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Abstract

Understanding place-based contributors to health requires geographically and culturally
diverse study populations, but sharing location data is a significant challenge to multisite stud-
ies. Here, we describe a standardized and reproducible method to perform geospatial analyses
for multisite studies. Using census tract-level information, we created software for geocoding
and geospatial data linkage that was distributed to a consortium of birth cohorts located
throughout the USA. Individual sites performed geospatial linkages and returned tract-level
information for 8810 children to a central site for analyses. Our generalizable approach dem-
onstrates the feasibility of geospatial analyses across study sites to promote collaborative trans-
lational research.

Introduction

Maintaining patient privacy is a common challenge faced by researchers seeking to understand
the relationship of place and health [1–4]. This issue can be especially problematic in multisite
studies due to study protocols and confidentiality concerns that limit the sharing of geographic
data. Existing approaches to geospatial analyses in multisite studies include the use of a central
site to conduct analyses or the application of spatial techniques (e.g. changing geographic coor-
dinates to protect confidentiality, i.e. “geomasking”) to protect patient privacy [4]. However, the
former method is limited by data use agreements (DUAs) and the latter may result in exposure
misclassification when geomasked locations result in spatial misalignment.

Alternatively, study sites may perform geocoding and geospatial linkages independently
before removing identifiable information for joint analyses. This decentralized approach, how-
ever, faces challenges in reproducibility and standardization due to geocoding methods, geo-
graphic information software (GIS), and expertise that varies across study sites. Here, we
describe the application of a novel method to perform reproducible, standardized, and confi-
dential geospatial analyses for multisite studies. Our approach extends a previously developed
Decentralized Geomarker Assessment for Multi-site Studies (DeGAUSS) containerization plat-
form to perform geocoding and extraction of polygon feature geospatial data over multiple time
periods and large geographic areas [5]. As an example case, we use our approach to ascertaining
US census tract-level information for participants enrolled in the Children’s Respiratory and
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EnvironmentalWorkgroup (CREW), a network of 12 birth cohorts
each studying the development of allergy and asthma in child-
hood [6].

Materials and Methods

Study Population

Our approach was motivated by the CREW consortium, a network
of birth cohorts recruited from 1980 to 2020. Information regard-
ing participating cohorts, including eligibility criteria, study
recruitment, and other methods, are published [6] and in
Supplementary Table 1. Due to its large sample size and geographic
distribution, CREW provides a unique platform to examine envi-
ronmental and community factors that contribute to the dispro-
portionately higher burden of asthma-related morbidity and
mortality among disadvantaged communities [7–10]. A CREW
data sharing protocol and DUA were approved by the local IRB
for each cohort. However, the DUA allowed only limited datasets
to be shared and prohibited the distribution of identifying infor-
mation, including addresses or geocodes.

Distributed Geospatial Analysis

We extended our DeGAUSS software to enable all CREW sites,
including those with limited geospatial expertise, to derive spa-
tio-temporal US census tract-level information for their partici-
pants at birth. A key advantage to DeGAUSS is the use of a
software containerization platform to wrap necessary software,
system dependencies, and geospatial data in a stand-alone package
that will work the same regardless of its host environment [11].
Previously, we created DeGUASS and applied this tool in the
Electronic Medical Records and Genomics (eMERGE) network
in a proof-of-concept study [5].Whereas our prior DeGAUSS soft-
ware included only a geocoder and code to link geospatial coordi-
nates to nearby roadways and one census tract variable, the CREW
consortium required significantly expanded geographical and tem-
poral data to be included for analyses. Therefore, a new custom
DeGAUSS container containing decennial US Census data
(described below), census tract polygon boundary files for the
1980, 1990, 2000, and 2010 census, and R code (R Foundation
for Statistical Computing: Vienna, Austria; 2014) was created to
merge census tract-level data to the geocoded locations of
CREW birth addresses. Additional details regarding DeGAUSS
and the CREW container are provided in the supplementary mate-
rials and online [12,13].

A flow diagram depicting the distributed approach to geospatial
analyses for the CREW consortium is provided in Figure 1. The
DeGAUSS container image was created by C.B. at a single location
and distributed to each cohort. The DeGAUSS software required
cohort users to provide an input.csv file containing the geocoded
coordinates of their participants’ birth record address. Site end
users also specified the census year to assign the appropriate tract
boundary file and census data based on participants’ year of birth.
The output data file from the DeGAUSS container contained the
original input data, including geocoded locations, and appended
census tract information including the census tract FIPS code in
which the birth record address was located and census variables.
Site end users manually removed identifying information, includ-
ing the geographic coordinates and census tract FIPS code, prior to
returning the de-identified dataset to a central coordinating center.

US Census/American Community Survey Data

Longitudinal US Census data and boundary files for the years 1980,
1990, 2000, and 2010 were downloaded for the entire USA from
Social Explorer (www.socialexplorer.com, New York City, NY:
Social Explorer 2017; accessed 12/17–1/18) by year, requested var-
iables, and tract level of geography. For 1980, certain census var-
iables were only available from the National Historic GIS data
service (Minneapolis, MN: NHGIS; accessed 11/17–1/18) and were
updated to reflect variable calculation definitions used in later cen-
suses. As the 2010 census did not include information regarding
median household income, median gross rent, or median housing
values, these data were downloaded from the 2008–2012 American
Community Survey (ACS, https://www.census.gov/programs-
surveys/acs/data.html; accessed 12/17–1/18). Additional informa-
tion regarding the census and ACS variables downloaded and
included in the DeGAUSS container for linkage to birth record
addresses is available in the supplementary material.

Statistical Analyses

After sharing de-identified data with a central site, descriptive sta-
tistics and box-and-whisker plots for all census tract variables were
calculated for the combined CREW consortium and for each
cohort individually. Comparison of census tract-level to self-
reported race, ethnicity, and household income was conducted
by plotting the distribution of each census tract-level variable
according to self-reported variable. Self-reported household
income was compared to census tract median household income
using each cohorts’ income categories as collected by question-
naire. Additional details regarding self-reported race, ethnicity,
and income information are available in the supplementary
material.

Results

All cohorts (n = 12) completed the distributed analysis and
returned de-identified data to the coordinating center.
Collectively, 8997 participants were enrolled in CREW cohorts,
and 98% (n = 8810) of these had birth record addresses geocoded
with sufficient precision for linkage to a census tract.

A summary of population, race, ethnicity, and income data for
the census tracts in which participants resided at birth is provided
in Table 1. CREW participants resided in both low and high pop-
ulation density regions as reflected in the average tract population
density (persons per km2) that ranged from 148 for
Wisconsin Infant Study Cohort (WISC) participants in rural
Wisconsin to 45,772 for CCCEH participants in New York City
(Table 1). Overall, CREW participants lived in tracts that were
67% White, 23% Black, 2% Asian, and 9% Other race. There
was, however, variability in tract racial distribution both within
and across cohorts (Table 1); eight cohorts enrolled participants
from tracts where more than 75% of the population was White,
while participants enrolled in URECA, WHEALS, and CCCEH
resided in census tracts with populations having a greater propor-
tion of Black or Other race. Most cohorts enrolled participants
from tracts having a Hispanic population less than 10%, though
the mean Hispanic population in tracts of CCCEH, IIS, TCRS,
and URECA (Boston, MA and New York, NY sites) participants
ranged from 21 to 57%. The overall mean of households in poverty
was 15% in census tracts where CREWparticipants resided at birth
but as shown in Figure 2, there was significant variability within
and across cohorts. Additional information on census tract-level
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median household income, percentage (%) of households in pov-
erty, % occupied housing, and median housing value as indicators
of neighborhood income and housing is provided in the supple-
mentary materials.

The distribution of tract-level race data (%White, %Black, %
Asian, %Other) according to participants self-reported race is pre-
sented in Figure 3. Overall, participants who reported being White
or Asian race lived in census tracts with majority White popula-
tions, whereas participants who reported Black race resided in cen-
sus tracts with greater variability in shares of White and Black
populations (Figure 3). Additional comparisons of individual-level
to neighborhood-level income and ethnicity are provided in the
supplementary material.

Discussion

Environmental exposures and the community in which they occur
are significant causes of human disease, including asthma [7,14–
17]. Disentangling the environmental and social exposures that
contribute to health disparities necessitates geographically and cul-
turally diverse studies. The methods described here make the char-
acterization of community characteristics in a confidential yet
standardized and reproducible manner more feasible for research-
ers and policy-makers. Importantly, our method is generalizable to
additional types of geographic data, including polygon and point
data, allowing other studies to customize and incorporate geocod-
ing and geospatial analyses into their approach.

Our distributed geospatial approach offers some important
advantages compared to existing methods, including reduced

exposure misclassification, maintaining participant confidential-
ity, and reducing the need for geospatial expertise at each study site
[1]. One existing and alternative method to maintain subject con-
fidentiality is the alteration of participants’ geographic coordi-
nates. Referred to as “geomasking” or “jittering,” this approach
involves either a random shift in the location of subjects or a sys-
tematic transformation of the locations known only to the
researchers [4]. However, this method may introduce errors or
biases introduced due to the displacement of the participants’
actual location, particularly for analyses requiring an exact loca-
tion. For example, the amount of geomasking required to make
geographic datasets de-identified according to HIPAA standards
may result in incorrect census tracts being linked to individual sub-
jects resulting in exposure misclassification. An alternative
approach to incorporating geospatial information into multisite
studies is to obtain IRB approval and DUAs to share subjects’ iden-
tifiable information with a central site for geocoding and analysis.
Challenges with this strategy include hesitation on the part of insti-
tutions to share identifiable information (e.g. addresses).
Performing geospatial linkages at individual sites is another
approach but may produce non-standardized and non-reproduc-
ible results due to the use of varying geocoding platforms, software,
and dataset.

Our DeGAUSS method overcomes these limitations because
the geospatial data and software are developed at a central site,
ensuring that all individual study sites run the same software on
identically constructed datasets. Importantly, our method also
accounts for spatial, temporal, and informational changes in cen-
sus tract boundaries and census data over the study period.

Fig. 1. Flow diagram of distributed geospatial analyses for the Children’s Respiratory and Environmental Workgroup (CREW) consortium. CAS, Childhood Allergy and Asthma
Study; COAST, Childhood Origins of Asthma Study; CCAAPS, Cincinnati Childhood Allergy and Air Pollution Study; CCCEH, Columbia Center for Children’s Environmental Health;
EHAAS, Epidemiology of Home Allergens and Asthma Study; INSPIRE, Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure; IIS, Infant Immune Study;
MAAP, Microbes, Allergy, Asthma, and Pets; TCRS, Tucson Children’s Respiratory Study; URECA, Urban Environment and Childhood Asthma; WHEALS, Wayne County Health,
Environment, Allergy, and Asthma Longitudinal Study; WISC, Wisconsin Infant Study Cohort.
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Table 1. Summary of census tract-level population, race, ethnicity, and income for CREW participants at birth record address

Census variable (mean, SD)

Population Race Ethnicity Income

Cohort
Participants with deocoded

birth address Census year
Population den-

sity (/km2) % White
%

Black
%

Asian
%

Other
%

Hispanic
Median household income

(2012 USD)
% Below pov-
erty level

CREW 8810 1980/1990/2000/2010 5734 (13,897) 67 (34) 23 (32) 2 (3) 9 (14) 13 (21) 53,930 (26,368) 15 (14)

CAS 825 1990 1457 (970) 93 (13) 4 (13) 2 (2) 1 (1) 1 (1) 73,449 (26,708) 6 (5)

CCAAPS 762 2000 1346 (938) 79 (28) 17 (28) 1 (2) 2 (1) 1 (1) 64,895 (27,632) 10 (15)

CCCEH 724 2000 45,772 (1956) 16 (9) 41 (28) 2 (2) 42 (21) 57 (27) 31,171 (7308) 34 (9)

COAST 280 2000 877 (882) 89 (11) 4 (5) 3 (6) 4 (3) 4 (4) 71,090 (20,443) 5 (6)

EHAAS 499 1990/2000 3944 (3936) 83 (23) 9 (19) 5 (4) 3 (6) 5 (7) 86,218 (33,980) 8 (8)

IIS 481 2000 1380 (880) 79 (12) 4 (2) 3 (1) 15 (11) 23 (17) 57,774 (23,415) 9 (8)

INSPIRE 1921 2010 628 (692) 73 (25) 20 (23) 2 (2) 6 (5) 7 (7) 47,606 (20,237) 16 (12)

MAAP 141 2010 1165 (700) 82 (19) 11 (17) 4 (5) 3 (2) 4 (3) 69,042 (27,253) 9 (7)

TCRS 1142 1980 1172 (813) 85 (14) 3(4) 1 (1) 10 (12) 21 (21) 51,535 (17,849) 12 (8)

URECA - Baltimore 163 2000/2010 6480 (3468) 16 (22) 79 (26) 1 (2) 4 (5) 3 (7) 33,202 (12,999) 28 (13)

URECA – Boston 143 2000/2010 8244 (4544) 30 (26) 46 (29) 5 (6) 20 (11) 25 (17) 44,680 (20,190) 23 (11)

URECA - New York 118 2000/2010 33,137 (14,409) 26 (15) 41 (19) 3 (3) 30 (13) 51 (20) 30,967 (17,645) 31 (12)

URECA - St. Louis 178 2000/2010 2375 (1292) 21 (25) 76 (27) 1 (2) 3 (8) 2 (3) 31,467 (10,297) 28 (11)

WHEALS 1248 2000/2010 2376 (1198) 41 (38) 53 (41) 2 (4) 5 (6) 4 (10) 49,092 (24,995) 20 (15)

WISC 185 2010 148 (301) 96 (3) 1 (1) 1 (1) 3 (3) 3 (3) 50,871 (9775) 9 (5)

CREW, Children’s Respiratory and Environmental Workgroup; CAS, Childhood Allergy and Asthma Study; COAST, Childhood Origins of Asthma Study; CCAAPS, Cincinnati Childhood Allergy and Air Pollution Study; CCCEH, Columbia Center for Children’s
Environmental Health; EHAAS, Epidemiology of Home Allergens and Asthma Study; INSPIRE, Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure; IIS, Infant Immune Study; MAAP, Microbes, Allergy, Asthma, and Pets; TCRS,
Tucson Children’s Respiratory Study; URECA, Urban Environment and Childhood Asthma; WHEALS, Wayne County Health, Environment, Allergy, and Asthma Longitudinal Study; WISC, Wisconsin Infant Study Cohort.
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Fig. 2. Percentage* of household poverty in census tacts where CREW participants resided at birth. CAS, Childhood Allergy and Asthma Study; COAST, Childhood Origins of
Asthma Study; CCAAPS, Cincinnati Childhood Allergy and Air Pollution Study; CCCEH, Columbia Center for Children’s Environmental Health; EHAAS, Epidemiology of Home
Allergens and Asthma Study; INSPIRE, Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure; IIS, Infant Immune Study; MAAP, Microbes,
Allergy, Asthma, and Pets; TCRS, Tucson Children’s Respiratory Study; URECA, Urban Environment and Childhood Asthma (BA, Baltimore; BO, Boston; NY, New York; SL, St.
Louis), WHEALS, Wayne County Health, Environment, Allergy, and Asthma Longitudinal Study; WISC, Wisconsin Infant Study Cohort.

Self-Reported Race

Fig. 3. Comparison of census tract race to participants’ self-reported race.
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Participants in CREW cohorts were born over nearly four decades,
and, as detailed in the accompanying supplement, linking geo-
coded addresses with the appropriate census tract at the time of
participant birth was critical to our approach. By including census
tract boundaries and accompanying data from 1980, 1990, 2000,
and 2010 in our DeGAUSS software, we were able to link study
participants to the appropriate census tract and data for their date
of birth. Of note, the DeGAUSS platform is flexible and amenable
to additional geographic data and analyses, including derivation of
nearby greenspace, distance to roadways and other locations, esti-
mating gridded air pollution exposures, area-based indices of
neighborhood deprivation, and others. Specific details and exam-
ple uses are available on the DeGAUSS website [12,13].

As part of the NIH Environmental influences on Child
Health Outcomes (ECHO) program, the objective of CREW is
to understand the etiology of childhood asthma and determine
environmental and genetic contributors. As such, CREW offers
a unique opportunity to examine the significantly higher rates
of asthma prevalence, hospitalization, and morbidity among chil-
dren residing in households and neighborhoods with lower SES, as
compared to White children residing in higher socioeconomic sta-
tus (SES) households and communities [18–20]. Multiple
influences contribute to these disparities including disproportion-
ately higher exposure to air pollution, poor housing, limited access
to care, and other adverse physical and toxicant contributors,
and inherited factors may increase individuals’ sensitivity to these
[21–25]. However, environmental exposures and inherited factors
alone do not fully explain the observed health disparities. For that
reason, hardships linked to poverty, including discrimination,
stress, family turmoil, violence, instability, and others have been
posited to play an important role in the social patterning of disease
[26]. These social determinants of health may be separate from
access tomedical care and are important drivers not only in asthma
morbidity, but also in a wide range of both adult and pediatric
health outcomes, including mortality [27,28]. The importance of
socioeconomic factors is highlighted by observations that dispar-
ities in health outcomes across strata of SES remain present within
racial/ethnic groups [28].

Our methods and results should be considered, however, in the
context of some limitations. Census tract boundaries alone may
not accurately describe individuals’ neighborhood experience
and the use of decennial census data rather than ACS data resulted
in reduced temporal precision but allowed us to increase our his-
toric reach to 1980. There are also limitations to the US Census
data including a lack of specificity in certain variables such as eth-
nicity. For example, Hispanic participants in the TCRS and IIS in
Tucson, AZ, likely differ in ancestry from Hispanic participants
from cohorts in New York City, NY. Finally, our approach requires
expertise at individual institutions to obtain patient or electronic
health records.

In conclusion, we demonstrated the use of a distributed
approach to conduct geospatial analyses for the 12 CREW cohorts
that is also applicable to other multisite studies. Future applications
of our method will include additional gridded data including land
cover, air pollution models, and meteorological information.
Future research to understand the etiology of childhood asthma
will incorporate longitudinal residential locations throughout
childhood and multilevel analyses of individual and neighborhood
environments.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/cts.2021.7.
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