Chronic Pulmonary Diseases And Associated Neurologic Disturbances

John Bartone
CHRONIC PULMONARY DISEASES AND ASSOCIATED NEUROLOGIC DISTURBANCES*

JOHN BARTONE, M.D.**

In recent years, renewed interest in the neurological manifestations and complications of chronic pulmonary diseases has been aroused. Cameron in reporting the case of a young coalminer with pulmonary emphysema, visual disturbances, and papilledema, appears to have been the first to emphasize the association between these seemingly disparate disorders.1 More recently, Austen has suggested a clinical syndrome consisting of signs and symptoms of pulmonary and cardiac failure, headache, papilledema, involuntary movements of the extremities, and impairment in the level of consciousness.2 Chronic pulmonary insufficiency with its resultant hypoxia and hypercapnia appears to be the direct or indirect influencing factor in the production of these symptoms.

The primary problem of pulmonary insufficiency is common, and the neurologic complications relatively uncommon. The importance of recognizing this association is imperative if unnecessary diagnostic or surgical procedures are to be avoided. Frequently, the neurologic symptoms are so predominant that they may obscure the underlying pulmonary disease. With specific regard to this point Conn reported two cases in which the diagnosis of brain tumor was mistakenly made and in which the degree of the associated pulmonary disease was unrecognized.3 The true nature of the syndrome was revealed by necropsy in both cases. No evidence of an intracranial lesion was found and only signs of increased intracranial pressure were observed.

Also important in the recognition of the above syndrome is the necessity of instituting corrective therapy and, more specifically, that the therapy be directed at the primary underlying disorder. In most instances, measures that have corrected the hypoxia, hypercapnia, cardiac failure, and polycythemia, have resulted in complete remission of neurologic symptoms.

The usual clinical picture observed is that of a middle-aged individual with a longstanding history of chronic asthma, bronchitis, and emphysema, and with progressive development of pulmonary and cardiac failure, headaches, visual disturbances, papilledema, tremor and twitching of the extremities, and impairment of consciousness.

Chronic pulmonary insufficiency is the underlying disorder, but the specific pulmonary disease frequently differs in each case. Chronic bronchitis and asthma are by far the most common etiologic disorders. In none of the reported cases has the subsequent correct diagnosis proved to be brain tumor, either clinically or with post-mortem examination, as in three instances cited by Conn.3 Nevertheless, the differential diagnosis remains difficult, especially in those cases in which signs of increased intracranial pressure persist despite adequate corrective therapy. In these situations, exhaustive efforts must be made to exclude the presence of an intracranial space-occupying lesion.

*Presented at the Neurology-Neurosurgery Journal Club.
**Division of Neurosurgery.
Bartone

Congestive heart failure is present in almost every case. Both sides of the heart may be affected, although right ventricular decompensation is most common and manifested variously by elevated venous pressure, hepatomegaly, peripheral edema, and usually, EKG findings of right axial deviation and right ventricular hypertrophy. Left heart failure is generally indicated by the presence of dyspnea, basal rales, and pulmonary congestion.

Headache is an early and common neurologic symptom occurring in approximately fifty percent of the cases. It is quite variable in location and may be generalized. It is frequently severe and intense, persistent and steady. Often the headache is nocturnal or occurs in the early morning hours, sometimes awakening the patient from a sound sleep. Nausea and vomiting are at times related to the headaches but are not a frequent feature of the syndrome.

The exact mechanism of headaches in these cases is not clearly established but is probably related to the carbon dioxide retention and resultant cerebral vasodilatation and increased cerebral blood flow, rather than to increased intracranial pressure.

Papilledema is a distinctive feature of the syndrome but cannot be distinguished from other causes of this symptom. It may be unilateral or bilateral, and varies in severity from haziness or blurring of the disc margins, to markedly choking, venous congestion, and retinal hemorrhages. Visual acuity may be significantly impaired but usually is not altered. Papilledema has been reversible in nine cases reported, following improvement of the cardiopulmonary status. The relationship between the severity of the papilledema and elevated cerebrospinal fluid pressure is unpredictable.

Manifestations of cerebral dysfunction vary widely and may include drowsiness and hypomnolence, or even stupor and coma. The patients are at times forgetful, inattentive, irritable, and easily confused. Often they respond sluggishly to verbal and noxious stimuli and may appear disoriented and incoherent. Evidence of specific cerebral deficits, such as motor and sensory paralysis, aphasia, and visual—spatial disorientation, is usually lacking.

Tremor and twitching of the extremities are conspicuous and characteristic findings in the more recently reported cases. The tremor is typically of the action type, demonstrated in the outstretched fingers, persisting throughout voluntary movement, and aggravated slightly with effort. The coarse twitching movement of the extremities is reported identical to that seen in hepatic coma, and is arrhythmic and asynchronous. It is usually demonstrated with the arms outstretched and the fingers and wrist in dorsiflexion. Similar twitching of the legs, eyelids, and mouth, are seen following activation and contraction of the respective muscles.

The exact mechanism of the movement disorder is unknown, but hypercapnia, ammonia intoxication, and acidosis, have been suggested as possible factors in its production. Carbon dioxide retention as a possible causative factor has also been suggested because of the observation of myoclonic movements and coma occurring in some patients with pulmonary insufficiency receiving oxygen therapy. These
Pulmonary Diseases and Neurologic Disturbances

signs usually disappeared when the oxygen was discontinued. Furthermore, rhythmic movements of the extremities have been described in patients receiving carbon dioxide therapy.6

Blood ammonia determinations were performed by Austen because of the striking resemblance of the twitching movements to that seen in hepatic coma.1 The results were variable, and ammonia intoxication was not definitely established as a cause for this sign. Liver function tests were generally negative, and ammonium chloride administration after the twitching subsided did not necessarily produce its recurrence.

It has been suggested that increased acidosis may account for the twitching. However, this possibility seems less likely since twitching occurs in some patients with pulmonary insufficiency in the absence of acidosis, and in hepatic coma in which alkalosis reportedly occurs. Furthermore, in diabetic acidosis twitching has not been observed.2

The EEG findings are non-specific and consist primarily of increased voltage and a diffuse slowing of the electrical activity in the delta and theta frequencies. However, these findings occur in all types of coma due to metabolic disturbances and are frequently reversible.

In general, the various neurologic manifestations are in some way related to the underlying cardiopulmonary insufficiency with its resultant hypoxia and hypercapnia. However, the mechanisms for the production of the individual disturbances is variable and uncertain.

The occurrence of papilledema has been reported in twenty-five cases of chronic pulmonary insufficiency. The probable factors contributing to the production of this important sign include, 1) increased venous pressure, 2) hypoxia and hypercapnia, and 3) polycythemia.

Elevated venous pressure is known to produce increased intracranial pressure as manifested by the performance of the Queckenstedt maneuver. However, papilledema and other symptoms and signs of increased intracranial pressure are not necessarily produced by increased venous pressure.7,8 Evidence to this effect is the absence of papilledema in cases of right heart failure, and in mediastinal tumors producing obstruction of the superior vena cava, despite high venous pressures exceeding four hundred millimeters of water. Furthermore, in the majority of cases of chronic pulmonary insufficiency and papilledema, the venous pressure has been found to be normal or mildly elevated.9,10

Beaumont reported a case of papilledema associated with heart failure and attributed the papilledema to increased pressure in the cranial sinuses resulting in interference of filtration of the arachnoid villi, and a rise of cerebrospinal fluid pressure.11

Secondary polycythemia may occur as a physiologic response to chronic anoxia in chronic pulmonary disease. An increase in the concentration of formed elements in the blood may occur, changing the dynamics of the intracranial venous pressure
and resulting in increased blood viscosity. This has been suggested as the possible mechanism for the production of papilledema by several investigators.12,13 However, it is unlikely that polycythemia is a major factor in the production of papilledema, a view supported by Simpson's observation of only one case of secondary polycythemia in eleven patients with pulmonary insufficiency and papilledema.8,10 Furthermore, uncomplicated primary polycythemia is rarely associated with papilledema.2,14 Nevertheless, the association of papilledema and polycythemia is an important one and should raise the possibility of an intracranial expanding lesion. An example of this is hemangioblastoma of the cerebellum associated with polycythemia.

Another contributing factor in the development of papilledema is congestive heart failure as proposed by Austen because of its occurrence in nearly all of the twenty-five cases reported.2 The pulmonary congestion is thought to augment blood-gas abnormalities, resulting in papilledema.

The most likely cause for the production of papilledema seen in pulmonary insufficiency appears to be the presence of hypoxia and hypercapnia, which are known to produce edema and congestion of the brain. This has been suggested by the post-mortem findings of cerebral edema and congestion in thirty-six cases of pulmonary insufficiency reported by Simpson.18 Our examination of necropsies of cases with chronic pulmonary insufficiency has also confirmed the presence of marked congestion and edema of the brain manifested by flattening of the cerebral convolutions, decrease in the size and sometimes near-collapse of the ventricles, and occasional pressure cone due to herniation of the temporal lobes or cerebellum.

Both an elevated carbon dioxide content and a low oxygen saturation may result in cerebral vasodilatation, increasing the cerebral blood flow, producing elevation of the cerebrospinal fluid pressure15 and papilledema.4,10 The effect of carbon dioxide tension is thought to be greater than that of hypoxia in producing these changes.

One problem which remains unanswered, however, is the development of papilledema in some cases of cardiopulmonary insufficiency and not in others. To add further confusion, a case of papilledema and diffuse emphysema, in the absence of hypercapnia, has been recently reported by Leggat.18 This stresses the need for further evaluation of this problem which is made difficult because treatment is necessarily directed at all the symptoms simultaneously, not allowing individual investigation of each contributing factor.

The mental changes that accompany chronic pulmonary insufficiency have been attributed to elevated carbon dioxide tension. In this regard certain observations are of importance.

Carbon dioxide retention is known to cause increased intracranial pressure, presumably as a result of cerebral vasodilatation and subsequent increased cerebral blood flow.4,9,17 Furthermore, it has been suggested that a fall in arterial pH accompanying hypercapnia may produce a diminished cerebral oxygen consumption by interfering with its utilization.18
Pulmonary Diseases and Neurologic Disturbances

The explanation of McCann ascribed to the development of cerebral symptoms in chronic pulmonary insufficiency, is that of impaired circulation at the capillary level due to increased alveolar pressure, as well as diminished negativity of the intrapleural pressure. Further impairment of venous return and insufficient cardiac output may occur due to lack of compensatory rise in intra-abdominal pressure.

More confirmatory evidence suggesting the probable role of hypercapnia in the development of alterations of consciousness, has been the observation of mental changes occurring in anoxemic patients following the administration of oxygen, especially in high concentration. These changes range from somnolence and mild confusion, to coma and even death. Paradoxically, alleviation of these symptoms followed almost immediately upon discontinuation of the oxygen. The explanation for this phenomenon is that during chronic elevation of the carbon dioxide tension, the respiratory center is no longer responsive to changes in blood carbon dioxide levels. Hypoxia then takes over as the major respiratory stimulus through its reflex action on the chemoreceptors of the carotid and aortic-bodies. When oxygen is administered, this effect is abolished resulting in hypoventilation, further carbon dioxide retention, and subsequently coma. Such situations may usually be prevented with the use of mechanical body-respirators producing hyperventilation and reversing the elevated carbon dioxide content without significantly altering respiration during oxygen therapy. In addition, gradually increased concentrations of oxygen have been recommended. It is important to recognize the actual cause of impaired consciousness in these cases, especially where oxygen is used, since the sudden progression of symptoms may be wrongly attributed to the disease, rather than to its therapy.

The purpose of the above presentation has been to stress the existence of a few of the more common neurologic features of chronic pulmonary disorders in the hope that early recognition will avoid misdirected therapy and unnecessary surgical procedures.

REFERENCES

THE RESPONSE OF SINUS NODE FUNCTION TO LIGATION
OF THE SINUS NODE ARTERY*

THOMAS N. JAMES, M.D.¹ AND KEITH REEMTSMA, M.D.²

Experimental production of ischemia of the sinus (sinoatrial) node alone is extremely difficult. Halpern,¹ on the basis of careful anatomic studies of 107 canine hearts, concluded that occlusive vascular changes could not affect sinus node function because of extensive nutrient anastomoses.

In a recent publication Botti and his colleagues² claim to have produced consistent alterations in sinus node function by ligating the sinus node artery. We felt that such an important observation deserved further investigation.

METHOD

In 16 dogs, following intravenous administration of nembutal (30 mg./Kg.), an endotracheal tube was inserted and a right thoracotomy performed. The right

Figure 1

Vinylite cast of the coronary arteries and the right atrium (R.A.) and right ventricle (R.V.) of a dog, demonstrating the typical location of the artery supplying the sinus node. It is usually a terminal branch of the right coronary artery (R.C.A.). A is a view of the anterior aspect of the right chambers; B is a posterior view. In both views the white arrows indicate the sinus node artery; the single black arrow in each view indicates the location of the crista terminalis, seat of the sinus node. The crista terminalis is located between the right atrial appendage and the superior vena cava. In view B the cast of the superior vena cava is seen between the black and the upper white arrows.

*From the Departments of Medicine (1) and Surgery (2), Tulane University School of Medicine, New Orleans, Louisiana.
Supported in part by USPHS Grant H-3545 and H-2628.
Dr. James' present address is: Section on Cardiovascular Research, Henry Ford Hospital, Detroit, Michigan.
atrium was exposed and the artery supplying the crista terminalis identified and ligated (Figure 1); in 2 dogs there were two major arteries supplying this area and both were ligated. All six limb leads of the electrocardiogram (three bipolar and three augmented unipolar leads) were recorded before surgery. Of these six leads the one best showing P waves was selected for monitoring; in all animals this was either lead aVR or II. After ligation of the sinus node artery the electrocardiogram was recorded constantly for 5 minutes, then every minute for 10 minutes, every two minutes for 15 or 20 minutes, and approximately every 10 minutes for the remainder of an hour. Every dog was observed at least an hour with the exception of four, two of whom died prematurely due to technical errors and two others in whom tracings were obtained for only 30 minutes. This schedule of electrocardiographic recording was supplemented by direct observation of atrial activity throughout the experiment and additional records were made at any time abnormal activity was observed.

In 70-90% of dogs the sinus node artery arises from the distal portion of the right coronary artery. In humans there is also only one major atrial artery supplying the sinus node, but arising from the proximal third of the right (60%) or left (40%) coronary artery.

RESULTS

Table I and Figures 2 and 3 present the electrocardiographic changes encountered. In five of the sixteen dogs there were no changes following ligation of the sinus node artery. Two dogs showed minor changes, which were not considered significant. In nine of the sixteen dogs major P wave changes or arrhythmias, most of which were transient, developed as a result of the experiment. Two of the latter group of nine dogs developed ventricular ischemia because of blood loss (dog #10) and asphyxia (dog #5).

DISCUSSION

Our findings fail to confirm those reported by Botti’s group that sinus node function can regularly be altered by occlusion of the sinus node artery. Most of the changes we observed following ligation of this artery were non-specific, of the type seen to occur spontaneously in a dog with heart exposed.

It is difficult to decide which electrocardiographic changes would be due specifically to ligation of the sinus node artery. Atrial premature beats, for example, may be a result either of the experimental procedure or may be unrelated, for they certainly occur both spontaneously and as a result of simple surgical exposure of the heart. Of the variety of changes which were observed, we feel the one which most dependably can be attributed to sinus node artery ligation is sinus arrest. This was observed only once, in dog number 10, where it occurred terminally during a period of hypotension and ventricular ischemia (Figure 3).

Minor changes in P wave voltage may have been a result of the artery ligation but could also occur with a number of other events, such as a change in the anatomic position of the heart in the opened chest. Gross variation in voltage, particularly when in abrupt sequence, was probably not due to position variation.
Sinus Node Function

Table I

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>Duration</th>
<th>Observation</th>
<th>EKG Changes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>60 min.</td>
<td></td>
<td>Minor P wave changes, first 35 minutes.</td>
<td>Normal at 60 min.</td>
</tr>
<tr>
<td>2.</td>
<td>75 min.</td>
<td></td>
<td>Loss of P voltage at 30 sec.; combination (fused) beats at 45 sec.; loss of P voltage at 1 min. 45 sec. again; delta waves at 4 min.</td>
<td>Stable P waves after 4 min., for duration of experiment.</td>
</tr>
<tr>
<td>3.</td>
<td>75 min.</td>
<td></td>
<td>No changes.</td>
<td>SA node artery indistinct.</td>
</tr>
<tr>
<td>4.</td>
<td>120 min.</td>
<td></td>
<td>Occasional atrial prematures at 4 minutes.</td>
<td>Accident with automatic respirator killed animal.</td>
</tr>
<tr>
<td>5.</td>
<td>15 min.</td>
<td></td>
<td>Atrial prematures at 2½ and 3 min.; gross P voltage variation at 7 min.; giant P waves and ventricular ischemia terminally (at 15 min.)</td>
<td>Two major atrial arteries, supplying sulcus terminalis; both ligated.</td>
</tr>
<tr>
<td>6.</td>
<td>30 min.</td>
<td></td>
<td>No Changes.</td>
<td>After 10 min., normal sinus rhythm rest of experiment.</td>
</tr>
<tr>
<td>7.</td>
<td>33 min.</td>
<td></td>
<td>No Changes.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>120 min.</td>
<td></td>
<td>Change in atrial vector immediately after ligation; at 3 min. atrial prematures plus nodal escape beats; atrial prematures at 9 min. with nodal escape rhythm; abrupt giant P wave at 30 min. (Fig. 2),</td>
<td>Coronary artery laceration with blood loss at 18 min., cause of death.</td>
</tr>
<tr>
<td>9.</td>
<td>60 min.</td>
<td></td>
<td>Atrial prematures at 4 min.; shifting pacemaker at 60 min.</td>
<td>2 major atrial arteries from right coronary artery ligated.</td>
</tr>
<tr>
<td>10.</td>
<td>25 min.</td>
<td></td>
<td>Ventricular ischemia at 15 min.; at 22 min. sinus arrest, becoming intermittent at 25 min. (Fig. 3),</td>
<td>After 20 min., sustained normal sinus rhythm.</td>
</tr>
<tr>
<td>11.</td>
<td>60 min.</td>
<td></td>
<td>Q before P wave at 30 min.; atrial prematures at 60 min.</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>60 min.</td>
<td></td>
<td>Multiple nodal prematures at 5, 9, 14, 16 and 20 minutes.</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>60 min.</td>
<td></td>
<td>No changes.</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>60 min.</td>
<td></td>
<td>Nodal and ventricular prematures at 30 sec.; change in P waves vector transiently at 10 min., nodal rhythm at 55 min.</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>60 min.</td>
<td></td>
<td>Atrial prematures at 45 sec.; P-Tp depression at 30 min. and 60 min., both transiently.</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>60 min.</td>
<td></td>
<td>No changes.</td>
<td></td>
</tr>
</tbody>
</table>

alone. The giant P waves occurring terminally in dog number 5, and associated with ventricular ischemia, are probable evidence of atrial injury, as was the P-Tp depression in dog number 15.

Difficulty in producing isolated sinus node ischemia is due not only to extensive collateral blood supply but also to the unimpaired efficiency of the left ventricle, the source of perfusion pressure for the two coronary artery beds. Ischemia produced
Electrocardiograms from Dog 8 (all lead II). A is a control tracing; B is at the time of ligation, begun at the first arrow and completed at the second; C is 3 minutes later, D 9 minutes and E 30 minutes. See Table I for description.

Electrocardiograms from Dog 10 (all lead II). A is a control tracing. B (the next two strips) is a continuous lead recorded at the time coronary artery was accidentally cut, 15 minutes after ligation of the sinus node artery, and shows progressively increasing ventricular ischemia; C is at 20 minutes, D at 22 minutes and E at 25 minutes. See Table I for description.
Sinus Node Function

in the myocardium elsewhere than in the left ventricle need not be associated with any fall in intraluminal pressure of the coronary arteries, and consequently collateral flow may occur at an optimal rate. Dog #10 is an example, having developed sinus arrest only after the occurrence of ventricular ischemia.

In cardiac surgical procedures which compromise flow not only in the sinus node artery but also of any potential collaterals in the area, it can be anticipated that more prolonged or permanent disturbances in atrial pacemaking may occur. This is particularly true of those procedures which involve "cleavage" of the upper interatrial septum, a maneuver which not only damages the sinus node artery but also divides a region across which many of the important anastomoses must pass.8

SUMMARY

The sinus node artery was ligated in 16 dogs. Most of the electrocardiographic changes observed in 9 of the 16 dogs were non-specific and transient.

REFERENCES