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A B S T R A C T

Background: COVID-19 has caused a worldwide pandemic, making the early detection of the virus crucial. We
present an approach for the determination of COVID-19 infection based on breath analysis.
Methods: A high sensitivity mass spectrometer was combined with artificial intelligence and used to develop
a method for the identification of COVID-19 in human breath within seconds. A set of 1137 positive and neg-
ative subjects from different age groups, collected in two periods from two hospitals in the USA, from 26
August, 2020 until 15 September, 2020 and from 11 September, 2020 until 11 November, 2020, was used for
the method development. The subjects exhaled in a Tedlar bag, and the exhaled breath samples were subse-
quently analyzed using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The pro-
duced mass spectra were introduced to a series of machine learning models. 70% of the data was used for
these sub-models’ training and 30% was used for testing.
Findings: A set of 340 samples, 95 positives and 245 negatives, was used for the testing. The combined models
successfully predicted 77 out of the 95 samples as positives and 199 out of the 245 samples as negatives. The
overall accuracy of the model was 81.2%. Since over 50% of the total positive samples belonged to the age
group of over 55 years old, the performance of the model in this category was also separately evaluated on
339 subjects (170 negative and 169 positive). The model correctly identified 166 out of the 170 negatives
and 164 out of the 169 positives. The model accuracy in this case was 97.3%.
Interpretation: The results showed that this method for the identification of COVID-19 infection is a promising
tool, which can give fast and accurate results.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

Introduction

SARS-CoV-2, the virus causing the illness known as COVID-19, has
caused a pandemic the likes of which the world has not seen in over
100 years. While the world and its technology have changed substan-
tially in that time, human physiology has not. The World Health

Organization (WHO) [1] has reported over 190 million cases, and
over 4 million deaths from this disease, as of July 29th of 2021. The
world has relied heavily on administrative and physical measures
such as social distancing, mass testing, and quarantining procedures
to try to slow the spread of this disease [2]. With record breaking
speed, vaccines have been developed and distributed [3]. These
measures are all important, but they still leave gaps in combating the
pandemic. The aim of this study was to employ a novel approach
using breath analysis. This would result in a large reduction in inva-
sive measures during sampling compared to nasal swabs and
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significantly higher throughput rates. We combined artificial intelli-
gence and machine learning with one of the world's most sophisti-
cated gas analyzers to develop a real-time profile of the breath from
individuals infected with SARS-CoV-2 resulting in a paradigm shifting
mass screening tool.

The analysis of volatile organic compounds (VOCs) in human
breath holds valuable clinical potential and has been the subject of
many research studies [4]. Testing for volatile biomarkers in clinical
breath samples offers an option for developing rapid and potentially
inexpensive disease screening tools with multiple advantages

1) Sampling can be readily repeated and is non-invasive.
2) Sampling and analyses can be done within a minute.
3) Allows to immediately start preventive measures such as isola-

tion, use of Personal Protective Equipment (PPE) etc.

Over the last decade, multiple studies focused on the use of breath
testing for the early diagnostics of acute respiratory distress syn-
dromes (ARDS) and medication response [5-7].

A multitude of breath analysis studies related to viral infections in
humans have been published. These include the human rhinovirus,
Influenza A and the Influenza H1N1. The biomarkers correlated to
these viral infections include 2,3-butandione, aldehydes, 2,8-
dimethyl-undecane, and n-propyl acetate [8]. A specific study aiming
at VOC emissions from cell cultures with human respiratory viruses
resulted in the identification of a different suite of biomarkers,
including acetone, 2-propanol, o-xylene, benzaldehyde, and benzoni-
trile, as well as the aldehydes 2-butenal, 2-propenal, 3-methyl-buta-
nal, acetaldehyde, alkylated aldehyde, benzaldehyde, hexanal,

nonanal, and propanal; in addition, the three furan derivatives furan,
2,3-dihydro-furan, and tetrahydrofuran were identified, but these
were also related to bacterial infections [9]. The volatile emissions
from Influenza virus infections have been published in multiple stud-
ies and include compounds such as acetaldehyde, propanal, acetone,
and n-propyl acetate amongst others [10,11].

Several studies have been focused on the detection of COVID-19
patients using various techniques for breath analysis [12]. Grassin-
Delyle and colleagues [13] presented a study using a PTR-MS (Proton
Transfer Reaction Mass Spectrometer) and 40 patients with ARDS,
with 28 being confirmed COVID-19 cases. The age of the non-COVID-
19 patients ranged from 54 to 79 years old, while the COVID-19
patients were 55 to 72 years old. Using a multivariate analysis, they
were able to develop a method with an accuracy of 93% (sensitivity:
90%, specificity: 94%). The four most prominent volatile compounds
in COVID-19 patients were methylpent-2-enal, 2,4-octadiene 1-
chloroheptane, and nonanal. Shan and colleagues [12] presented a
breath analysis study using a nanomaterial-based sensor array. The
device included eight 1 mm diameter sensors with specific organic
functionalities targeting dodecanethiol, 2-ethylhexanethiol, 4-tert-
methylbenzenethiol; decanethiol; 4-chlorobenzenemethanethiol, 3-
ethoxythiophenol, tertdodecanethiol, and hexanethiol. Within this
study, 49 confirmed COVID-19 patients, 58 healthy controls, and 33
non-COVID lung infection controls were tested. The mean age of the
patients was 59 years, with 57% females. The tested groups were sep-
arated in training sets (70% samples) and test sets (30% samples). The
training and test set data showed an accuracy of 94% and 76% respec-
tively, in differentiating patients from healthy individuals. In addi-
tion, the device showed a 90% and 95% accuracy in differentiating
between patients with COVID-19 and patients with other lung infec-
tions.

Multiple studies presented the use of gas chromatography-ion
mobility spectrometry (GC-IMS) for the breath analysis [14-17]. Rusz-
kiewicz and colleagues [16] presented a study in which ninety
patients from Edinburgh, UK (65 patients, 10 positive COVID-19
cases) and Dortmund, Germany (25 patients, 17 positive COVID-19
cases) were tested. The non-COVID -19 cases were suffering from
other respiratory diseases, such as asthma, COPD, and bacterial pneu-
monia or cardiac diseases. The accuracy of the method for the identi-
fication of the COVID-19 patients was 80% and 81.5% in each group,
respectively. The biomarkers that worked as discriminants for the
Edinburgh study were ethanal, acetone, 2-butanone, acetone/2-buta-
none cluster, methanol monomer, methanol dimer, and octanal. The
distinct biomarkers for the Dortmund group were ethanal, acetone,
2-butanone, methanol monomer and dimer, and heptanal.

These studies focused solely on identifying a pattern within hospi-
talized patients. While this is the first step to identify a pattern of
COVID-19 within the exhaled breath, it also has several downsides:

1) The concentrations of breath biomarkers of hospitalized patients
may change due to the clinical environment in which they are iso-
lated.

2) Medications are known to have severe impacts on the metabolism
of a patient and can be directly correlated to changing breath pat-
terns.

3) These cases are of a severity that is not representative of the gen-
eral population.

While the impact of the first two aspects has been studied in
detail by Trefz and colleagues [18], the latter aspect has specific
implications from an analytical perspective when targeting people
that feel healthy but are infected by SARS-CoV-2.

Given the work that has been previously done, our study attempts
to maintain scientific integrity while allowing for the exposure of the
subject in VOCs that are common in ambient environments. 1137
patients with an age range from 3 to 96 were studied. The studies

Research in context

Evidence before this study

COVID-19 infection may lead to specific changes in the volatile
organic compounds (VOCs) pattern of the exhaled breath, thus
providing a unique diagnostic tool. Proton transfer reaction-
mass spectrometry has been shown to be a reliable tool in iden-
tifying VOC concentrations at ultra-low concentrations in
highly complex matrices, such as breath analyses for various
applications.

Added value of this study

An algorithm has been developed based upon the mass spectro-
metric analysis of 1000+ breath samples from different sources
with different ambient backgrounds. This algorithm has been
shown to predict fairly well the status of patient in regard to
being identified as COVID-19 positive with PCR or not. Specific
biomarkers have been identified to be correlated to the infec-
tion with SARS-CoV-2, and it has been identified that these bio-
markers are age related.

Implications of all the available evidence

The COVID-19 status of a person can be identified using a
breath sample collected in a sampling bag. The situation of
sampling, i.e., the VOC background is of lesser importance than
the knowledge of age of the patient. The VOC background does
not necessarily have to be identified and subtracted from the
spectra prior to analysis. This opens the ability to use the
approach in a direct sampling strategy without sampling bags
for quick screening. Comparative research needs to be done to
identify which of the biomarkers are unique to a COVID-19
infection as opposed to general infections of the vascular
system.

2 A. Liangou et al. / EClinicalMedicine 42 (2021) 101207



involved multiple locations and included hospitalized COVID-19 pos-
itive patients for a direct comparison of the data. Breath results were
compared to the results of the person’s traditional COVID-19 test by
Polymerase Chain Reaction (PCR) or Nucleic Acid Amplification Test
(NAAT). Breath was analyzed using Proton Transfer Reaction Time-
of-Flight Mass Spectrometer (PTR-ToF-MS). Each breath pattern
(breath print) was then analyzed by a variety of machine learning
algorithms against their PCR or NAAT COVID-19 test results to iden-
tify a specific physiologic change pattern associated with COVID-19.
To our best knowledge this is the largest study of its kind to date.

Methods

Location

This study used two locations of varying population demo-
graphics. Both arms underwent individual IRB approval. The first arm
was performed at the Mercyhealth North Emergency Department in
Janesville, WI (MH-study). The MH-study took place from 08/26/
2020 till 09/15/2020. A total of 955 samples were collected at a
drive-through COVID-19 testing station and the emergency depart-
ment itself. All donors were sampled and tested for COVID-19 using a
PCR test (943) or a NAAT (12). The second arm was located within
the Henry Ford Health System in the greater Detroit area, MI (HF-
study) and was performed from 11/09/2020 till 11/11/2020. The HF-
study was focused on 182 hospitalized patients using the same sam-
pling and analytical techniques. The goal of the HF-study was to
gather a comparative data set to the aforementioned breath analysis
studies and to identify a pattern within COVID-19 positive hospital-
ized patients. All 182 hospitalized patients had positive PCR test
results.

Both studies fall within the US Department of Health and Human
Services (HHS) region 5. Based on the seasonality of influenza within
this region, the corresponding interference by influenza-based infec-
tions on the breath analysis is therefore very limited in the case of
the MH-study (week 36), while the HF-study (week 46) is on the
onset of the seasonal peak. Therefore, the MH-study data represent a
unique dataset insofar that COVID-19 cases were present, but the
influenza rate was at its lowest in the season. This observation is
based on the publicly published data by the Center for Disease Con-
trol’s Fluview program (https://gis.cdc.gov/grasp/fluview/fluportal
dashboard.html).

Sample collection

The MH study was focused on collecting as many samples as pos-
sible in order to have enough information of the characteristic bio-
markers in COVID-19 subjects that will allow a successful model
development. After the MH study was completed the first version of
the algorithm was developed which showed the need for more posi-
tive samples in order to have a good characterization of the COVID-
19 positive footprint. Thus, the second study took place in Henry
Ford Hospital to collect samples of patients with a higher severity of
the disease. In this study, 182 positive samples were collected.

All samples were obtained in an informed consent fashion with
limited HIPAA release, as reviewed and approved by IRB, allowing
researchers to access medical records for traditional SARS-CoV-2
results. Mercyhealth’s IRB number is 00004155. Henry Ford Hospi-
tal’s IRB number is 14234. No lower age limit was included in the
Mercyhealth arm. Consent was obtained from all patients and in the
case of pediatric patients consent was obtained from a parent or legal
guardian.

The subject was asked to drink a mouthful of water prior to col-
lecting a breath sample to possibly reduce any VOC contamination
from food and drink. This procedure has been found to be beneficial
in removing the contributions of oral compounds to the breath

sample, such as volatile fatty acids, aldehydes and phenols [19]. Each
sample was collected from the donor in a 1L TEDLAR� bag. At MH
study the subjects remained in their vehicle inside the drive-thru
garage. The sampling was done in patient rooms in the HF study. All
sample collectors used personal protective equipment (PPE). The sub-
ject was blowing into a 1-foot long 1=4” diameter Perflouroalkoxy
(PFA) tube attached to the bag, until the bag was fully inflated. The
TEDLAR bag filling included more than one exhalation. For the kids
the attending resident and the parent helped turning on and off the
valve between exhalations to avoid contamination of the samples.
After the sample collection the bag was sealed with the integrated
bag valve, and eventually analyzed with the PTR-ToF-MS. The criteria
of rejecting a sample were insufficient volume of sample and/or con-
tamination while sampling which could have been resulted by
wrongful turn on/off of the bag inlet valve. The samples that were
falling into these rejecting criteria were excluded from the analysis. A
PCR swab or an antigen test were also collected.

While sampling using bags is convenient for multiple reasons,
such as speed of sampling, ease of logistical setup and ease of use by
the patients, it has multiple downsides, including the potential for
diffusion of compounds. This diffusion can happen in both directions,
so sampled breath can lose compounds and exterior air compounds
can diffuse into the bags. The speed and extent of such exchange is
highly dependent on the bag material, the conditions of storage of
such bags and the duration of storage of the sample within these
bags [20-22]. In a preliminary study, we compared three different
categories of available bags, TEDLAR�, a multilayer foil gas sampling
bag and an ALTEF gas sampling bag. TEDLAR� bags were found to
have the least impurities compared to the other two with no statisti-
cally sound difference in gas exchange from the environment over
the period of multiple hours (Fig. S1 and Fig. S2). Therefore, TEDLAR�

bags were chosen for this study.
The MH-study lasted 21 days and 955 patients were tested; 88

symptomatic positive samples, 27 asymptomatic positive samples
and 840 negative samples. The daily number of samples that got col-
lected and analyzed varied and depended on the patients that were
coming to get tested. The maximum of samples analyzed in one day
was 150. Each sample was analyzed within minutes. During the HF
study, which lasted 3 days, 182 symptomatic positive samples were
collected. The samples were collected and delivered for analysis in
batches of ten. The maximum time between the sample collection
and the sample analysis was 2 hours. Overall, most of the samples
were analyzed within 1 hour of their collection for both studies.

Sample analysis and mass spectra deconvolution

The sample analysis was performed using a PTR-ToF-MS (Ionicon,
PTR-TOF 4000) (Fig. S3). The PTR-ToF-MS is a high resolution and
high sensitivity continuous real-time monitoring instrument that
measures VOCs based on a soft ionization technique and subsequent
mass spectrometry [23]. More specifically, the sampled air gets con-
tinuously drawn into the reaction chamber, where the sample gets
mixed with a stream of pre-made hydronium ions. Based on its pro-
ton affinity, each volatile compound can get charged (i.e., protonated)
or not. The ionized compounds are then introduced in the mass spec-
trometer, where they are separated and identified by mass. The un-
protonated remainder of the air gets released by the instrument.
Major compounds of air, such as nitrogen or oxygen, do not get ion-
ized and are therefore not contributing to the background.

The key variables of the analysis are the volume of air drawn into
the instrument over a period of time, the temperature of the sample
inlet, and the temperature, pressure and voltage applied in the reac-
tion chamber. The temperature, the pressure and the voltage of the
reaction chamber control the ionization reaction rate, allowing for
more or less volatile chemical compounds to be protonated, therefore
directly impacting the detection limit of the analysis. These
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parameters also control the fragmentation rate of the targeted com-
pounds. Fragmentation of molecules creates very specific patterns in
the mass spectrometer for each compound. Enhanced fragmentation
however, such as at higher voltage settings, can lead to a less trivial
data analysis of the mass spectrum. The overall suitability of soft ion-
ization techniques, like the PTR-ToF-MS, for clinical breath analysis
has been reported by Trefz and colleagues [18].

During the sample analysis, the PTR-ToF-MS was using hydro-
nium as the primary reagent ion. The flowrate was set at 100 mL/min
and the inlet temperature was at 80°C. The reaction chamber pres-
sure, temperature and voltage were at 2.2 mbar, 70°C and 600V,
respectively. The instrument was calibrated daily, using a gas mixture
standard. Each TEDLAR� bag inlet was connected to the PTR-ToF-MS
inlet. The sample from the bag was introduced in the instrument for
a duration of 200 seconds and the spectra were recorded at 1Hz. This
allowed observations on the stability of the resulting spectrum. Based
on repeated analyses of the bag contents, the bag sample can be
assumed to be a well-mixed sample, allowing to average the mass
spectra over a specific period within the 200 second sampling seg-
ments. The time period used was the last 100 seconds of the 200 sec-
ond spectrum, based on the variations of contents within that period.

The mass spectra were analyzed using the instrument’s internal
software (Ionicon, PTR-MS viewer software v. 3.2.5). In addition to
the instrument’s automatic continuous mass calibration, a manual
inspection step was performed to validate the mass calibration. High
mass resolution data analysis was performed to identify the com-
pounds of interest and to maximize the accuracy of the contribution
of each compound to the total mass. This step is particularly impor-
tant for untargeted analysis in which all the compounds, even the
ones at low concentrations, need to be identified and quantified. Dur-
ing lower resolution analysis (1 amu), the presence of a compound at
a high concentration, such as acetone, can cause interferences with
the accurate identification and quantification of neighboring com-
pounds. While the instrument performed the analysis in high mass
resolution, this level of separation turned out to be of low importance
to the accuracy of the final prediction model. Therefore, the peak res-
olution was reduced to nominal masses during the post processing
analysis.

The background ambient air from the MF study was tested to con-
firm that the PTRMS measured mass spectra were not contaminated
by the garage testing area and the cars' emissions. Once the patients
were getting in the garage area, they were turning their car engine
off. The TEDLAR bags used for the sampling had an on-off valve.
When the patients were exhaling in the bag the valve was on, while
immediately after the sampling the valve was turned off to avoid con-
tamination of the samples with ambient air. The VOCs that are associ-
ated with vehicle exhaust are benzene, toluene and their byproducts
[25].We did not see these compounds being elevated during our test-
ing nor were they identified as important compounds by the devel-
oped algorithm suggesting that the vehicle exhaust emissions effects
were negligible.

Model development

For the development of our method, we used the results from the
negative PCR tested donors and positive symptomatic PCR/NAAT
donors. The deconvoluted and adjusted spectral information was
used to feed into a multiplex of modeling algorithms.

Several peaks were excluded from the evaluation, either because
their contribution cannot be linked to a patient’s metabolic status but
rather to instrument’s parameters or that they are directly linked to an
instrument input such as the continuous mass calibration. More specif-
ically, we used m/z 30, and m/z 40 to m/z 400. We did not use com-
pounds less than m/z 30 since they mainly consist of compounds that
are relevant to the reagent ions and their changes are not affected by
the patient status, but they are affected by the instrument’s operation

parameters, such as the pressure, temperature, and voltage of the reac-
tion chamber. Also, m/z 204, m/z 205, m/z 329, m/z 330, m/z 331 and
m/z 332 are related to the instrument auto-calibration mechanism
and were excluded. Acetone, m/z 59, was also excluded because it is a
main product of a variety of oxidation processes in human breath and
its large concentration (ppm levels) compared to the concentration of
the other identified compounds (ppb level) was found to interfere
with the algorithm results.

The initial development of the model did not involve the use of
the m/z 30. High resolution analysis though showed that the mass of
the ion contributing at m/z 30 was 29.995. This suggested that the
compound was NO+. The NO+ signal is assumed to be due to the pres-
ence of nitroso compounds that fragment in the drift tube of the PTR-
MS due to collision induced dissociation. Previous studies have
shown the formation of nitroso compounds form in due to the activi-
ties of bacteria in the stomach [24]. For these reasons, the algorithm
included m/z 30 in the analysis.

The study started with a high-resolution approach, since there
was no indication from the information available at the time of study
design (i.e., August 2020) whether the compounds of concern could
be clearly identified using nominal masses alone. Since the AI model
did not show any improvement when using the high-resolution data
in both sensitivity and specificity of correctly identifying a PCR-posi-
tive individual, the high-resolution data were then summed to nomi-
nal mass data. The main benefit of having obtained the high-res data
is that these could be used for post-analysis identification of com-
pounds of concern, which would otherwise have not been possible.
Figure S4 summarizes the overall process of developing models for
datasets with a large number of unknown variables. The final step
after the model building process is one that entails result representa-
tion through model dashboards, feature importance estimates for the
training set, and different visualization methods such as prediction
distributions or confusion matrices. Models were optimized in terms
of their operating point for minimizing per-class-error-rates in the
training sets, therefore maximizing sensitivity and specificity in a bal-
anced manner through an appropriate choice of probability threshold
from receiver operator characteristics analysis. Each model had a
model-specific probability threshold for optimality in classification.
We leveraged H2O (version 3.30.0.1) to host a multi-node cluster
with a shared memory model to develop our final machine learning
models with all computations conducted in-memory.

XGBoost Gradient Boosting Machines (GBM), H2O's Gradient
Boosting Machines (GBM), Random Forests (Distributed Random For-
ests and Extremely Randomized Tree variety), Deep Neural Networks
and Generalized Linear Models (GLM), were leveraged for the pur-
pose of model building, each with its own hyperparameters that
required optimization. We searched for a universe of optimal binary
classification models across five pre-specified XGBoost GBM models,
a fixed grid of GLMs, a DRF, five pre-specified H2O GBMs, a deep neu-
ral network, an Extremely Randomized Trees (XRT) model, a random
grid of XGBoost GBMs, a random grid of H2O GBMs, and a random
grid of deep neural nets.

Training was conducted on a random fold of 70% of the data,
selected using stratified random sampling of our dataset based on
the response of COVID-19 class (i.e., PCR/NAAT positive or negative),
with the remaining 30% left for out-of-sample testing. For the train-
ing, only samples from symptomatic positive subjects were used to
capture as best as possible this difference in concentration between
the compounds. It was assumed that the amplitude of some of the
important for the COVID-19 identification compounds would be
greater in the symptomatic individuals. The median age of the sam-
ples used for the training was 39 years old. Cross-validation, using 5-
fold cross-validation, was conducted on the entire dataset for the
purpose of establishing whether our trained models were overfit.
Demographic and clinical information were not used for the model
development.
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For each algorithm, we identified which hyperparameters we con-
sider to be most important, defined ranges for those parameters, and
utilized random search to generate models. Since our models were
developed using the H2O python library, the built-in Random Grid
Search provisions that it includes were adopted. A random combina-
tion of hyperparameters (sampled uniformly from the set of all possi-
ble hyperparameter value combinations) were tested instead of
exhaustively testing all possible combinations for ranges of hyper-
parameters relevant to each model type. A stopping criterion was
specified for when the random search would stop, based on a target
accuracy to be achieved (i.e. defined in terms of a log-loss function
based on the per-class error rates targeted). The range of recom-
mended hyperparameter ranges comes from trial an error but also
some guidance from H2O’s model-specific user-manuals.

After training the base models, a Stacked Ensemble model was
trained containing the best performing model from each algorithm
family, i.e., one XGBoost GBM, Random Forest, Extremely Random-
ized Tree Forest, H2O GBM, Deep Learning, and a GLM model. The
final ensemble was optimized for rapid inference in production use
cases and included 5 base models, dropping the GLM model since it
was not contributing significantly to the determination of the
response of COVID-19 vis-a-vis the remaining models.

Role of the funding source

The funding source participated in the study design, data collec-
tion, data analysis, data interpretation, writing of the report and deci-
sion to submit the paper for publication. All authors confirm they had

full access to the data in the study and accept responsibility for the
decision to submit for publication.

Results

Subject distribution

The subject age distribution is shown in Fig. 1 and Tables 1 and 2.
The age range of tested subjects was between 3 and 96 years old,
with most of the subjects being between 11 and 20 years old
(Fig. 1a). For the MH-study the age range of the tested subjects was
between 3 and 95 years old (Table 1), with most of the subjects hav-
ing ages between 11 and 20 years old (Fig. 1b). The positive, symp-
tomatic subjects from the MH-study ranged between 6 and 84 years
old (Table 1), with most of them being around 11 to 20 years old
(Fig. 1d). For the HF-study, the corresponding age range of the tested
subjects of the total samples collected was between 19 and 96
(Table 2), with most of the subjects belonging to the 71 to 80 age
range (Fig. 1c). This wide age distribution of the tested subjects
allowed us for a better understanding of the effects of the COVID-19
in the breath biomarkers composition among different ages.

Information regarding the smoking status and age of the donors
was also collected. For the MH-study the percentage of smokers was
9%, while for the HF-study the corresponding percentage was 5.5%.

PTR-ToF-MS results

The average normalized to the primary ion (m/z 21) mass spec-
trum from the breath analysis of the total positive symptomatic

Fig. 1. a) Total donor age distribution of samples collected during both studies. b) Total donor age distribution of samples collected during MH-study. c) Total donor age distribution
of samples collected during HF-study. d) Donor age distribution of symptomatic positive COVID-19 donors collected during MH-study.
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patients was compared to the average mass spectrum from the
breath analysis of the total negative samples. Fig. 2 shows the nor-
malized concentration mass spectra for these samples for each m/z
value, ranging from 30 to 100. The highest VOC concentrations were
observed in m/z lower than 100, while the concentrations for m/
z>100 were significantly lower. Figure S5 represents a heatmap of
compounds with m/z <100 for the total samples collected showing
the concentration differences between positive and negative sam-
ples. Acetone is the main product of all the oxidation processes and
was found to have the highest concentration, at parts-per-million by
volume (ppmv) levels. The rest of the compounds were at parts-per-
billion by volume (ppbv) or in parts-per-trillion by volume (pptv) lev-
els. When directly comparing the spectra, the concentration of com-
pounds associated with m/z 88 was lower in the case of confirmed
positive samples while m/z 33, m/z 45, m/z 47 and m/z 59 seem to be
increased for these random samples. Figure S6 shows the percentage
abundance of the important m/zs that found to have the biggest
change for the positive and negative samples (according to the artifi-
cial intelligence algorithm). A comparison between the percentage
abundance of the important m/zs between positive and negative
samples for ages over 55 years old is also presented in Figure S7. In
both Figures the biggest difference in concentration between positive
and negative samples is shown in m/z 30, m/z 45 and m/z 47. It is
clear though that the difference in these three compounds is not
enough to determine if a sample is positive to COVID-19.

The analysis and the interpretation of the results showed that the
determination of a sample being positive or negative to COVID-19
cannot be achieved just by an optical comparison of the mass spectra,
since small patterns in concentration changes between the different

m/z’s cannot be easily identified. The algorithm used as inputs all the
individual mass spectra from the patients. The developed artificial
intelligence model has the capability to identify such patterns and
account for such changes for the determination of a sample being
positive to COVID-19.

Model results

The mass spectra related to the PCR or NAAT positive and negative
samples were introduced as inputs to the individual sub-models and
were used for training and prediction. We combined 5 different sub-
models for the determination of the most important compounds.
Each sub-model contributed to the final prediction to determine if a
sample is positive or negative to COVID-19. However, the importance
of each model to the final prediction varies (Fig. S8). The first sub-
model, Gradient Boosting, is the most important while the other ones
have a smaller effect on the results.

In total, a set of 340 samples, 95 positives and 245 negatives, was
used. 27 of the 95 positive samples were from asymptomatic sub-
jects. The model successfully predicted 77 out of 95 samples as posi-
tives and 199 out of 245 samples as negatives. The overall accuracy of
the model was 81.2%, the normal precision with respect to negatives
was 91.7%, the specificity was 81.2% and the sensitivity was 81.1%
(Table 3 and Table S1).

The performance of the model for subjects over 55 years old was
also tested. Santesmasses and colleagues [26] have shown that the
COVID-19 fatality rate is higher to patients 55 years or older. The
number of subjects was 339 of whom 170 were negative and 169
were positive. The model identified correctly 166 out of 170 nega-
tives and 164 out of 169 positives. The accuracy of the model was
97.3%. This relates to 2.3% false negative and 2.9% false positive rate
(Table 4 and Table S1). The accuracy of the model was, as expected, in
favor of the >55 age category since over 50% of the total positive
samples belonged in this category and used for both model training
and testing.

An additional model was developed which used the normalized to
the primary ion (m/z 21) mass spectra for both training and testing.

Table 1
Smoking and age status of the donors for MH study.

Smoking status Age (years) Age Median
(years)

Smokers Non
smokers

Min. Max.

Symptomatic Positive 8 80 6 84 34
Total 87 868 3 95 34

Table 2
Smoking and age status of the donors for HF study.

Smoking status Age (years) Age Median (years)

Smokers Non smokers Min. Max.

10 172 19 96 69

Fig. 2. Mass spectra of the normalized (to the primary ion concentration at m/z 21) concentration (in ppb) of the total averaged positive samples of symptomatic donors (red bars)
and the negative samples (black dots). The y-axis corresponds to the normalized concentration and the x-axis to the mass to charge ratios.

Table 3
Model predictions for all age groups

COVID-19 predicted Negative predicted Prediction
accuracy

COVID-19 measured 77 18 0.8105
Negative
Measured

46 199 0.8122

Total 123 217 0.8118
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The same procedure and same sub-models were followed for the
training of the model as in the base case. Approximately 70% of the
total data which included symptomatic positive and negative sam-
ples were used for the model’s training, while around 30% of the data
(symptomatic positive, asymptomatic positive and negative) were
used for the model testing. Table S2 summarized the model testing
results. The model predicted 247 out of 247 negative samples, 29 out
of 72 symptomatic positive samples and 0 out of 27 asymptomatic
positives. The results showed that the use of the normalized mass
spectra decreased the performance of the model compared to the
base case.

A comparison of the prediction results between children and
adults did not take place since not enough samples from children
were collected in order to create trusted results that could be used
for such a comparison.

The model identified the importance of each m/z on the determi-
nation of a sample as positive or negative to COVID-19. Each sub-
model identified a different set of the most important m/z (Fig. S9).
Nitrogen oxide (m/z 30), butene (m/z 57), CH4S (m/z 48), acetalde-
hyde (m/z 45), heptanal (m/z 115), ethanol (m/z 47), a methanol
water cluster (m/z 51), and propionic acid (m/z 75) were identified as
important compounds for the identification of COVID-19 in human
breath. Fig. S5 shows the abundance of the compounds of importance
among the samples.

In the presented method m/z 45 has the second highest impor-
tance in the prediction. High resolution analysis of the samples has
shown that on average CO2H+ accounted for 68% of m/z 45 while the
rest was acetaldehyde. Interference of CO2H+ in the acetaldehyde sig-
nal has also been presented in previous studies [27]. M/z 45 (acetal-
dehyde) has been found to increase over 75% in the case of COVID-19
positive patients over 55 years old, with this percentage decreasing
to 5% in the case of patients younger than 40 years old. (Table S3).

For octanal, a similar trend was found as with nonanal. The eleva-
tion is very distinct in older patients with a percentage increase of
44% in the case of COVID-19 positive patients. For patients less than
40 years of age, there was a slight decrease of 1% in concentration for
infected patients in the case of octanal while in the case of nonanal
the corresponding decrease was 10%. Heptanal, another aldehyde
reported to be elevated in COVID-19 patients, also shows elevation,
but lesser with increased age. More specifically for patients over
55 years old the increase was 7%, while for people less than 40% the
corresponding increase was up to 39% (Table S3). Ketones, such as 2-
butanone were increased around 53% in the case of COVID-19 posi-
tive patients older than 55 years old while for patients younger than
40 years old the corresponding increase was 6%. For 2-Pentyl-Furan,
we found in older COVID-19 positive patients a 10% increase in con-
centration, on average. However, this changes for younger patients
with ages <55 where 2-pentyl furan concentration was decreased by
10% (Table S3).

The importance of each sub model together with the relative
importance of each compound was combined in order to calculate
the 20 most important compounds for the prediction of a COVID-19
positive sample. Fig. 3 shows that nitrogen oxide, CO2H and acetalde-
hyde are the compounds that affect the model’s decision-making the
most. More specific the relative importance of m/z 30 (nitrogen
oxide) as it was calculated by the developed model was 27%, while
the rest of the important compounds had a relative importance of
11% or lower (Figure 3). Also, m/z 30 (nitrogen oxide) appears to be
the most important compound in all individual submodels with its
contribution to the final decision being up to three times higher com-
pares to the other compounds (Figure S9).

One compound that was also investigated was acetonitrile.
Wzorek and colleagues [28] have supported the smoking-related ori-
gin of acetonitrile in the breath of smokers. The acetonitrile (m/z 42)
was found to contribute less than 1% in the model prediction suggest-
ing that the model prediction is not affected by the smoking status of
the subjects. The model did not identify compounds specific to age
groups. A future study will be focused more on the age depended
COVID-19 biomarkers using methods like LIME and SHAP.

Discussion

A method for the determination of a COVID-19 positive patient
was developed by coupling the PTR-ToF-MS with an artificial

Fig. 3. The 20 most important mass to charge ratios (m/z) for the prediction of a COVID-19 positive sample derived from the combination of the five sub-models.

Table 4
Model predictions for age 55+

COVID-19 predicted Negative predicted Prediction
accuracy

COVID-19 measured 164 5 0.9794
Negative
Measured

4 166 0.9765

Total 168 171 0.9735
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intelligence algorithm. The method is based on the identification of
COVID-19 biomarkers in breath using a non-invasive alternative to
nasopharyngeal swabbing tests. TEDLAR bags were tested and identi-
fied to be the most suitable mean for the sample collection and its
analysis using the PTR-ToF-MS. A total of 1137 different samples, 270
symptomatic positives, 27 asymptomatic positives and 840 negatives,
were used to develop and test an algorithm that could predict the
result of a breath sample in less than a minute. The entire model
results had a sensitivity of 81% which is on par with many current
rapid tests in the market. In the subset of patients over 55 the algo-
rithm was more effective with a sensitivity and specificity of 97%. In
the case of the over 55 years old algorithm, the same algorithm was
used but only the samples over 55 years old were tested. This means
that a percentage of the samples that were used for testing was also
used for training purposes. The algorithm in its current form does not
have the ability to identify which of the over 55 years old samples
used for both training and testing.

In the prediction of the model, m/z 30, which relates to nitrogen
oxide, was found to be of high importance. While nitrogen oxide in
exhaled air has a strong correlation to eosinophilic airway inflamma-
tion, it is also a compound that cannot be accurately measured by the
PTR-ToF-MS [29]. The main reason being that it can be generated
within the instrument by ionizing the surrounding air as a primary ion
and therefore adding to the general background. It has long been
known that nitrogen oxide plays a role in the anti-viral response of the
immune system by creation of some free radicals, but it is unknown
exactly how this influences the response to COVID-19 [30]. Since in
this case the amount varies systematically between positive and nega-
tive patients, the presence and absence can be seen as indicative of a
metabolic response to a viral infection. However, the quantitative
amount needs to be carefully evaluated on a case-by-case basis and
shall not be used as indication on the severity of infection.

The MH study was conducted during week 36 of the influenza
season and HF study was conducted during week 46. In both facilities
the impact of social distancing and masking measures to the abun-
dance of flu cases has been seen. However, week 36 is for the area of
the MH study traditionally an area of low flu incidence and has been
equivalent in 2020 to the years before. Week 46 in the area of the HF
study has seen a significant decrease in the number of influenza
cases. One aspect that needs to be considered is that the metabolic
response provides an overlapping response in biomarkers. For exam-
ple, acetaldehyde is an easily identifiable compound with PTR-MS,
but also with GC-IMS, and has been shown to be elevated in exhaled
breath for either infection, Influenza A and COVID-1911,16,31. This can
cause false identifications independent of the incidence rate for Influ-
enza A. This study focused on the development of an algorithm that
takes the whole spectral information into account and not only spe-
cific compounds of interest. There is not clear evidence in the time
being whether the algorithm can distinguish between COVID-19 and
Influenza A infected patients.

Variants of COVID-19 were not dominant at the time of the study.
In addition, since this study is aiming at metabolic responses and not
at viral parts, as a first order assumption the breath pattern change
can be assumed to be equivalent for the different variants. External
validation and identification of the impact of heightened cases of
other diseases in fall-winter 2021, such as RSV or COVID-variants are
the next steps to further develop this method.

The main goal of the prediction model was to identify a multiplet
of patterns that validate the PCR-based positivity of a patient. To
achieve this, the complete mass spectrum was analyzed, and not only
the compounds that had obvious changes in their concentration
between the average positive and average negative subjects. Apart
from nitrogen oxide, compounds identified as important by the
model predictions consisted of aldehydes, carboxylic acids, alkenes
and alcohols, all of which are common compounds that can be found
in human breath. Discrepancies were noticed in the concentration of

these compounds in the breath of a healthy and a COVID-19 sick
donor. Aldehydes are derived, along with hydrocarbons, from lipid
peroxidation and inflammatory processes and have been reported
widely in a range of respiratory conditions. Ruszkiewicz and col-
leagues [16] have also found aldehydes (ethanal, octanal, propanal,
heptanal etc.) signals to be elevated in patients with COVID-19 infec-
tion. Grassin-Delyle and colleagues [11] identified aldehydes (meth-
ylpent-2enal, nonanal), 2-4 octadiene and 1-chloropentane as tracers
for COVID-19 infection. While in our case the tested subjects included
a variety of hospitalized and non-hospitalized COVID-19 patients, in
the Grassin-Delyle and colleagues [13] study all the tested subjects
were on mechanical ventilation in the ICU. The differences in the
identified compounds (from a direct comparison) can be explained
assuming that the progression of physiologic response of ambulatory
patients is different compared to that of severely ill and ventilated
patients.

In a recently published study, Berna and colleagues [31] reported
on the identification of breath biomarkers for children with COVID-
19. In their comparative analysis of the compounds with elevated
concentrations for infected patients, six compounds were identified
as being characteristic: three are aldehydes (octanal, nonanal, hepta-
nal), two are alkenes (dodecane and tridecane) and one is a ring-
ether (2-Pentyl-Furan). Isoprene was actively excluded, since it is
omnipresent in people’s breath at elevated concentrations compared
to ambient air, regardless of infection status; our dataset shows the
same results, with no indication of the level of isoprene in regard to
infection status independent of age.

For nonanal, our study confirms the increase for positive patients
as shown in children [31], but we also found a gradual increase in the
level of elevation based on age � the older the patients the higher
the average elevation. Nonanal was also a key biomarker reported by
Grassin-Delyle and colleagues [13] in their adult hospitalized PTR-MS
study as is in the study by Ruszkiewcz and colleagues [12]. For octa-
nal, a similar trend was observed as with nonanal.

Acetaldehyde which has been identified in adults [16] to be
increased is not discussed in the children’s study [31]. We see it as a
primary discriminator in the older population with average double
increases for people of over age 55, while the younger population
showed less of an increase. In addition, acetaldehyde, has been
shown to be a biomarker for Influenza A infections [11]. Ketones,
such as 2-butanone, have been shown to be elevated in adults [16],
but not in children [30] which is also shown in our dataset.

Propionic acid, acetone and hexanal were identified as tracers for
Influenza A and Influenza H1N15. Traxler and colleagues [11] have
also found acetaldehyde, acetone, propanal and n-propyle acetate to
be elevated in patients infected by Influenza A. In our analysis we
excluded acetone, since it is a common compound in human breath
and is also linked to Influenza A. Even though some of the identified
compounds from our study are the same with the corresponding
ones for Influenza A infection, we are confident that our approach of
using a combination of multiple compounds instead of a few tracers
for the determination of COVID-19 infection has the capability of dis-
tinguishing the COVID-19 patients from the Influenza A patients.

From the onset of this study, the authors understand that there
are several implications that need to be studied further. Such implica-
tions include the effect of chronic medical problems in a patient’s
breath. Moreover, the various medications that patients routinely use
can affect their breath pattern[2]. Finally, it is not clear yet if com-
pounds with nitrogen containing elements or those that affect the
nitrogen oxide pathway cause either an improvement or detriment
to the ability to fight viruses via this mechanism. One additional
implication concerns the current antigen-based testing and the unre-
liability of how long the infected person will shed identifiable antigen
[32]. In at least one study [33], 99 of 851 patients continued to test
positive by traditional testing greater than four weeks after their first
positive. In a meta-review, Henderson and colleagues [32] have well

8 A. Liangou et al. / EClinicalMedicine 42 (2021) 101207



outlined the issue of viral RNA shedding and continued positive anti-
gen testing in conjunction with viral culturing. Their conclusion,
while offering sound advice, offers no definitive solution to this issue.
We believe that as our method of testing relies upon physiologic
change as opposed to direct antigen detection that breath analysis
has the potential to determine when the person is no longer at threat
of infecting others. This will require further studies including viral
cultures to prove definitively.

The presented study’s first and foremost goal was to verify
whether an algorithm can be found to interpret the mass spectra of
breath samples from any random individual, without further knowl-
edge on the circumstances of sampling. All other studies at the point
in time of initiation were aims at hospitalized settings or equivalent,
therefore requiring a careful evaluation if the breath sample is con-
taminated by exterior air or not. The goal of finding a pattern of mul-
tiple different AI-based algorithms and combination therefore led to
the final algorithm that now allows for the identification of COVID-19
in patients without further knowledge on the specific conditions of
the sample.

The algorithm in its current form cannot distinguish between
symptomatic and asymptomatic positive samples. The authors are
planning on expanding the capabilities of the algorithm in order to
achieve such separation in future studies by testing more asymptom-
atic positive patients and study the behavior of the model. Such tests
coupled with the corresponding model adjustments will allow a bet-
ter characterization of the asymptomatic positive samples which
could make possible the separation between those two categories.

While this method does not measure the presence or absence of
the virus and is therefore not meaningful to determine whether or
not a person is infectious through their viral load, it offers the ability
to identify whether or not a person is infected and actively fighting
off said infection.

The accuracy and speed of such analysis makes it a perfect tool for
public health measures in areas where large crowds are anticipated,
events of all kinds, or in areas of concentrated continuous presence,
such as airplanes.
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