentrations demonstrate hypointense T2 and hyperintense T1 signal.7 MRI is helpful in evaluating orbital and intracranial complications of sinusitis.8,9

Odontogenic Sinusitis

Odontogenic sinusitis (ODS) refers to bacterial or fungal maxillary sinusitis, with or without extension to other paranasal sinuses, secondary to either adjacent maxillary odontogenic infection or iatrogenic injury from dental or other oral procedures.6 A variety of dental pathologies can lead to ODS, including endodontic disease, periodontitis, oroantral fistula, or dental treatment-related foreign bodies in the sinus.7 ODS presents unilaterally most commonly and represents 45%-75% of unilateral sinus opacification on CT.7-9

Imaging typically demonstrates unilateral maxillary sinus opacification, although bilateral involvement has been described.6,10 There may be expansile or nonexpansile periapical lucencies around maxillary molars or premolars, with or without bony absence between the diseased tooth and sinus mucosa (Fig 2). Other findings can include absent teeth with oroantral fistulas and sinus foreign bodies from dental procedures. It is important to note that ODS can arise from endodontic disease without any demonstrable dental pathology visible on CT.10

Differentiating odontogenic from nonodontogenic disease is important because diagnostic and therapeutic approaches differ. Failure to recognize an odontogenic source of disease can lead to failure of both medical and surgical treatment.9,11
Invasive Fungal Sinusitis

Acute invasive fungal sinusitis is an aggressive, rapidly progressive infection, typically only seen in immunocompromised states, such as poorly controlled diabetes as well as other causes of absolute or functional neutropenia such as hematologic malignancies, bone marrow transplants, or chronic steroid use.12,13 Mortality rates average 50%, though some series have reported rates of up to 80%-100% mortality in select cases.14 Aspergillus is the most commonly implicated organism in neutropenic patients, while Mucorales species are more common in uncontrolled diabetics. While patients most commonly present with nonspecific sinonasal complaints, more concerning symptoms include facial numbness, severe headache, or visual loss.15

On imaging, invasive fungal sinusitis most commonly presents with unilateral sinus mucosal thickening. While osseous destruction of the sinus walls (Fig 3) with rapid intracranial and/or intraorbital extension is both classically described and highly suggestive, it is not always seen, especially in early cases.13-15 Absent sinonasal mucosal enhancement on MRI represents ischemic or necrotic tissue and is one of the earliest imaging signs of disease (Fig 4). MRI has a greater sensitivity than CT for detection of early intraorbital and intracranial spread.14,15 Treatment of acute invasive fungal sinusitis requires prompt surgical debridement, systemic antifungals, and reversal of immunosuppression.12-14

Allergic Fungal Rhinosinusitis

Allergic fungal rhinosinusitis (AFRS) is a form of eosinophilic chronic rhinosinusitis with nasal polyposis. AFRS is an IgE-mediated hypersensitivity reaction to inhaled fungi resulting in chronic eosinophilic inflammation. It is important to recognize that AFRS typically occurs in immunocompetent patients and is not an invasive fungal infection. Commonly implicated organisms include dematiaceous fungi, aspergillus, and fusarium.4,13 AFRS is more common in warm humid climates such as the southern United States.
Characteristic imaging features include near-complete opacification of the affected sinus or sinuses with expansion and thinning or erosion of the sinus walls (Fig 5). Classically, CT imaging demonstrates heterogeneous opacification of the sinuses with areas of central hyperattenuation. On MRI, sinus contents can have variable T1 signal intensity and typically low T2 signal due to fungal debris and ferromagnetic iron, and manganese microparticulate material.

Fungal Ball (Mycetoma)

Fungal ball formation, formerly known as a mycetoma, is a less common form of fungal sinusitis. It is typically caused by Aspergillus fumigatus and denotes a tangled collection of fungal hyphae. The exact pathogenesis remains contested. Patients are generally immunocompetent and a female predilection has been described.

CT features include heterogeneous sinus opacification, typically isolated to a single sinus, most commonly the maxillary and sphenoid sinuses (Fig 6). Focal hyperdensities may be seen within the sinus opacification. While the osseous sinus walls are commonly sclerotic and thickened, they can also appear expanded with focal areas of erosion. On MRI, fungal balls are hypointense on T1- and T2-weighted images due to lack of free water. The presence of paramagnetic elements such as iron and manganese also contribute to the low T2 signal. Treatment typically necessitates endoscopic surgical evacuation of the involved sinus.

Nasal Septal Abscess

Nasal septal abscess is a discrete collection of purulent material in the nasal septum. In adults, nasal septal abscesses occur most commonly after minor nasal trauma, but can also result from iatrogenic causes, as well as sinonasal and dental infections. Staphylococcus aureus is the most commonly implicated organism.

CT demonstrates a fluid collection with rim enhancement and adjacent inflammatory changes, typical of abscesses seen elsewhere in the body (Fig 7). Prompt incision and drainage is critical to limit regional and systemic spread, as well as to prevent cartilage necrosis and collapse with secondary development of a saddle nose deformity.

Mucocele/Mucopyocele

Mucoceles form in the setting of chronic sinus ostial obstruction, usually due to preceding iatrogenic or traumatic injury, with resultant secondary mucus retention and gradual sinus remodeling and expansion. More rarely, mucoceles may occur spontaneously. When secondary infection occurs, the resultant collection is termed a mucopyocele and may constitute a surgical emergency if the orbit or intracranial spaces become involved.

CT demonstrates complete opacification of the affected sinus with smooth expansion and thinning of the sinus walls (Fig 8). The mucocele may extend into the adjacent orbit, intracranial cavity, or even into the face subcutaneously with or without sinocutaneous fistula.
The appearance on MRI is variable and depends both on the protein content as well as the hydration status. Most commonly, mucoceles have a high internal water content and demonstrate T2 hyperintense and T1 hypointense signal. In contrast, proteinaceous mucoceles are T1 hyperintense and T2 hypointense due to diminished free water content. Thickened peripheral rim enhancement suggests a mucopyocele. Treatment requires endoscopic sinus surgery and is typically curative in the absence of recurrent postoperative ostial stenosis.

Inflammatory Pathologies

Antrochoanal Polyp

Antrochoanal polyps are benign lesions that by definition arise from the maxillary sinus mucosa and extend into the nasal cavity, typically through an accessory maxillary sinus ostium. Patients most commonly present with nasal obstruction, with or without secondary sinusitis. Antrochoanal polyps are a rare cause of sinonasal disease and are typically found in isolation with no secondary sinonasal or systemic comorbidities.

Features on CT classically include a unilateral, smooth, hypodense polypoid mass arising from the maxillary antrum and extending into the nasopharynx. On axial MR imaging the contents of the left frontal mucocele are predominantly T1 hyperintense and T2 hypointense. Coronal postcontrast fat-saturated T1-weighted image demonstrates expansion into the superior orbit with mass effect on the globe.

Chronic Rhinosinusitis With Nasal Polyposis

Chronic rhinosinusitis with nasal polyposis is a form of CRS, denoted by the presence of multiple benign mucosal polyps both within the sinuses as well as the nasal vault. The majority of cases are due to chronic eosinophilic inflammation, although 10%-20% are...
noneosinophilic and may be seen with recurrent infections or cystic fibrosis.21,22 Patients present with nonspecific sinusitis symptoms, most commonly nasal obstruction and anosmia.

CT features include hypodense to isodense polypoid soft tissue in the sinuses causing partial or complete sinonasal opacification (Fig 10).23 There can be associated bone remodeling with sclerosis and thickening of the sinus walls, but bone thinning and erosion can also be seen. Increased attenuation suggests inspissated mucous or superimposed fungal sinusitis.23 Treatment options include both medical management with systemic and topical steroids as well as endoscopic sinus surgery with long-term topical postoperative intranasal steroid therapy.21,22 More recently, biologic immunomodulatory agents have also emerged as a treatment option for recurrent polyposis after sinus surgery.24

Granulomatosis With Polyangiitis

Granulomatosis with polyangiitis (GPA), formerly known as Wegener's granulomatosis, is a systemic antibody-mediated disease that primarily affects both the respiratory tract and kidneys. Histopathologic analysis of affected organs reveals vasculitis and necrotizing granulomatous inflammation.25-27 Rhinosinitis is a common manifestation of GPA.

Imaging features include mucosal thickening, neo-osteogenesis, osseous erosion, and destruction. Osseous destruction occurs in a typical pattern with initial involvement of the septum and turbinates followed by symmetric spread to the adjacent sinuses, ultimately leading to auto-exenteration and a secondary large sinonasal monocavity (Fig 11). The hard palate is classically spared.25-27 Alternatively, the sinuses may undergo complete osseous obliteration due to chronic repetitive reparative attempts. Mucosal inflammation and granulomatous tissue are difficult to distinguish on imaging during the initial inflammatory stages of GPA.27 However, over time, granulomas may be more readily detected on MRI, typically appear as enhancing areas of low signal intensity on both T1- and T2-weighted images.27 As imaging features of GPA can overlap with other entities such as sinonasal sarcoidosis and lymphoma, clinical or imaging correlation for evidence of systemic involvement elsewhere can be helpful.
Sinonasal Sarcoidosis

Sarcoidosis is a multiorgan non-necrotizing granulomatous disease that most commonly affects the lungs. In the United States, it is more common among African Americans and has a slight female predominance. Sinonasal involvement is rare with an incidence between 0.7% and 6% in the literature.28,29 Patients present with refractory nonspecific symptoms of nasal obstruction, rhinosinusitis, and, most commonly, nasal mucosal crusting. Concomitant systemic symptoms including cough, shortness of breath, fatigue, and weight loss usually prompt consideration of sarcoidosis. Diagnosis of sinonasal sarcoidosis requires tissue biopsy demonstrating histologic evidence of non-caseating granulomas.28,29

Sinonasal imaging is typically nonspecific, but may demonstrate nodular thickening of the nasal septum and turbinates (Fig 12). Imaging features are also similar to chronic sinusitis with mucosal thickening and periosteal thickening with a predilection for the maxillary and ethmoid sinuses. The frontal sinuses are almost always spared.29,30 Nasal septal perforation from granulomatous inflammation may occur.29,30 Aggressive granulomatous disease may also cause osseous destruction of the nasal turbinates and paranasal sinus walls. Given the nonspecific imaging features, clinical or imaging manifestations of sarcoidosis involving other organ systems, such as pulmonary involvement can help in suggesting the diagnosis. Treatment of sinonasal sarcoidosis is typically nonoperative, employing topical nasal or oral steroid therapy as needed.28-30

Rosai-Dorfman Disease

Rosai-Dorfman disease, also termed sinus histiocytosis with massive lymphadenopathy, is a rare disease most commonly presenting with nontender exuberant cervical lymphadenopathy secondary to intranodal deposition of histiocytes.31 Extranodal involvement is common with typical sites including the nasal cavity, sinuses, parotid glands, pachymeninges, orbits, and skin. Patients with sinonasal Rosai-Dorfman disease most often present with progressive nasal obstruction, facial pain, epistaxis and anosmia31 with the maxillary and ethmoid sinuses being most commonly affected.

CT and MRI findings include generalized mucosal thickening and sinonasal opacification or a nonspecific focal soft tissue density mass (Fig 13). Osseous erosion may be present.32,33 Focal mucosal lesions typically enhance and are markedly hypointense on T2-weighted images.32,33 Management depends on the extent of systemic involvement and individual patient symptoms, with options including observation, systemic steroids, chemotherapy, immunomodulatory therapy, radiation, and surgical debulking.31

Fibrous Dysplasia

Fibrous dysplasia (FD) is a benign developmental anomaly in which connective tissue and immature bone replace the normal bone
architecture. FD most commonly develops within long bones, ribs, and the craniofacial bones, although other areas throughout the skeleton have been described. Involvement may be monostotic or polyostotic as seen in McCune-Albright syndrome.

Three characteristic CT imaging patterns are recognized including a ground-glass, homogenously sclerotic, or cystic appearance with an expansile ground-glass lesion being the most commonly encountered (Fig 14). The MRI appearance varies depending on the internal composition with lesions typically being low-to-intermediate signal on T1-weighted imaging. On T2-weighted images, lesions having a highly mineralized matrix demonstrate low signal while those with a greater fibrous tissue content or cystic spaces have higher T2 signal. Contrast enhancement is highly variable with avid enhancement being associated with lesion activity.

Rhinolith

Rhinoliths are rare calcified sinonasal masses that arise due to precipitation of mineral salts around endogenous or exogenous material. Endogenous niduses are more common and include ectopic teeth, bone fragments, dried blood products as well as other substances. Patients may present with unilateral nasal obstruction, foul nasal odor, or headaches though rhinoliths may also be an incidental imaging finding. CT demonstrates a mass with irregular calcified margins and a hypodense central area (Fig 15). Rhinoliths are most commonly located at the floor of the nasal cavity, but can form in the sinuses as well, and may grow over time if left untreated (Fig 16). Treatment typically includes endoscopic removal.

FIG 13. Sinonasal Rosai-Dorfman disease in a 67-year-old female with a 2-year history of bilateral nasal obstruction. Axial (A) and coronal (B) noncontrast CT demonstrates near complete soft tissue opacification of the bilateral nasal cavities, maxillary and ethmoid sinuses with erosion of the maxillary and ethmoid sinus walls and soft tissue extension into the premaxillary soft tissues (arrow). Precontrast axial (C) and sagittal (D) T1-weighted images demonstrate low-to-intermediate T1 signal of the mass with diffuse enhancement on the postcontrast axial (E) and coronal (F) fat-saturated T1-weighted images.

FIG 14. Fibrous dysplasia in a 52-year-old male found to have an incidental sphenoid lesion. Axial (A) T2, (B) axial T1, and (C) sagittal T1-weighted MR images demonstrate a predominantly T2 hypointense and T1 isointense expansile lesion involving the basisphenoid and filling the right sphenoid sinus (arrow). (D) On the postcontrast T1-weighted image this lesion enhances heterogeneously. (E, F) Sagittal and coronal noncontrast CT images demonstrate predominantly ground glass density (arrow) with obstructive opacification of the sphenoid sinus (dashed arrow).
Nasopalatine Duct Cyst

Nasopalatine duct cysts (NPDC), also known as incisive canal cysts, are cystic structures within the incisive canal region that form when an embryonic epithelial remnant of the nasopalatine duct undergoes proliferation and cystic degeneration. NPDCs occur most commonly in males in their forties and are typically asymptomatic unless they obstruct the nasal cavities, compress adjacent structures, or become infected.

On CT, NPDCs appear as anterior midline palatine cystic structures with well-defined round, ovoid, or heart shapes (Fig 17). NPDCs may displace central incisor tooth roots, resulting in root resorption. On MRI, lesions demonstrate isointense to intermediate T1 signal and heterogeneously hyperintense T2 signal. Treatment of NPDCs involves surgical resection.

Lobular Capillary Hemangioma

Mucosal lobular capillary hemangioma (LCH), formerly known as pyogenic granuloma, is a benign proliferation of capillaries that commonly originates from the anterior nasal septum. Risk factors for developing LCH include pregnancy, oral contraceptives, chronic nasal digital irritation, nasal packing, and trauma. Common presenting symptoms include unilateral epistaxis and nasal obstruction.

CT demonstrates a soft tissue lesion with intense enhancement (Fig 18). There is typically no osseous erosion or invasion into the sinuses, although erosion has been reported at the site of origin. On MRI, lesions demonstrate isointense to intermediate T1 signal and heterogeneously hyperintense T2 signal. LCH secondary to pregnancy may regress following childbirth. Treatment of persistent lesions and LCH due to other etiologies includes surgical resection, with or without preoperative embolization depending on lesion size.

Intraosseous Vascular Malformation

Intraosseous vascular malformations (IVM) affecting the craniofacial skeleton are rare and account for only 1% of osseous tumors. IVMs are thought to be due to embryologic tissue remnants with progressive ectasia of abnormal vessels. Patients with IVMs typically present with an enlarging hard lump that may cause discomfort.

CT demonstrates an expansile soft tissue mass with internal coarse trabeculae with preserved outer cortex. MRI demonstrates hyperintense T1 signal typically due to fat within the bone marrow and hyperintense heterogeneous T2 signal (Fig 19). IVMs have intense contrast enhancement. Surgical resection is the mainstay of treatment.
Meningocele/Encephalocele

Meningoencephaloceles are rare and refer to herniation of the meninges and brain parenchyma through a defect in the calvarium or skull base. Meningoencephaloceles can be congenital or acquired. Acquired meningoencephaloceles can occur after trauma, but are more frequently due to elevated intracranial pressure, as in cases of idiopathic intracranial hypertension. While these may be diagnosed incidentally on imaging, patients may present with clear rhinorrhea or meningitis suggesting a cerebrospinal leak. Identification of meningoencephaloceles is critical prior to sinonasal surgery as surgical manipulation can result in cerebrospinal leak and increased risk of intracranial infection.

CT is key both for identifying the site of the osseous defect as well as evaluating and mapping the extent for surgical planning (Fig 20). While a simple meningocele will be hypodense or nearly cystic in appearance, the presence of cerebral tissue in a meningoencephalocele will result in increasing internal complexity. Both CT and MRI can help define the intracranial origin and delineate the connection of cerebral tissue through the defect.

Foreign Body

Nasal foreign bodies most commonly occur in the pediatric population, though can also be seen in mentally handicapped adults or in the setting of trauma. Foreign bodies can both serve as a nidus for bacterial infection as well as a site for rhinolith development. Depending on the nature of the object, foreign bodies may incite inflammation or erosion of adjacent structures. Patients with chronic nasal foreign bodies commonly present with unilateral mucopurulent discharge with foul odor. Treatment may require endoscopic removal if not readily accessible through the anterior nasal cavity.

Radiographs are typically the initial study of choice; however, CT has greater sensitivity for detecting small or soft tissue isodense foci (Fig 21). Common nonradiopaque foreign bodies include plastic, wood, thin aluminum objects, and fish bones while potential...
Radiopaque foreign bodies include glass, metals, bones, and certain medications. CT also allows for precise localization and can aid in surgical planning prior to removal. MRI is contraindicated in patients with suspected ferromagnetic foreign bodies.48,49

Conclusion

CT and MRI are commonly employed when evaluating sinonasal disease and it is important to understand the imaging characteristics of the unique types of pathology affecting the sinonasal cavities. Sinonasal endoscopy critically compliments imaging findings. Close collaboration of otolaryngologists and radiologists is imperative for both an expeditious diagnosis as well as treatment planning in patients with complex sinonasal disease.

Declaration of Competing Interest

None.

References

