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a b s t r a c t 

Background and Objective: Surface electromyography (sEMG) has been used for robotic rehabilitation en- 

gineering for volitional control of hand prostheses or elbow exoskeleton, however, using sEMG for voli- 

tional control of an upper limb exoskeleton has not been perfectly developed. The long-term goal of our 

study is to process shoulder muscle bio-electrical signals for rehabilitative robotic assistive device motion 

control. The purposes of this study included: 1) to test the feasibility of machine learning algorithms in 

shoulder motion pattern recognition using sEMG signals from shoulder and upper limb muscles, 2) to 

investigate the influence of motion speed, individual variability, EMG recording device, and the amount 

of EMG datasets on the shoulder motion pattern recognition accuracy. 

Methods: A novel convolutional neural network (CNN) structure was constructed to process EMG signals 

from 12 muscles for the pattern recognition of upper arm motions including resting, drinking, backward- 

forward motion, and abduction motion. The accuracy of the CNN models for pattern recognition under 

different motion speeds, among individuals, and by EMG recording devices was statistically analyzed us- 

ing ANOVA, GLM Univariate analysis, and Chi-square tests. The influence of EMG dataset number used 

for CNN model training on recognition accuracy was studied by gradually increasing dataset number un- 

til the highest accuracy was obtained. 

Results: Results showed that the accuracy of the normal speed CNN model in motion pattern recognition 

was 97.57% for normal speed motions and 97.07% for fast speed motions. The accuracy of the cross- 

subjects CNN model in motion pattern recognition was 79.64%. The accuracy of the cross-device CNN 

model in motion pattern recognition was 88.93% for normal speed motion and 80.87% for mixed speed. 

There was a statistical difference in pattern recognition accuracy between different CNN models. 

Conclusion: The EMG signals of shoulder and upper arm muscles from the upper limb motions can be 

processed using CNN algorithms to recognize the identical motions of the upper limb including drinking, 

forward/backward, abduction, and resting. A simple CNN model trained by EMG datasets of a designated 

motion speed accurately detected the motion patterns of the same motion speed, yielding the highest 

accuracy compared with other mixed CNN models for various speeds of motion pattern recognition. In- 

crease of the number of EMG datasets for CNN model training improved the pattern recognition accuracy. 

© 2020 Elsevier B.V. All rights reserved. 

∗ Corresponding author: Robotic Rehabilitation Lab, Department of Biomedical 

Engineering, Wayne State University, Detroit, MI, USA. 
∗∗ Co-corresponding author. 

E-mail addresses: xdzhang@mail.xjtu.edu.cn (X. Zhang), cchen@wayne.edu (C. 

Chen). 

1. Introduction 

When a muscle contracts in response to the intention of the 

brain, efferent nerve signals are generated and sent to motor 

units to control muscle contraction. The nerve activity signals and 

bio-electrical signal in the muscle fibers can be recorded using 

https://doi.org/10.1016/j.cmpb.2020.105721 
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electromyography. The electrical signal magnitude over time can be 

showed in the electromyogram (EMG). EMG contains the tempo- 

ral and spatial information of the nerve action potential of termi- 

nal axons and endplate potentials of neuromuscular junction, and 

the action potentials propagated through sarcolemma and T tube 

membrane during muscle contraction. EMG has been used in clinic 

to check the nerve muscle excitation and nerve conduction func- 

tions [1] . Surface electromyography (sEMG) can be performed by 

placing non-invasive electrodes on the skin’s surface to record un- 

derneath muscle activities. sEMG has been extensively utilized in 

clinical medicine, ergonomics, rehabilitation medicine, sports sci- 

ence, and now into the field of intuitive robot control engineering 

[2,3] . 

Using sEMG for the motion control of robotic assistive de- 

vice is an emerging technique in rehabilitation engineering; EMG- 

controlled hand prostheses or EMG-controlled elbow exoskeleton 

for amputee or stoke patients have been reported in literature 

[4,5] , in which residual weak EMG signals are extracted as com- 

mand signals to operate these assistive robotic devices for rehabili- 

tation or improvement of daily life activity. To improve system per- 

formance in signal recognition, machine learning algorithms and 

techniques have been considered a better approach than tradi- 

tional methods for multiple channels of EMG signals processing 

and proposed for developing new bio-electrical signal processing 

and motion pattern recognition methods [6] . Currently these ma- 

chine learning methods are mainly used in the hand gesture and 

elbow motion pattern recognitions using multiple channel EMG 

signal processing and pattern recognition algorithms [7] . For ex- 

ample, K-Nearest Neighbor (KNN)[8], Linear Discriminant Analy- 

sis (LDA)[9], and Support Vector Machine (SVM) [8] have been 

studied and applied in hand and elbow and lower limb motion 

recognition, robot control, post-injury rehabilitation, and clinical 

research [10] . 

The shoulder joint has complex motion patterns with five de- 

grees of freedom (DOF) of movements [11] . The shoulder girdle 

includes the sternoclavicular joint, scapulothoracic joint, acromio- 

clavicular joint and glenohumeral joint. Multiple muscles sur- 

rounding the shoulder joint are activated during movement, in 

which muscle activation patterns determine the direction of shoul- 

der motion. The basic shoulder joint motions include abduction, 

adduction, flexion, extension, internal rotation, and external rota- 

tion; these motions are required for activities of daily life (ADL), 

including drinking, backward and forward movement of the up- 

per arm, abduction, and lifting of the arm. The EMG-controlled 

shoulder joint exoskeleton has not been fully studied or developed. 

The reasons include that there are challenges in extracting multiple 

shoulder muscle activity signals for motion pattern recognition and 

for shoulder exoskeleton motion control at user’s intent. Processing 

all these individual muscles for shoulder exoskeleton motion con- 

trol in activity of daily life (ADL) needs complex algorithms [12] . 

Appropriate control strategies are still lacking for the wearable 

devices assistive in shoulder movements at user intent [13] . Ma- 

chine learning batch-processing approach may reduce the effort s 

devoted to process multiple individual EMG signal channels for 

motion intent recognition. For these reasons, some machine learn- 

ing algorithms have been developed and used in the analysis and 

pattern recognition of bioelectrical signals associated with limb 

motions [7] . 

To date, some machine learning algorithms can extract the 

specified features from the targeted data and quantified the fea- 

tures for model training using supervised learning process [14] . 

Examples include using K-Nearest Neighbor (KNN) [8] , Linear Dis- 

criminant Analysis (LDA) [9] , Support Vector Machine (SVM) [8] , 

and Artificial Neural Networks (ANN) [15] in model trainings. 

These supervised machine learning methods on EMG signals have 

been used in limb motion recognition, robot control, rehabilita- 

tion, and clinical research [16] . However, the accuracy of feature 

extraction from the EMG signals are affected by many factors, 

including the methods of EMG recording (using different elec- 

trodes or recording devices), subject physiologic variability (age 

and BMI (body mass index)), environmental factor (room tem- 

perature), EMG electrode location on the body’s surface, electrical 

power line noise, and motion artifact. These factors reduce the effi- 

ciency of system robustness and accuracy of recognition [17] , extra 

effort s are subsequently required in signal processing with com- 

plex procedures. 

Deep learning (DL), as a branch of machine learning, has made 

remarkable progress in image recognition, natural language, and 

behavior prediction [18–20] . Hinton and Salakhutdinov proposed 

to reduce the dimensionality of data with neural networks al- 

gorithms [21] , leading to the development of deep neural net- 

work structures, the convolutional neural network (CNN), and the 

recurrent neural network (RNN) which are now used in many 

research fields [22–27] . In terms of EMG signal processing for 

motion recognition, the deep learning method does not manu- 

ally set standards to extract needed features, unlike other ma- 

chine learning algorithms such as KNN and LDA. Instead, DL im- 

plements the relevant propagation rules from the training data 

through repeated iterations of the neural network structure to op- 

timize the algorithm. It has been reported that CNN algorithm 

yields better outcomes in motion pattern recognition by process- 

ing EMG signals [10,28–30] . Using the CNN for shoulder motion 

recognition based on EMG signals has not been reported in the 

literature. 

Extreme learning machine (ELM) is a newer machine learning 

method for EMG signal processing to detect motion patterns. Dur- 

ing multiple EMG channel processing, the structural features of 

each individual EMG channel including time domain, frequency do- 

main, time-frequency domain information should be considered. 

For this reason, the synergy feature extraction is required across 

multiple EMG channels for motion pattern recognition so as to 

simplify control strategy including the control dimensionality re- 

duction [31] . ELM demonstrated an optimal performance for syn- 

ergetic feature extraction of multiple channels of EMG signals to 

classify upper limb motions [32–34] . 

In this paper, we proposed a novel machine learning strategy 

considering both temporal and spatial convolution of CNN struc- 

ture for upper arm and shoulder motion pattern recognition us- 

ing sEMG signals from 12 muscles of the shoulder and arm. The 

long-term goal of our research is to develop the motion pattern 

recognition algorithms to processes the shoulder muscle EMG sig- 

nals for a bionic shoulder exoskeleton volitional control. Addition- 

ally, our goals also include the development of a machine learn- 

ing system to aid in clinical diagnosis of sport injury, evaluation 

of surgical treatment outcomes, determination of time points for 

athlete to return to the sports, as well as the assessment of stroke 

rehabilitation and improvement of activity of daily life. The spe- 

cific aims of this study were to construct an inference model us- 

ing CNN algorithms that can detect a user’s upper limb motion 

intents. EMG data recorded under different motion speeds using 

different EMG recording devices were used for data training. The 

efficiency of the trained model was validated to determine its ac- 

curacy. The CNN model performance under the influence of mo- 

tion speed, individual variability, EMG recording device changeabil- 

ity, and dataset amount used for training was investigated. Over- 

all, this study describes EMG processing using machine learning 

methods for upper arm motion pattern recognition, potentially the 

algorithms obtained from this study can be used in rehabilita- 

tion practice, as well as orthopaedic surgery and sports medicine 

projects. 
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Fig. 1. The sequence diagram of the three experimental paradigms. In paradigm1, 2, Biopac system was used to collect the EMG signals of 7 subjects’ shoulder movements. 

In paradigm 3, Delsy system was used to collect the EMG signals of 8 other subjects’ shoulder movements. The execution speed of paradigm 2 and 3 was determined by the 

subjects, and the execution time was limited within 1.5-2.5s and 1.5-3.5s respectively. 

Table 1 

The series number of the sEMG electrodes and the name of the muscle in which 

they are located. 

Electrode Number Muscle Electrode Number Muscle 

1 Middle Deltoid 7 Infraspinatus 

2 Anterior Deltoid 8 Teres Major 

3 Posterior Deltoid 9 Bicep 

4 Supraspinatus 10 Triceps 

5 Pectoralis Major 11 Wrist flexor 

6 Trapezius 12 Wrist extensor 

2. Materials and methods 

2.1. Subjects 

This experiment has been approved by the university ethics 

committee (Institutional Review Board) and conforms to the 

Helsinki declaration. Fifteen healthy subjects (nine men and all 

right-handed) participated in the study after signing an informed 

consent form. None of the subjects had a previous or a current 

neurological or physical illness or injury. Before the experiment, 

each subject was informed of the experiment content, the purpose 

of the experiment and the detailed experimental process. 

2.2. Shoulder movements and muscle selection 

The subjects performed upper limb movements including drink- 

ing, abduction, and forward and backward (BF) because they are 

the main basic shoulder movements. These movements are also 

the basic training processes in the rehabilitation of the disabled 

patients and frequent motions in activity of daily life (ADL) [35] . 

The natural dropping state of the arm (resting state of the shoul- 

der) was added for a baseline recording of EMG signals. 

EMG signals from 12 muscles that control the movements of 

the upper arm were recorded. Muscle names and the correspond- 

ing electrode numbers are shown in Table 1 . 

2.3. Experimental equipment and paradigm 

The Biopac data acquisition system (Model MP-36, Biopac Inc, 

Goleta, CA) and Delsys EMGwork (Delsys Inc, Boston, MA) were 

used to collect EMG signals from these 12 muscles. The sampling 

frequency was set to 10 0 0 Hz. The Ag-Cl gel surface electrodes 

(Biopac Inc, EL503) were used with 20 mm between probe and 

reference electrodes. The ground electrode was placed on the T1 

spinal process. The skin was wiped with 70% alcohol before the 

electrodes were placed to the skin. 

Fifteen healthy subjects participated in this study. Shoulder 

EMG data were collected in different groups using the following 

three paradigms. An experimental schematic diagram is shown in 

Fig. 1 . 

Paradigm 1 (Normal-speed experiment): 7 subjects followed the 

normal-speed paradigm video and were asked to perform four 

kinds of shoulder movements: drink, abduction, forward and back- 

ward, and static resting while connected to the Biopac MP36 data 

acquisition system. A total of 180 EMG datasets were collected for 

each subject, including 45 datasets for each movement. Resting 

state datasets were collected from the baseline EMG signals for 

about 1.3s before and after each movement. During EMG baseline 

signal recording, the subjects were asked to keep their bodies re- 

laxed and arms down naturally at their sides. During each move- 

ment, the subject watched the normal speed video and followed 

the motion speed as showed in the video to ensure the move- 

ment was completed at a designated moving speed. Each action 

was completed at the speed of one movement in 3.5 seconds. 

Paradigm 2 (Fast-speed experiment): The same subjects partic- 

ipated in the following motion test. The experimental platform 

(Biopac MP36) and the actions required to be performed are the 

same as in paradigm 1. A total of 180 EMG datasets were collected 

from each subject, including 45 for each movement. The subjects 

followed the fast-speed paradigm video and the data was collected. 

As per paradigm 1 , the action execution and collection interval are 

located between the two ends of the basic state interval. The time 

for each action is random between 1.5s and 2.5s, and the total time 

for data collection remains unchanged. 

Paradigm 3 (random-speed experiment using another EMG record- 

ing system): In this group, the Delsys EMGwork system was used 

for the EMG signal recording. The remaining 8 subjects moved 

their arm to perform drinking, abduction, forward & backward ac- 

tions at their will at random speeds. Static motion was recorded 

while the arm was at rest at the participants side between test. A 

total of 180 EMG datasets were collected in each subject, including 

45 datasets of each movement. 

An experimental schematic flowchart is shown in Fig. 1 . The 

purpose of the experimental paradigms is as follows: 1. In the ex- 

perimental paradigm without distinguishing velocity, we can ver- 

ify the basic performance of the model (shoulder muscle activation 

pattern recognition at constant velocity). 2. In real situations, the 

execution of actions is affected by many factors and is definitely 

not uniform. By predicting and recognizing the movement of ran- 

dom speed, we can explore the adaptability of this method in ac- 

tual situations. 3. Test the robustness and adaptability of the model 

through predictive analysis on other data acquisition platforms. 

2.4. Data preprocessing 

The original EMG signals collected by the EMG signal acqui- 

sition platform were 12 channel EMG signals with a sampling 
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Fig. 2. The main structure of CNN model. The two convolution layers extract the one-dimensional receptive field in time domain and space domain respectively, and the two 

max pooling layers reduce the dimension in time domain. The intermediate matrix passes through the full connection layer after plastic operation. Final output is the action 

prediction results. The activation function is ReLU and Sigmoid. Dropout and L2 regularization are used to reduce overfitting. “Conv” is the abbrevation for Convolution. 

Fig. 3. Fig. (a) and Fig. (b) demonstrate the convolution processes in time domain and space (12 EMG recording channels) domain. The length and width of the convolution 

kernel of 1 × 40 in time domain and the kernel of 3 × 1 in space domain represent the size of the receptive field respectively, the depth of the convolution kernel represents 

the number of layers of the feature graph, and the step length of the convolution kernel (3 × 1) represents the overlapping size of two adjacent convolution kernels. The 

matrix element of local receptive field can be reduced, and local features are extracted by convolution operation. 

frequency of 10 0 0Hz. In order to obtain effective information in 

the EMG signals, and to filter out noise and artifacts, a band pass 

filter of 5-250hz was selected. A finite impulse response (FIR) filter 

was selected as the band pass filter. In order to reduce the compu- 

tation of neural networks, many studies performed down-sampling 

operations on the data [36,37] . Since there are pooling layers in 

the neural network for data down-sampling, the original sampling 

frequency was kept to retain the information in the original data 

as much as possible. Due to the small value of the original EMG 

singal voltage collected, in which the order of magnitude of most 

points was 10 −3 , therefore, in order to match the initial weight of 

the neural network and reduce the loss value at the beginning of 

the iteration, we enlarged the original data by 10 0 0 times. 

Four shoulder movements were evenly and randomly dis- 

tributed among all datasets. The data were preprocessed and im- 

ported into CNN network for training. 

2.5. Convolutional neural network 

Compared with traditional machine learning algorithms, CNN 

uses a multi-layer structure to improve the generalization perfor- 

mance and abstract performance of the recognition model [38] . 

The main structure of the CNN built in this study consisted of five 

layers, including two convolution layers, two pooling layers, and 

one full connection layer as shown in Fig. 2 . 

The convolutional layer applied the strategy of a local connec- 

tion and weight-sharing to simulate the local receptive field [39] . 

The size of the receptive field was determined by the convolution 

kernel. The convolution kernel was convolved with the input ma- 

trix to generate featured graphs by the ReLU activation function. 

The pooling layer reduced the sampling of the convoluted inter- 

mediate matrix in the time domain and the space domain; this 

reduced the parameters and computational need of the neural net- 

work and effectively minimized the over-fitting problem [40] . The 

full connection layer weighted the output matrix of the previous 

layer and integrated the local features into the global features. The 

final output was a one-dimensional eigenmatrix representing the 

shoulder muscle activation pattern associated with different move- 

ments. 

Two training datasets were processed in our CNN algorithm: 

forward propagation and back propagation. First, the raw, forward- 

propagated EMG signal datasets, were analyzed through all the 

CNN layers to obtain an output value. The errors between the out- 

put values and the expected values were then calculated to de- 

termine the accuracy of outputs. Next, the error back-propagation 

process was used to modify the weight value. These two processes 

were performed repeatedly by the iterative operation system until 

the loss value of the network was minimized. The gradient descent 

algorithm was then used to modify the weighted value. 

The EMG recording channels and the duration of EMG re- 

sponses associated with a motion were processed in the CNN to 

represent spatiotemporal characteristics in this study. This charac- 

teristic information processed method was similar to the methods 

reported in the literature [12] . A CNN structure of time-space con- 

volution was also used to process shoulder EMG signals for motion 

pattern recognition as shown in Fig. 3 . The time-domain convolu- 

tion was used to generate dimensionality reduction and feature in- 

duction of raw EMG sequencing. The spatial convolution was used 

to establish the connection between 12 EMG channels. The purpose 

of this process was to enhance the relevance of feature integration 

of the full connection layers including the EMG voltage amplitude 

values from 12 muscles over the time during shoulder movements. 

In our CNN model, the weights of the convolution kernel were 

initialized using Xavier initialization [41] to make the output and 

input obey the same probability distribution as much as possi- 

ble. The dropout [42] layer was used to eliminate random points 
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Table 2 

The forward propagation method and its parameters of each layer in CNN, as well as 

the model optimization algorithm and its parameters. 

Layer Method Parameter Value 

Convolution 

1 

Time 

Domain 

Size 1 × 40 

Stride 1 × 20 

depth 16 

Pooling 

1 

Max 

Pooling 

Size 1 × 10 

Stride 1 × 10 

Activation Function ReLu — —

Convolution 

2 

Space 

domain 

Size 3 × 1 

Stride 3 × 1 

Depth 32 

Pooling 

2 

Max 

pooling 

Size 1 × 7 

Stride 1 × 7 

Activation Function ReLu — —

Reshape Dimensionality 

Reduction 

Input Matrix 4 × 4 × 32 

Output Matrix 512 × 1 

Fully Connected — Hidden Modes 100 

Regression Softmax — —

Output One Hot Code Nodes 4 

Regularization L2 Coefficient 0.004 

Dropout Dropout Percentage 0.7 

Loss Function Cross Entropy — —

Loss Reduction Gradient Descent Learning Rate 0.001 

Training Acceleration Batch Normalization Batch Size 15 

Fig. 4. The curve of loss value. The curve showed the validation accuracy over the epochs demonstrating an attenuation curve of loss value in the training process. The 

X-axis represents the number of training iterations, and the Y-axis represents the loss value. Loss is the cross entropy of the predicted output and the target output. 

of the intermediate matrix. L2 regularization [43] was applied to 

the full connection layer. The complexity index model was added 

into the loss function to improve the model’s ability to recog- 

nize random noise. Both the dropout layer and L2 regularization 

were used to reduce overfitting [44] . Cross entropy was adopted 

in the model to calculate the loss value, the gradient descent al- 

gorithm was used for the loss reduction rule. Batch normaliza- 

tion [45] was used to accelerate model training. In this study, 

the construction and training of the CNN model were imple- 

mented using TensorFlow (Google Inc, version: 1.12.0, PyCharm 

IDE and Python 3.5 language). Data transmission was processed 

through serial communication. The forward propagation method, 

variable information, parameter and values for each layer of the 

above optimization algorithm in the CNN model are shown in 

Table 2 . 

In this study 60% of a subject’s EMG dataset were utilized to 

train an inference model, and the rest of 40% of EMG datasets 

were used to test the accuracy of the trained model in motion pat- 

tern recognition. Four shoulder movements were evenly and ran- 

domly distributed among them. A designated CNN trained model 

was validated and finalized through iterations after the loss value 

reached to the lowest level ( Fig. 4 ). The accuracy of a saved 

trained model was then tested to determine its accuracy in mo- 

tion pattern recognition. The effects of subject’s variability, motion 

speed, and EMG recording devices on performance accuracy were 

investigated. 
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Table 3 

Accuracy of seven subjects with normal speed motion predicted by normal speed model. 

Motion Drink F&B Abduction Static Total 

Subjects 

Subject1 99.44% 99.44% 100% 100% 99.72% 

Subject2 95.03% 96.30% 96.30% 98.53% 96.54% 

Subject3 100% 100% 100% 100% 100% 

Subject4 96.75% 97.25% 92.75% 99.25% 96.50% 

Subject5 93.33% 93.33% 94.81% 98.89% 95.09% 

Subject6 99.44% 100% 100% 98.34% 99.45% 

Subject7 92.22% 91.66% 98.89% 100% 95.69% 

Average 96.60%( ±3.16%) 96.85%( ±3.33%) 97.54%( ±2.94%) 99.29%( ±0.72%) 97.57%( ±0.21%) 

Table 4 

Accuracy of seven subjects with fast speed motion predicted by normal speed model. 

Motion Drink F&B Abduction Static Total 

Subjects 

Subject1 68.75% 66.67% 70.83% 98.67% 76.23% 

Subject2 44.22% 49.83% 61.33% 99.17% 63.64% 

Subject3 78.37% 81.72% 83.47% 95.65% 84.80% 

Subject4 67.67% 70.47% 87.54% 99.33% 81.25% 

Subject5 87.83% 88.25% 94.89% 98.03% 92.25% 

Subject6 70.37% 66.75% 75.25% 97.30% 77.42% 

Subject7 72.59% 82.37% 79.78% 92.87% 81.90% 

Average 69.97%( ±12.34%) 72.29%( ±12.04%) 79.01%( ±10.28%) 97.29%( ±2.15%) 79.64%( ±8.16%) 

2.6. Determination of performance accuracy of trained CNN models 

Normal-Speed Model : An inference CNN model was obtained us- 

ing EMG datasets recorded under a constant normal motion speed 

as described in Paradigm 1. 60% of EMG datasets were utilized for 

training and 40% of data for accuracy testing. 

Random-Speed Model: The subjects’ EMG data of normal and fast 

speeds were mixed and input in CNN for training; the speed label 

was not marked during data training. 60% of EMG datasets were 

utilized to train the Random-Speed model and 40% of data for ac- 

curacy testing. 

Cross-Subjects Models: Cross-Subjects models were constructed 

to achieve cross-subjects adaptability. EMG datasets from seven 

subjects were utilized for cross-individual random subject testing. 

EMG datasets from i subjects were mixed for training, and EMG 

datasets from (7 − i) the rest of subjects were utilized for accu- 

racy testing. i was incremented one by one (i < 7). The number 

subjects i used for model training increased successively from 1 to 

6. 

The first model was trained using the EMG data from 1 subject; 

the model’s accuracy was tested using the EMG data from the rest 

of 6 subjects to obtain the average rate of accuracy . 

The second model was trained using the EMG data from 2 sub- 

ject, the model’s accuracy was tested using the EMG data from the 

rest of 5 subjects to obtain the average accuracy rate. 

Using this manner, a total of 6 CNN models were constructed 

and tested. In the sixth model, 6 subject datasets were used for 

training the model, and one subject dataset was used for recogni- 

tion accuracy testing. 

Effect of Cross-Devices on Motion Pattern Recognition Accuracy: 

EMG data of normal-speed and fast-speed motions recorded by 

Biopac system from 7 subjects was used to construct an inference 

model. The accuracy of the model performance was tested by EMG 

datasets recorded by the Delsys system under normal-speed and 

fast-speed movements respectively. 

2.7. Statistical analysis 

The accuracy of created inference models in motion pattern 

recognition was tested 3 times using saved EMG datasets labeled 

with corresponding motions. The average accuracy of each model 

in motion pattern recognition was measured and compared be- 

tween the different inference models using ANOVA, and GLM Uni- 

variate analysis. Statistical analysis was also performed to deter- 

mine if accuracy difference between different models had a statis- 

tical significance using Chi-Square method by SPSS software (Ver- 

sion 25, IBM, Chicago). A p- value smaller than 0.05 was considered 

to be significant. 

3. Result 

The convolutional neural network converged after repeated 

weight iterations in model training as showed in Fig. 4 . All 3 

trained models including mixed-speed, cross-subject, and cross- 

device models achieved a convergence outcome. Average accu- 

racy for motion pattern recognition ranged from 69.96 to 97.5% 

( Tables 3 and 4 , Fig. 5 ). 

3.1. Accuracy of normal-speed model for normal speed motion 

recognition 

The accuracy of the normal speed inference model in the recog- 

nition of normal speed motion using EMG signals was 96.60 ±
3.16% for drinking movement, 96.85% ± 3.33% for forward and 

backward movement, 97.54% ± 2.94% for abduction, and 99.29 ±
0.72% for resting state. There was not a statistical difference (Chi 

Square, Pearson test, p = 0.736). The overall average recognition ac- 

curacy was 97.57% ± 0.21% ( Table 3 ). 

3.2. Accuracy of normal-speed model for fast speed motion 

recognition 

The accuracy of the normal speed CNN model in recognition 

of fast speed motion using EMG signals was 69.97 ± 12.34% for 

drinking movement, 72.29 ± 12.04% for forward and backward 

movement, 79.01 ± 10.28% for abduction, and 97.29 ± 2.15% for 

resting state. The accuracy of resting state recognition was higher 

here than in the other 3 motion groups (Chi Square, Pearson test, 

p = 0.001). There was not a statistical difference among drinking, 

F&B, and abduction groups (Chi Square, Pearson test, p = 0.316). The 
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Fig. 5. The accuracy of models’ in motion pattern recognition. The horizontal axis is the number of subjects used for model training. The vertical axis is the accuracy of each 

model in motion pattern recognition. With the increase of the subject number used in model training, the accuracy of motion pattern recognition increased. 

overall average recognition accuracy for the CNN model was 79.64 

± 8.16% ( Table 4 ). 

3.3. Accuracy of random-speed model for mixed speed motion 

recognition 

The accuracy of the Random-Speed model in recognition of 

mixed speeds of motions using EMG signals was 96.79 ±1.80% for 

normal speed motions, 97.77 ±1.83% for fast speed motions, and 

97.07 ±1.62% for mixed speed motions. ( Fig. 5 ). There was not a 

statistical difference in the recognition of the 3 kinds of speeds of 

motions. (Chi Square, Pearson test, p = 0.902). 

3.4. Accuracy of cross-subjects model in motion recognition 

With the increase of the subject number and training samples, 

the accuracy of motion pattern recognition increased from an av- 

erage of 49.26% to 79.64% ( Fig. 5 ). The accuracy of Model 6 motion 

pattern recognition was higher than in Model 1 (GLM Univariate, 

PostHoc LSD, p = 0.042). 

3.5. Accuracy of cross-device model in motion pattern recognition 

The average recognition accuracy of the cross-devices CNN 

model in predicting motion patterns based on EMG datasets 

recorded by Delsys system was 88.93% for normal speed motions 

and 80.87% for mixed speed motions. The accuracy of the model 

in normal speed motion pattern recognition was higher than the 

accuracy in mixed speed motion pattern recognition (Chi-Square, 

Pearson test, p = 0.001). 

4. Discussions 

This study investigated the feasibility of using CNN machine 

learning algorithms for upper arm motion pattern recognition 

based on surface EMG signals recorded from 12 muscles that con- 

trol motions of drinking, forward and backward movements, ab- 

duction, and resting. Our CNN models obtained from CNN training 

discriminated upper limb motion pattern under different motion 

speed among different subjects using different EMG recording sys- 

tems with an average accuracy ranging from 69.96 to 97.5%. The 

long-term goals of our research are to use these EMG signals to 

control an upper arm exoskeleton and to evaluate functional re- 

covery outcomes after shoulder surgery and postoperative rehabil- 

itation. The accuracy of signal processing for user’s motion intents 

is critical to be successful. Our results demonstrate that sEMG sig- 

nals from these 12 muscles of shoulder and upper arm can be pro- 

cessed for motion pattern recognition among different individuals 

using different EMG recording devices. 

4.1. The state-of-the-arts of shoulder motion pattern recognition 

using ML algorithms 

In recent years, sEMG signals have been increasingly used in 

pattern recognition using machine learning algorithms ( Table 5 ). 

The machine learning methods include K-Nearest Neighbor 

(KNN)[8], Linear Discriminant Analysis (LDA)[9], and Support Vec- 

tor Machine (SVM) [8] , Extreme Learning Machine (ELM)[32, 33], 

Gaussian Mixture Model (GMM)[46], Artificial neural networks 

(ANN)[47], CNN[48-50]. Most of these studies recruited 5-11 vol- 

unteers yielding acceptable outcomes with accuracy of pattern 

recognition ranged from 60.5% to 96.2%, suggesting that machine 
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Table 5 

Summary of machine learning methods using in motion pattern recognition. 

Author Years Subjects Parts Motion Method Accuracy Attributes Reference 

Siqi Cai 2019 5 healthy subjects 

(age 25 ± 4 years, 70 

± 5 kg, 174 ± 6 cm, 

all male and all 

right-handed) 

shoulder 

and elbow 

5 upper-limb motions 

(shoulder flexion, 

abduction, internal 

rotation, external 

rotation, and elbow 

joint flexion) 

SVM Average recognition 

rate: 93.34 ± 0.59% 

Journal [51] 

Chris Wilson 

Antuvan 

2016 7 healthy subjects (6 

males and 1 female, 

age 26.85 ± 1.57 

years) 

shoulder 

and elbow 

5 upper-limb motions 

(elbow flexion, 

shoulder flexion, 

shoulder protraction, 

shoulder retraction, 

elbow extension) 

Synergy 

Feature + ELM; 

EMG 

features + ELM 

Synergy 

Feature + ELM: 65.73 

± 2.60% (Offline) 

91.79 ± 9.86% 

(Online); EMG 

Feature + ELM: 

99.37 ±0.81% (Offline) 

84.09 ±14.35% 

(Online); 

Journal [33] 

Emilio Trigili 2019 10 able-bodied 

subjects (8 male, 2 

female, age 26 ± 5 

years) 

shoulder 

and elbow 

2 motion start of 

upper limb 

(Go-forward, 

Go-backward) 

GMM (Gaussian 

Mixture Model) 

Sensitivity: 89.3% for 

Go-forward and 60.9% 

for Go-backward; 

Specificity: 96.2% for 

Go-forward and 94.3% 

for Go-backward 

Journal [46] 

Qin Zhang 2017 6 able-bodied subjects 

(all male, 23 ± 1 

years old, 62 ± 4.5 kg) 

shoulder 

and elbow 

4 joint angles across 

shoulder and elbow 

PCA/ICA-ANN Best 

method(ICA-ANN): 

91.12% in 70-s 

intra-cross validation; 

87.00% in 2-min 

inter-cross validation 

Journal [47] 

Maurício C. 

Tosin 

2017 10 healthy subjects hands and 

wrists 

8 fingers motion and 

9 wrist motion 

SVM-RFE + ELM Average recognition 

rate: 88.53% 

Conference [52] 

Lason 

Batzianoulis 

2018 8 able-bodied subjects 

(6 males and 2 

females 25– 32 years 

old); 4 subjects with 

transradial 

amputation 

upper limb 

and hands 

reach-to-grasp 

motions for 5 grasp 

types 

LDA; SVM-RBF 

kernel; SVM-linear 

kernel; ESN (Echo 

State Network) 

Best method(SVM-RBF 

kernel): 60.45 ± 8.2%, 

65.82 ± 8% and 77.4 

± 5.88% for 5,4 and 3 

classes, respectively 

Journal [53] 

Khairul 

Anam 

2016 11 able-bodied 

subjects (2 females 

and 9 males, 20 -37 

years old) 

upper limb 

and hands 

8 hand gestures in 5 

arm positions 

AOS-ELM 

(Advanced Online 

Sequential Extreme 

Learning Machine); 

OS-ELM 

AOS-ELM: 86.13 % 

OS-ELM: 86.07% 

Conference [34] 

Ali Ameri 2019 10 able-bodied 

subjects (ages: 

31.4 ±4.1 years, 1 

left-handed, 9 

right-handed) 

upper limb 

and wrist 

4 wrist motions 

(extension, flexion, 

supination, pronation) 

and 4 combinations of 

them 

CNN; SVM CNN: DoF (Fle/Ext): 

94.2 ± 0.6% DoF 

(Pro/Sup): 91.4 ± 1.1% 

SVM: DoF (Fle/Ext): 

88.7 ± 1.5% DoF 

(Pro/Sup): 91.4 ± 1.1% 

Journal [48] 

Muhammad 

Zia ur 

Rehman 

2018 7 able-bodied subjects 

(4 males and 3 

females, age: 24–30 

years, mean age: 27.5 

years) 

upper limb 

and wrist 

7 hand motions (close 

hand, open hand, 

wrist flexion, wrist 

extension, pronation, 

supination, and rest) 

SSAE-f (Stacked 

Sparse 

Autoencoders With 

Features); CNN 

Cross-day 

comprehensive 

accuracy rate: SSAE-f: 

89.02 ± 5.47%; CNN: 

90.21 ± 4.57% 

Journal [49] 

Ali Raza Asif 2020 18 healthy male 

subjects 

(right-handed, aged 

20–35 years, mean 

age 26.2 years) 

upper limb 

and wrist 

10 hand motions 

(hand open, hand 

close, wrist flexion, 

wrist extension, 

forearm pronation, 

forearm supination, 

side grip, fine grip, 

agree and pointer) 

CNN Action with excellent 

accuracy(close hand, 

flex hand, extend the 

hand and fine grip): 

83.7% ± 13.5%, 71.2% 

± 20.2%, 82.6% ±
13.9% and 74.6% ±
15%, respectively 

Journal [50] 

learning methods can contribute to the development of more ac- 

curate surface EMG-based motion pattern recognition algorithms, 

potentially to be used for the motion control of upper limb wear- 

able exoskeleton. 

4.2. Challenges of EMG processing for robot control 

Upper arm motion pattern recognition is important in EMG- 

controlled robotic rehabilitation engineering; there are challenges 

due to the complex activation of multiple muscles and multiple 

DoFs of upper arm movements [54,55] . Although only four arm 

motions were involved in this study, they are important basic func- 

tional movements in the activity of daily life. The combination of 

these four motions in healthy subjects is an important start in re- 

habilitation robotics systems [56] . The availability of upper limb 

assistive devices in a clinical settings is still limited due to the 

tradeoff between the complexity of mechanical configuration and 

the complexity of control systems [57] . 

4.3. Justification of CNN in EMG signal processing 

Although motion pattern recognition of one or two DoFs at one 

joint [58] has been reported, there is little research on motion pat- 

tern recognition of multiple DoFs across the shoulder and elbow 
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joint [59] . EMG-controlled whole upper limb exoskeletons have not 

been reported in literature. This could be due to the challenges 

in signal processing from the complex activation of multiple mus- 

cles for multiple DoFs of upper arm movements [54,55] . We hy- 

pothesized that CNN machine learning algorithms can make multi- 

channel EMG signal processing simple for downstream robotic 

system control based on motion pattern recognition. Our results 

demonstrated that using Tensorflow, PyCharm IDE with Python 

language, and algorithms, upper arm motion patterns were accu- 

rately identified based on surface EMG signals recorded from 12 

muscles that control motions of drinking, forward and backward 

movements, abduction, and resting. This potentially makes down- 

stream trajectory control of an exoskeleton system much simpler. 

The reason for lower accuracy in discriminating motion patterns 

included in drinking and F&B motions are the similar movements 

with similar activations of primary shoulder muscles for these two 

movements [60] . Traditional pattern recognition methods can de- 

tect the difference between motion patterns through matrix di- 

mensionality reduction, but cannot extract the synergic informa- 

tion between channels from the time domain datasets [17] . EMG 

signals of shoulder muscle activation has multi-domain, spatiotem- 

poral characteristics including: information associated with EMG 

recording locations, amplitude difference of electrical signals, acti- 

vation duration, sequence of activation degree, frequency distribu- 

tion of electrical signals, and dynamic changes with time [61] . The 

strategy of convolution in the time domain and the space domain 

applied in the CNN model takes the above characteristics into full 

consideration. After extracting the local features of the convolution 

layer, feature integration is implemented with the full connection 

layers. It not only extracts the characteristics of the time domain 

and the space domain, but also analyzes the correlation between 

them. 

The convolutional and the dropout layer of CNN can provide 

regularization and the use of the ReLU activation function. This 

model speeds up training and avoids the need for pre-training, 

which essentially improves the speed of the training process and 

eases the complication of implementation. All 3 trained mod- 

els, including: random-speed, random-subject, and random-device, 

achieved a convergence outcome within approximately 300 itera- 

tions ( Fig. 4 ). 

4.4. Effects of movement speed on model performance accuracy 

Shoulder muscle activation pattern varies with individual 

habits, body structure, environment, and movement intention [62] . 

The amplitude, frequency, and activation distribution of EMG sig- 

nals vary with different speed of motions, and between different 

recording devices. To determine the feasibility of using a universal 

model for recognition of a motion pattern under different speeds, 

we compared the accuracy of different trained models’ recogni- 

tion under the influence of these factors. Using the normal-speed 

trained model to test the random-speed data, the result showed a 

decrease of about 20% in accuracy. Using a model trained by both 

normal and fast speed EMG data, the results showed an 97% ac- 

curacy in pattern recognition. This is suggestive of the feasibility 

of using mixed EMG datasets to train a universal model for mo- 

tion pattern recognition with a high degree of accuracy. Except 

for static motion, there was a statistical difference in recognition 

accuracy among the 3 trained models (Chi Square, Pearson test, 

p < 0.05); the standard deviation was greater than ±10%. 

4.5. Effects of individual variability on model performance accuracy 

However, a recognition model that only applies to single sub- 

ject is far from enough. Each person’s body structure, movement 

habits, and environment have great individual variability. Some 

studies have shown that when there is no retraining, the perfor- 

mance of the model will decrease due to the non-stationary char- 

acteristics of the sEMG signal [63] . Therefore, in order to have 

excellent recognition performance when applied to new subjects, 

single-subject models need to be retrained. This undoubtedly in- 

creases the complexity of the recognition process. We assumed 

that the mixed training of experimental data from multiple sub- 

jects (Training sample enhancement strategy) can weaken the con- 

founding factors of EMG signals. This is caused by the environment 

and individual differences; these differences must be addressed as 

to strengthen the weight of movement difference characteristics. 

After actual verification, the motion recognition effect of the model 

with an increasing enhancement degree of samples on the 7 sub- 

jects showed an upward trend, as shown in Fig. 5 . From the re- 

sults, there is a big gap in recognition performance between each 

subject, among which the global optimal accuracy rate of no. 3 is 

84.17%, while the accuracy rate of no. 5 is only 68.25%. This may 

be due to the influence of many factors, the activation pattern of 

shoulder muscles of the tested subjects has different components 

than that of other subjects, and the model cannot extract effec- 

tive features well. The Fig. also shows a partial decrease in perfor- 

mance as the sample increases. This situation mainly occurs when 

there are few training samples from 5-subjects to 6-subjects. We 

hypothesized that the former was due to the limited training sam- 

ple, which limited the model’s ability to filter confusing informa- 

tion unrelated to shoulder movements. Therefore, the model does 

not have good universality, and the model is unstable. The latter 

may be due to the fact that with the increase of training samples, 

when n approaches 7, the combination forms of the subjects in the 

verification model decreases. In the test of the 6-subject model, 

there is only one combination form for each subject’s test model, 

which reduces the cardinality, the effectiveness, and the persuasion 

of the results. 

4.6. Effects of cross-devices of CNN model performance accuracy 

Different EMG acquisition devices have different hardware, 

man-machine interactions, signal acquisition systems, and soft- 

ware. These differences may include surface electrodes with differ- 

ent impedances for different systems, wired or wireless data com- 

munication, sampling rates and system delay. Our results demon- 

strated the cross-device CNN model may not predict the motion 

pattern as accurate as the CNN model constructed on an identical 

individual EMG dataset. The CNN model built on the Biopac device 

recorded EMG data predicted a motion pattern with an accuracy of 

97% on the down-streaming EMG data from the same and individ- 

ual device. While the accuracy of this model dropped from 80.87% 

to 88.93% on the EMG data when change from a different device 

for different individuals. This suggested that there was effects of 

individual variability and device difference on the CNN model mo- 

tion prediction accuracy. 

4.7. Advantages of CNN model in EMG signal processing 

Traditional EMG decoding steps mainly include: (1) data pre- 

processing, (2) feature extraction and (3) classification. The neural 

network can combine step (2) and step (3) and automatically iden- 

tify relevant data features. Its main advantage is not that it simpli- 

fies steps, but that it can automatically and dynamically adjust the 

selection and weight of features to suit different experiments, dif- 

ferent subjects, and perhaps even different tasks [64] . 

In order to achieve an excellent recognition effect, the CNN 

model can use the repeated parameter adjustment process, includ- 

ing convolution kernel, pooling layer, activation function, and rel- 

evant parameters of the optimization algorithm. Overfitting means 
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that the Neural Network model overmatches the noise in the sig- 

nal, which is unfavorable to the extraction of important informa- 

tion [44] . Therefore, in the construction process of the Neural Net- 

work model, we consider to adopt regularization [43] and dropout 

[42] rules to avoid overfitting problems. In addition, during the 

training of the Neural Network, the learning rate of the loss re- 

duction algorithm, and the initial weight variable of the model af- 

fect the fitting efficiency and iteration of the network [65] . For ex- 

ample, a small learning rate causes gradient descent to be limited 

to a local minimum, while a large learning rate causes a loss de- 

scent oscillation. Improper selection of an initial weight variable 

can lead to an excessive loss value at the beginning of the itera- 

tion and affect the training efficiency. All 3 trained models includ- 

ing random-speed, cross-subject, and cross-device models achieved 

a convergence outcome, suggesting of that our models were prop- 

erly trained. 

4.8. Influence of the number of datasets on outcome accuracy 

Theoretically, the more datasets can yield a better ML model for 

pattern recognition. As showed in Fig. 5 , increase of dataset num- 

ber produced a higher accuracy in pattern recognition. The num- 

ber of datasets increased from Model 1 to Model 6 with the con- 

sideration of all motion speeds, device difference, and individual 

variability, the pattern recognition accuracy increased. Fig. 5 also 

shows the accuracy of Model 5 was not higher than Model 6, sug- 

gesting that the dataset number in Model 5 and Model 6 may be 

enough to yield the highest accuracy of shoulder motion pattern 

recognition based on EMG signals. 

4.9. Limitations of this study 

There are still some limitations worthy of further study. 

Because this paper is mainly an innovative attempt on deep 

learning algorithms in the EMG signal processing of shoulder 

movement, and mainly describes the universality of the model to 

various influencing factors (random speed, cross subjects, cross de- 

vices), an experiment for people with movement disorders is not 

considered. 

Fifteen subjects may not be sufficient for the construction of the 

training enhanced universal model. It is not clear if increasing the 

sample size will yield a better accuracy. It has been proposed that 

the performance of a CNN model lies in the size of data set; more 

subjects will strengthen the feature selection characteristics of the 

model and enhance the robustness of the model [66] . 

4.10. Future studies 

Because of the lack of experiments on people with movement 

disorders, in further studies we will focus on research regard- 

ing muscle activation characteristics of the disabled or patients 

with weak remnant EMG signals. In this paper, the deep learning 

model is mainly used to identify the shoulder EMG signals, and 

the universality of the model is analyzed for the cross-speed, sub- 

jects, and device. The other state-of-the arts machine learning al- 

gorithms will be investigated and compared to determine the best 

ML method. Next, we will transform the model to real-time online 

control. This CNN model for EMG signal processing will be inte- 

grated into a software system to control an upper arm wearable 

exoskeleton system. 

5. Conclusion 

To predict upper limb motion patterns including drinking, B&F, 

abduction and resting using shoulder and upper arm EMG sig- 

nals, CNN models built on the identical speed yielded a up to 

97.57% accuracy using EMG signals from the same individual and 

device. The Cross-Subjects CNN model and the Cross-Devices CNN 

model yielded motion pattern recognition accuracy of 79.64% and 

88.93% respectively. This study demonstrated that the EMG signals 

of shoulder and upper arm muscles from the upper limb motions 

can be processed using CNN algorithms to decode the identical 

motions of the upper limb including drinking, forward/backward, 

abduction, and resting. Increase of the number of EMG datasets 

for CNN model training improved the pattern recognition accu- 

racy. This study describes the general adaptability analysis of EMG 

recognition in rehabilitation exercise and provides support for fur- 

ther rehabilitation projects for movement disorders. 
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