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Modelling the effects of vascular stress in mesangial cells
Bruce L. Riser, Pedro Cortes and Jerry Yee

It has recently been shown that mesangial cells are subjected to
multiple forms of mechanical strain (fluid shear, hydrostatic
pressure, and triaxial stretch) as a result of forces exerted by the
vasculature. Nevertheless, the exact nature and the relative
response to these stimuli have not been clarified. Although it is
now well established that cyclic stretching of mesangial cells in
culture results in the overproduction of extracellular matrix,
indicating how intraglomerular hypertension may lead to
glomerular scar formation, the contribution of different
intracellular signalling mechanisms and extracellular mediators
of the response are only now being identified. Recent studies
point to a role for high glucose concentrations, transforming
growth factor beta and its receptors, vascular endothelial
growth factor, and connective tissue growth factor as important
mediators, or modifiers of the response to mechanical strain.
Although evidence exists for a role for protein kinase C, recent
studies also implicate the mitogen-activated protein kinases
along with enhanced DNA-binding activity of AP-1 as part of the
signalling cascade altering matrix synthesis and cell proliferation
in response to stretch. Finally, recent studies examining the
effects of oscillating hyperbaric pressure demonstrate
similarities, as well as differences, in comparison to those of
cyclic stretch. Curr Opin Nephrol Hypertens 9:43-47. © 2000 Lippincott
Williams & Wilkins.
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CTGF connective tissue growth factor

ECM extracellular matrix

ERK extracellular signal-regulated kinase

JNK c-Jun NHoy-terminal kinase

MAPK mitogen-activated protein kinase

MEK mitogen-activated protein kinase or extracellular signal-regulated
kinase

MC mesangial cells

PTK protein tyrosine kinase

PKC protein kinase C

TGF-p transforming growth factor beta

VEGF vascular endothelial growth factor
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Introduction

Since the importance of glomerular hypertension as a
causal factor in progressive renal sclerosis was first
demonstrated, great interest has been shown in deter-
mining how this physical force is translated to the
biochemical alterations characteristic of the disease [1—
3]. Our laboratory [4] and that of Harris ez @/. [5] showed
in 1992 that the application of cyclic stretch to mesangial
cells (MC) in culture stimulated the production of
extracellular matrix (ECM) molecules, suggesting how
this might occur. Further relevance was indicated by our
finding that the level of increased ECM secreted was
directly related to the amplitude of the stretching force.
These cells appear to be largely responsible for
mesangial matrix synthesis 7z situ, and are therefore the
likely contributors to the increased ECM deposition and
expansion that characterize glomerulosclerosis [6]. In the
intervening years, work in this field has focused
primarily on three areas: (i) the nature of the mechanical
force acting on MG; (ii) signalling events (primary and
secondary); and (iii) soluble mediators or modifiers of the
cellular response to mechanical force. This article will
review work in the area, concentrating on advances made
during the preceding year.

The nature of vascular forces acting on
mesangial cells

Our understanding of the physical forces acting on the
MC is still rudimentary. Nevertheless, three forms of
mechanical stress are possible as forces exerted by the
vasculature on MC: (i) fluid shear; (i) hydrostatic
pressure; and (iii) triaxial stretch. The first, laminar shear
resulting from flow, and its changes (a function of both
velocity and fluid viscosity), has been established as an
important factor in capillary physiology. Within the
capillary, the endothelial cell appears to act as a sensory
cell, whereas the vessel smooth muscle cell functions as
a responder cell [7]. However, evidence is currently
lacking for similar effects of laminar shear on MC
physiology. Plasma fluids pass from the capillary space
through the mesangium, creating some level of shear,
but the slow trafficking of this fluent would be expected
to generate only a low force on the MC. The direct
effect of shear force on MC has not been reported.
However, a report that the supernatant of endothelial
cells exposed to shear inhibits the proliferation of MC,
suggests a possible indirect effect derived from this form
of mechanical stress [8].

MC are subjected to vascular hydrostatic pressure as a
result of the nature of glomerular basement membrane.
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This membrane surrounds the entire mesangial lobule,
but is discontinuous around individual capillaries. This
allows the transfer of intracapillary pressure, and its
fluctuations to the mesangium. It is expected, therefore,
that the hydrostatic pressure within the mesangium is
equal to that in the capillary [9]. As a result of the normal
dampening of intraglomerular pressure at the afferent
arteriole, it is not clear, however, what constitutes a
pathological level of pressure. A limited number of
studies have focused on this form of vascular stress and
will be discussed below.

The third type of mechanical force acting on the MC is
stretch. We have demonstrated that increased capillary
pressure results in glomerular expansion as a result of the
marked compliance of the structures involved [4]. The
overall glomerular distention causes the outward move-
ment of the paramesangial basement membrane to
which MC cytoplasmic projections are firmly attached
[10]. The consequence of pressure-induced glomerular
distention is thus MC mechanical strain in the form of
triaxial stretch. Glomerular distention can be extensive,
with increases of up to 30% of basal volume [11].
However, under normal conditions, because glomeruli
are exposed to only small pulse—pressure variations and
not to the low frequency, moment-to-moment oscilla-
tions in systemic pressure, volume remains stable [12].
This tight control of intraglomerular pressure is the
result of the very effective autoregulation provided by
the afferent arteriole [13]. Such protection is character-
istically impaired, however, in many models of progres-
sive renal disease, including the diabetic and remnant
kidney [13,14]; this results in wide swings in glomerular
volume, magnified by arterial hypertension. Normal
glomeruli with intact autoregulation vary their moment-
to-moment volume by 0.4%, whereas those from
remnant kidneys of hypertensive animals show variations
of up to 7.3% [11]. For this reason, our laboratory has
chosen to model the effects of mechanical strain 7z vitro
using three cycles per minute, as opposed to other
investigators who have chosen a rapid 60 cycles per
minute, apparently to simulate forces generated by pulse
pressure. Although we are beginning to understand the
basic nature of the forces acting on the MC, much
information is therefore still lacking.

Soluble mediators of the response to
mechanical strain

Studies on the effects of cyclic strain on MC have shown
a role for specific secreted cytokines or growth factors in
the response. For example, we have shown that cyclic
stretch of cultured MC upregulates the expression of
transforming growth factor beta (T'GF-f)1, a growth-
regulating, prosclerotic cytokine [15]. In addition to an
increase in the messenger RNA level, there is increased
secretion and activation of the latent molecule. Further-

more, this response is specific because the activities of
IL-1, TNF-« and even TGF-f2, remain unchanged [15].
The relevance of these findings is indicated by the now
abundant evidence for TGF-f as a causal factor in
various forms of glomerulosclerosis [16-19]. More
recently, it was shown by Hirakata and colleagues [20]
that stretch-induced mRNA expression of TGF-f occurs
primarily by tyrosine kinase-dependent mechanisms,
suggesting how this upregulation might occur.

The level of extracellular glucose appears to influence
greatly the response to cyclic stretch. We have recently
shown [21] that the induction of TGF-f activity and
collagen accumulation by stretch is further enhanced in
the presence of increased glucose concentrations. The
marked increase in collagen accumulation that occurs
under these conditions is reversed by the action of a TGF-
p neutralizing antibody [21]. In support of our findings,
Hori er al. [22] reported that anti-latent TGF-§ binding
protein antibodies or synthetic peptides corresponding to
the N-terminal portion of anti-latent TGF-f binding
protein type 1 could also inhibit the stretch-induced
mRNA expression of type I collagen and fibronectin.

Riser er a/. |[15] also found that in cultures of MC
exposed to a gradient of stretching amplitude, only those
cells subjected to significant mechanical strain demon-
strated intense immunostaining for the active form of
TGF-f, as opposed to those in the same culture
experiencing little or no strain. This differential localiza-
tion of active TGF-f occurred even though the
conditioned media bathing all cells contained greatly
increased amounts of this cytokine, compared with
unstretched control cultures. This suggested the possi-
bility that TGF-f binding was increased in response to
cyclic strain. In our most recent studies, we found that
exposure to cyclic stretch significantly increased the
overall number of TGF-f receptors as well as the ligand
associated with TGF-f receptors (fR) I, II and III. SRI
and SRII are the signalling receptors, whereas SRIII, or
betaglycan, is a membrane protein that increases the
binding of TGF-$1 and 3 to the signalling receptors
and may be necessary for equivalent TGF-$2 binding
[23]. Our finding of increased transcript levels and
immunoreactive protein for T'GF-f receptors, in the
absence of a significant change in the apparent dissocia-
tion constant, indicated that stretch-induced binding was
the result of increased receptor synthesis and expression,
and was not due to a change in binding affinity [24°]. A
similar but elevated response was obtained when MC
were grown in high glucose-containing medium. In
contrast, however, to the combined effects of high
glucose and stretch on the induction of TGF-f secretion,
no concerted or synergistic effect on receptor expression
and binding was detected [24°]. This suggests that
control mechanisms for the upregulation of the ligand, in



contrast to the receptor, may be distinct. Most im-
portantly, these results indicate that the modulation of
TGF-f receptors may be an additional control point in
the mechanism of mechanical force-induced increase in
ECM deposition by MC.

Another mediator that may play a role in the response of
MC to mechanical strain is vascular endothelial growth
factor (VEGF). A promoter of vascular permeability,
VEGEF is induced in MC by both TGF-f and stretching,
and induces proteinuria in rats [25]. Gruden and
coworkers [26°] recently investigated the effects on
MC VEGF production of angiotensin II, the interaction
between angiotensin II and stretch, and TGF-f block-
ade. Angiotensin II increased VEGF expression and
production, whereas the angiotensin II receptor antago-
nist losartan prevented angiotensin II-induced, but not
stretch-induced VEGF secretion, suggesting that differ-
ent mechanisms were involved. Stretch-induced VEGF
production was also unaffected by the addition of TGF-
B neutralizing antibody, indicating that TGF-f was not
involved. Finally, there was a significant additive effect
on VEGF production when MC were pre-exposed to
stretch then treated with angiotensin II. Although the
effects on angiotensin II binding were not determined,
qualitative protein analysis using immunoblotting sug-
gested that angiotensin II receptor expression was
upregulated in the prestretched MC [26°].

Most recently, a newly identified prosclerotic cytokine,
connective tissue growth factor (CTGF) has been
investigated in our laboratory as a possible element in
the development of glomerulosclerosis, particularly that
associated with diabetes. The potential importance of
this cytokine was suggested by studies [27], which
demonstrated in other cell types the induction of CTGF
by TGF-f. First, we found that exposure of MC to
recombinant CTGF markedly increased the secretion of
fibronectin and collagen I [28°]. Second, MC were
shown to express mRNA and secrete CT'GF protein at
relatively low levels. However, transcript levels and
protein secretion were greatly upregulated by exposure
to TGF-f and high glucose. Blockade studies with
TGF-f neutralizing antibody demonstrated that the
effect of high glucose was mediated by TGF-§. In
another set of experiments, we found that cyclic
mechanical strain markedly upregulated CTGF expres-
sion [28°]. This induction was first noted at 2 h of
stretch and remained steady for the 48th observation
period. This early induction suggested that stretch-
induced CTGF expression might occur independent of
TGF-p. Interestingly, however, the same level of stretch
failed to increase the levels of secreted CTGF protein.
The reason for this inconsistency is unknown. It may be
that the culture conditions were not optimal for the
expression of C'TGF protein. Alternatively, the inability
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of newly synthesized C'TGF to detach from the cell/
matrix, or a simultaneous increase in C'T'GF catabolism
may explain the observation. Although CTGF appears to
play a role in MC metabolism of ECM, additional work
will be required to define the role of mechanical strain in
CTGF regulation. The in-vivo significance of these
results was indicated by our finding that the glomeruli of
mice, early in the development of diabetic nephropathy,
demonstrate a 28-fold induction of CTGF transcript
levels compared with control animals [28°].

Cell signalling and mechanical strain

The intracellular mechanisms of stretch-induced ECM
production have not been elucidated. However, mechan-
ical strain has been shown rapidly to activate both
protein kinase C (PKC) and protein tyrosine kinase
(PTK) in MC [20,29]. Akai ez al. [29] reported that PKC
activation is followed by the induction of mRNA for the
AP-1 transcription factor ¢-fos, and inhibition of PKC
blocks the increase. Changes in this transcription factor
have been linked to increased ECM production. The
TGF-f1 promoter also contains AP-1 consensus se-
quences and c-fos mediates autoinduction of the
cytokine [30]. More recently, Ishida and coworkers
[31°] showed that mitogen-activated protein kinase
(MAPK) may also play a role in the overproduction of
fibronectin in MC exposed to stretching. MAPK extra-
cellular signal-regulated kinase (ERK) and c-Jun NH,-
terminal kinase (JNK), were activated by mechanical
strain in a time- and intensity- (10-30% elongation)
dependent manner. Significant increased activity oc-
curred at 15%, or greater, elongation. Stretch-induced
activation of ERK was inhibited by a PTK inhibitor, but
not by inhibitors of PKC [31°]. Stretch also enhanced
DNA-binding activity of AP-1, and this change as well as
stretch-induced fibronectin production was blocked by
an inhibitor of MAPK or ERK kinase (MEK). These
results indicate that the activation of ERK may also
mediate the overproduction of ECM proteins in MC
exposed to mechanical strain. Another recent study
aimed at identifying the signalling sequence(s) in the
response to stretching was conducted by Ingram and
colleagues [32°]. They reported that when MC were
subjected to high levels of stretch (29% elongation) an
early activation of MAPK, p44/42 and p38/HOG but not
JNK occurred, and was followed by an induction of
proliferation. In contrast, at a moderate level of stretch
(20% eclongation) there was a lesser increase in p44/42,
no increases in p38/HOG or JNK, and no induction of
cell proliferation. This indicated that the proliferation
induced by mechanical strain is related to marked
activation of MAPK, p44/42 and p38/HOG. The reason
for the difference in JNK response in the two studies is
not clear. However, we have observed that the condi-
tions of culture, including cell density, serum concentra-
tion in the medium, and the stretching cycle, can
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substantially influence the cell response. Both of these
studies utilized low passage rat MC stretched at 60
cycles per minute. However, the latter study [32°]
employed confluent cultures rendered quiescent by
24 h in medium containing 0.5% fetal calf serum. In
contrast, the former study [31°] used subconfluent MC
cultures made quiescent by incubation in medium
containing 0.2% bovine serum albumin.

One important area that has remained largely unexplored
is the transmission of the external mechanical force to an
intracellular primary signal. Intuitively, the prominent
actin cytoskeleton of MC, organized as stress fibers, has
been proposed as an important transducer of mechanical
stretch into excessive ECM. We noted that, as with
other cells subjected to mechanical forces i wvitro,
stretched MC reshape their cell bodies and align their
stress fibers in an orientation perpendicular to the
direction of the stretching force. In our most recent
experiments [33], exposure of MC to a high glucose
concentration decreased their stress fiber number and
thickness and rendered them more susceptible to
disassembly by cytochalasin D. Furthermore, MC grown
in a high glucose environment, treated with cytochalasin
D, and subjected to cyclic stretch could not assume the
expected realignment of their cell bodies and stress
fibers. This lack of alteration was not associated with
overall cellular injury, as shown by its reversibility upon
the removal of cytochalasin D. Finally, the absence of
stress fiber formation was accompanied by an enhanced
fibronectin formation in the stretched MC. These results
suggest that an organized array of stress fibers modulate
the metabolic effects caused by mechanical force.

The response of mesangial cells to
hyperbaric pressure

In comparison to mechanical stretch, far less is known
about the MC response to pure pressure. Kawata ez a/. [34]
used a pressure loading apparatus to subject MC to a
constant high pressure, or in the case of controls, an
atmospheric pressure. They showed that pressure en-
hanced G1/S progression and promoted the rate of DNA
synthesis. The same group subsequently showed that a
constant pressure load activated MAPK and induced the
production of c-fos, a nuclear transcription factor [35]. An
upstream MEK inhibitor of MAPK inhibited this induc-
tion. MAPK phosphorylation and cell proliferation by
high pressure was significantly reduced by a PTK
inhibitor, but not by PKC inhibitors. Antisense MAPK
DNA inhibited MAPK expression by 80% in MC and
significantly blocked pressure-induced cell proliferation,
as did a MEK inhibitor. This indicated that pressure, an
activator of MAPK, induces the activation PTK, and
stimulates proliferation. Most recently, Mertens and
colleagues [36] tested the effects cyclic pressure on MC
growth and collagen synthesis using an oscillating

pressure chamber. The authors found that in subcon-
fluent cultures, oscillating high pressure increased neither
cell- nor medium-associated collagen synthesis. However,
in confluent MC cultures the same treatment resulted in
increased medium-associated collagen. Exposure to high
glucose increased mainly the cell-associated collagen
fraction, which was further increased by oscillating
pressure. The incubation of MC in high glucose
concentrations stimulated cell proliferation, and 1-7 days
of oscillating high pressure significantly decreased pro-
liferation under both glucose conditions. The study
showed that MC growth and collagen synthesis are
influenced by hyperbaric oscillating pressure, supporting
the theory that pure glomerular pressure plays a role in
progressive glomerulosclerosis, inducing responses simi-
lar to those observed with cyclic stretching.

Conclusion

"T'riaxial stretch of MC results from glomerular hyperten-
sion, and has been modelled in cell culture using cycles
that mimic either pulse pressure or moment-to-moment
changes in systemic pressure. The effect of stretching
amplitude has also been examined. Recent work to
determine how such mechanical force leads to the
overaccumulation of ECM has focused on signalling
mechanisms and soluble mediators. Those studies
provide evidence for complex signalling pathways
beginning with a cytoskeletal response to force exerted
on focal adhesions. In addition to the activation of PKC
and PTK, there is enhanced activity of MAPK, p44/42,
ERK and JNK, which appears to be intensity dependent
and casually related to the overproduction of ECM
proteins and altered MC proliferation. The upregulation
of extracellular mediators and their receptors, such as
TGF-f and CTGF appear also to play a role in stretch-
induced ECM accumulation. These responses to stretch
are highly influenced by the extracellular glucose
concentration. CTGF appears to act downstream of
TGF-f, but may be induced by stretch independent of
TGF-f action. In addition to the effects on matrix
accumulation, MC stretch may affect glomerular perme-
ability through the induction of VEGF. This factor is
upregulated by angiotensin II, TGF-f and stretch,
although the mechanisms for stimulation appear to be
different for each. Although in comparison with cyclic
stretch, few studies have examined the effects of
hyperbaric pressure on MC, recent work has indicated
largely similar responses. This includes the activation of
MAPK, altered proliferation and, under certain condi-
tions, increased ECM secretion. Expanded studies in all
of the above areas will be necessary if we are elucidate
the complex pathways whereby mechanical strain
produces the alterations characteristic of progressive
glomerular disease. Such studies will require considera-
tion of the cycle, amplitude and type of force applied, as
well as the cell density or proliferative state.
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