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An Indistinct Balance: The Safety and Efficacy of Parenteral
Iron Therapy

ANATOLE BESARAB, STANLEY FRINAK, and JERRY YEE
Division of Nephrology and Hypertension, Department of Medicine, Henry Ford Hospital, Detroit, Michigan.

The National Kidney Foundation Dialysis Quality Initiatives
(NKF-DOQI) Anemia Work Group developed clinical practice
guidelines (1) that aimed to achieve a target hemoglobin level
of 11 to 12 g/dl at the lowest cost by optimizing the erythron
response to recombinant human erythropoietin (epoetin). De-
spite the use of epoetin to manage the anemia of chronic renal
failure (CRF) (2–6), many patients remain at hematocrits be-
low currently recommended levels. Persistence of suboptimal
hematocrit levels despite administration of seemingly adequate
doses of epoetin signifies an inadequate response to the agent.
The most common cause for sucherythropoietin resistanceis
an inadequate supply of iron to the bone marrow to sustain
enhanced erythropoiesis (7–13).

The NKF-DOQI Anemia Work Group guidelines support
the implementation of a proactive intravenous iron mainte-
nance regimen. Given that gastrointestinal iron absorption is
less than ongoing iron losses in the majority of hemodialysis
(HD) patients,functional iron deficiencyis likely to develop in
most patients leading to an iron-limited erythropoiesis. We
define functional iron deficiency as a pathophysiologic state in
which the bone marrow’s erythropoietic capacity to respond to
epoetin is limited by iron release from storage depots. The
result of such deficiency is utilization of higher and more
costly doses of epoetin to overcome what iserrantly perceived
as relative resistance to epoetin. Parenteral iron is the treatment
of choice in HD patients with either absolute or functional iron
deficiency since oral iron therapy is nearly always ineffective
in the dialysis population. In fact, the NKF-DOQI guidelines
advocate aggressive detection and management of functional
iron deficiency. An initial and careful scrutiny of the iron status
of the dialysis patient is succeeded by the optimized delivery of
parenteral iron and epoetin to achieve the desired level of
erythropoiesis.

Excessive fear of the potential risks associated with iron
therapy may lead the practitioner to adopt a skewed view of the
role of iron and epoetin in the management of the anemia of
CRF. In this venue, iron has a passive role that justifies
maintenance of iron stores and transferrin saturation (TSAT) at
low levels since epoetin resistance can be overcome by increas-

ing epoetin dose. In this scenario, the means to achieve target
hemoglobin levels of 11 to 12.5 g/dl become subsidiary to the
goal because the benefits of anemia correction (i.e., decreased
mortality, decreased hospitalization, and improved quality of
life) are gained only after attaining target hemoglobin levels.
This rationalization underestimates the role of appropriate iron
prescription, dismissing its cost effectiveness in the global
management of the dialysis patient. Furthermore, hemoglobin
levels are generally more stable over time during judicious
application of iron, avoiding the fluctuating hemoglobin levels
that are frequently present during epoetin-centric anemia man-
agement.

Reducing the epoetin dose in patients may attenuate several
potentially untoward effects of epoetin. Epoetin may promote
hypertension by inducing vascular constriction through en-
hanced endothelin-1 production and by reducing the vasodila-
tory response of resistance vessels by decreasing endothelial
nitric oxide production (14). Furthermore, epoetin-mediated
platelet-derived growth factor release by vascular smooth mus-
cle cells (15) may promote atherogenesis and myointimal hy-
perplasia, particularly in vascular access grafts of HD patients.
A more balanced view of risks and benefits associated with
epoetin and iron in anemia management is depicted in Figure
1.

What is the relative safety of maintaining a higher ferritin
level in HD patients through repeated administration of intra-
venous iron? Moreover, what levels of serum ferritin warrant
concern for iron overload? Parameters that most frequently
stimulate treatment by iron are a set of suboptimal iron indices,
TSAT, and serum ferritin. Despite their wide application, these
parameters frequently fail to detect functional iron deficiency
(16–18). Several studies have explored the issue of whether
increased risks exist for those end-stage renal disease (ESRD)
patients whose ferritin levels consistently exceed 500 ng/ml
(19) and for those who receive iron dextran continually (20–
22). In this article, we will briefly review iron metabolism in
ESRD patients and then critically examine those processes that
inure functional iron deficiency, despite hyperferritinemia. We
will conclude by focusing on the collective experience of
intravenous iron administration in ESRD, contrasting the risks
and benefits of conventional iron therapy.

Iron Deficiency
Pathogenesis of Functional Iron Deficiency

The inability to absorb iron in quantities sufficient to match
the demands of heightened erythropoiesis constitutes the mech-
anism of functional iron deficiency in ESRD patients. Insuffi-
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cient iron absorption may occur even when 200 mg of elemen-
tal iron is ingested. Iron absorption varies inversely with
ferritin levels in healthy subjects and ESRD patients (23). In
ESRD patients, ferritin levels exceeding 100 ng/dl do not
guarantee adequate marrow iron storage and delivery. Further-
more, transferrin levels are frequently depressed in CRF. Sub-
normal transferrin levels limit enterocytic iron uptake. In
ESRD, both evident as well as undisclosed inflammatory pro-
cesses lower transferrin levels while reciprocally elevating
ferritin levels. This combination precludes the requisite com-
pensatory adaptive increase of gut iron absorption. Further-
more, intestinal iron absorption is decreased by gastric proton
pump inhibitors and H2-antagonists; by ingestion of dietary
phytates, oxalates, carbonates, phosphates, and tannates (24);
and by calcium-containing phosphorus-binding compounds
that block iron uptake by enterocytes (25). Thus, current target
hemoglobin levels cannot be achieved in ESRD patients by
oral iron therapy (26). Finally, iron-replete individuals mani-
fest decreased iron stores within 3 mo of epoetin treatment,
thereby complicating the treatment of anemia (27).

Normal iron transport and physiology is depicted in Figure
2A. The normal total circulating iron pool is 3 to 4 mg (28).
Iron is bound and transported in plasma by the non-heme
a1-globulin transferrin. During normal erythropoiesis, all of
the circulating iron is bound to transferrin and iron is turned
over 6 to 10 times daily (29); despite wide variation in iron
stores, the iron pool remains remarkably stable. This observa-
tion suggests that iron release from macrophages is coordi-
nately proportioned to tissue uptake that approximates 24 mg
daily. One important function of macrophages, particularly
Kupffer cells, is to recycle heme iron from senescent red cells
back to transferrin (30). The mechanisms controlling macro-

phage iron output are unclear, but likely involve plasma epo-
etin-mediated increased generation of unsaturated transferrin
that, in turn, results in greater iron extraction from macro-
phages.

Ferritin, a ubiquitous protein, exists as multiple tissue-spe-
cific isoforms. Its only known function is to sequester iron for
storage. Plasma ferritin contains virtually no iron, whereas
iron-overloaded cells contain ferritin and hemosiderin, likely a
ferritin degradation product (26). Expansion of the intracellular
pool of transit iron induces ferritin synthesis, but reciprocally
decreases expression of cell surface transferrin receptors,
thereby diminishing iron uptake. The opposite events occur
during states of iron depletion. In the cell, iron regulatory
proteins are tailored to “sense” iron in transit and to maintain
it at physiologically appropriate levels.

Normally, plasma transferrin is 30 to 40% saturated by iron.
In iron deficiency, elevated transferrin levels maintain the
circulating iron pool despite the marked decrement in TSAT.
Conversely, an iron-overloaded state is defined by a high
serum iron level, notable decrement in circulating transferrin
and markedly increased TSAT. During inflammatory states,
circulating transferrin decreases, but because iron release from
the reticuloendothelial system (RES) is retarded, TSAT
changes little. Thus, the changes in serum ferritin and TSAT of
ESRD patients mimic those inflammatory states. Anemic HD
patients with concomitant inflammation that can be presumed
on the basis of relatively higher C-reactive protein (CRP)
levels absorb iron less readily from the gut than control pa-
tients, who do not manifest elevations of CRP (31).

Table 1 summarizes the diagnosis of absolute iron defi-
ciency in healthy subjects and ESRD individuals. On average,
the total iron binding capacity (TIBC) levels in ESRD patients

Figure 1.Relative benefits and risks of epoetin (EPO) and parenteral iron (Fe) use. Increasing hemoglobin to.10 g/dl by using EPO can reduce
morbidity, mortality, and hospitalization, but may induce hypertensive effects or effects on vascular smooth muscle cells (VSMC) that may
produce undesired effects on vascular access function. Similarly, parenteral iron may be associated with unwanted effects, but prevention of
iron deficiency is cost-effective and may promote stability of hemoglobin, prevent multiple dosing changes in EPO, and improve blood flow
through capillaries by improving the rheologic properties of red blood cells.
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Figure 2.Iron metabolism in healthy men (Normal; Panel A) and end-stage renal disease (ESRD) male patients before epoetin (Panel B) usage
and after epoetin (Panel C) usage for managing anemia. In healthy subjects (Panel A), basal daily erythrocyte production (13) requires the
delivery of 24 mg of iron from transferrin whose total circulating capacity is only 4 mg. External losses are low and therefore enterocyte
absorption is also low. Before EPO use in ESRD (Panel B), erythrocyte production was reduced by 40% or more, and maintenance of
hemoglobin depended on periodic red blood cell transfusion (Red Cross). Because of decreased transferrin levels and the absence of
EPO-driven erythropoiesis, iron redistributed to the reticuloendothelial system (RES) and tissues. In the modern era (Panel C), erythrocyte
production is frequently increased (1.253) to maintain hemoglobin at 12 g/dl because of external dialysis-associated blood losses and shortened
red cell survival. Greater delivery of iron is thus required in the face of decreased transferrin levels and some blockade of iron release from
the RES. This necessitates the use of parenteral iron administration. RES and tissue overload is minimized because of the diversion of iron to
the marrow by EPO-driven erythrocytosis.

J Am Soc Nephrol 10: 2029–2043, 1999 Safety and Efficacy of Parenteral Iron Therapy 2031



are decreased by nearly one-third from normal values (32). In
ESRD, a TSAT of 20 to 30% indicates a substantial decrease
in the circulating iron pool and is equivalent to a TSAT of 12
to 20% in nonuremic individuals. Iron uptake by developing
erythrocytes is highly dependent on transferrin receptor den-
sity, in contrast to other tissues where uptake can accrue via
receptor-independent pathways. We contend that the low TIBC
of the ESRD patient represents one of the key forces that
engenders functional iron deficiency because normal or su-
pranormal erythropoiesis during epoetin therapy mandates
greater-than-normal iron turnover (13). Such a low capacity
system precludes sufficient iron uptake, in spite of adequate
iron storage (32). Consequently, for the ESRD patient to main-
tain a total plasma iron pool comparable to healthy subjects,
the TSAT must be maintained in the 30 to 50% range when the
TIBC has declined by one-third. To achieve this, a therapeutic
paradox arises. The physician must satisfy an increased re-
quirement for iron delivery and optimize anemia management,
yet incur no increased risk to the individual through enhanced
iron administration (primum non nocere).

Death (33–35) and hospitalization rates (36,37) of ESRD
patients vary inversely with hemoglobin levels. Collinset al.
recently showed that HD patients whose hemoglobin levels
decreased from 11 g/dl to,10 g/dl incurred increased risks for
mortality and hospitalization (38). To obtain the benefits of
maintaining the hemoglobin at 11 to 12 g/dl (Hct, 31 to 36%)
for these patients, a more complete elucidation of the long-term
risks of intravenous iron and a definition of the optimal pa-
rameters and tests for iron management will be required.

Diagnosis of Iron Deficiency
The distinction between functional and absolute iron defi-

ciency is one of degree, as iron-limited erythropoiesis occurs in
both circumstances. Functional deficiency precedes absolute
deficiency and is defined by the delivery of less iron to the
developing erythron than that required for optimal epoetin-
driven erythropoiesis. In healthy subjects and iron-replete renal
failure patients, ferritin and TSAT levels are significantly
altered after only 1 wk of epoetin if the dose stimulates
erythropoiesis above basal levels. Majoret al. (39) demon-
strated significant changes in iron metabolism within 7 d of
epoetin therapy, even in iron-replete healthy subjects. Baseline
iron indices were normal, and the reticulocyte hemoglobin
content (HCr), reflecting iron delivery to the maturing eryth-
rocyte, averaged 32 fmol/ml (normal range, 26 to 34 fmol/ml).
Patients who received epoetin but no parenteral iron decreased
their HCr from 32 to 31 fmol/ml and greatly decreased their

serum ferritin levels. However, administration of a 200-mg
dose of iron-saccharate abolished the constraint on erythropoi-
esis, reflected by an increase of HCr to 35 fmol/L and main-
tenance of serum ferritin. Similar data obtained by Eschbachet
al. (2) are shown in Figure 3. Changes of iron parameters in

Table 1. Comparison of iron absolute deficiency in healthy subjects and ESRD patientsa

Parameter Healthy Subjects ESRD Patients

TIBC (mg/ml) ;350 to 430 ;225 to 300
TSAT (%) 15 20
Serum iron (mg/ml) 53 to 64 45 to 60

a ESRD, end-stage renal disease; TIBC, total iron binding capacity; TSAT, transferrin saturation.

Figure 3. Changes in indices of iron delivery in healthy and ESRD
subjects after administration of four doses of recombinant erythropoi-
etin over 7 d. In “iron-replete” nonazotemic healthy individuals (F),
transferrin saturation (TSAT) declines from 30% to,15%, whereas
ferritin decreases from 58 ng/ml to almost 15 ng/ml. Both TSAT and
ferritin levels approach those of absolute iron deficiency. In previ-
ously transfused ESRD patients with much greater iron stores (Œ), the
rate and magnitude of the changes in ferritin and TSAT are similar but
start from higher levels. Adapted fromKidney Int42: 407–416, 1992.
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transfused HD patients parallel those of healthy subjects, the
latter becoming iron deficient within 7 d. ESRD patients who
have never received blood rapidly become iron deficient during
epoetin therapy as do healthy subjects (3,13). Thus, epoetin can
increase marrow demand for iron to an extent greater than that
which can be provided by RES iron output, thus resulting in
ineffective erythropoiesis from functional iron deficiency

Ongoing dialysis-associated blood losses reduce ferritin lev-
els with time, even in iron-overloaded patients (21). Epoetin
accelerates the decline of iron stores as iron is mobilized into
newly formed erythrocytes. (Blood losses and therefore iron
losses increase at the increased hematocrit.) Common thresh-
old values for iron repletion therapy in HD patients are a TSAT
,20% or a ferritin level,100 ng/ml (1), but these parameters
are frequently inadequate to detect functional iron deficiency
(16,17,40). This conclusion is reinforced by a recent Veterans
Administration study (41,42) of 170 HD patients who received
240 courses of iron dextran. A course of iron consisted of 10
successive 100-mg doses of iron dextran administered at dial-
ysis. An increase in hemoglobin to the same epoetin dose or a
decrease in epoetin dose needed to maintain target hemoglobin
in response to a course of iron was used to detect the presence
of functional iron deficiency (18). Data analysis (42) produced
no clear cutoff values for ferritin (i.e., 100 to 300 ng/ml or
TSAT 12 to 20%) that could be used to either positively or
negatively predict the presence of functional iron deficiency
with more than 80% certainty. Therefore, there is no absolute
level of TSAT or ferritin diagnostic of functional iron defi-
ciency. Others have established that functional iron deficiency
may occur at TSAT values approaching 30% (3,18) or ferritin
levels of nearly 600 ng/ml (43–48).

Thus, it is not surprising that a large cross-sectional study
found that hemoglobin directly correlated with serum iron,
inversely with ferritin, but not at all with TSAT (44). Even at
a mean ferritin of 871 ng/ml, parenteral iron treatment could
increase the hematocrit by up to 11% when TSAT was in-
creased from 20 to 32% (45). Perhaps the HCr that increases
within 2 wk of iron treatment may provide an early clue to
iron-limited erythropoiesis and lead to more effective iron
therapy (46–48). In Europe, the percentage of hypochromic
cells is used to reflect functional iron deficiency. However, its
diagnostic utility is offset by the relatively long interval (weeks
to months) that passes before therapy is prompted. Presently,
the only way to definitively exclude functional iron deficiency
is by evaluating the erythropoietic response to additional par-
enteral iron (18,49).

Parenteral Iron Therapy
Efficacy

Many studies indicate that adequate iron stores are critically
necessary to achieve optimal responses to epoetin. Patients
enrolled in the earliest epoetin studies tended to be iron-
overloaded. These subjects’ ferritin levels decreased from ini-
tial values of nearly 1400 ng/ml to 800 ng/ml during the initial
3 mo of treatment. A continued decline to,200 ng/ml oc-
curred during the subsequent 3 yr of monitoring (50). These
declines of ferritin reflected progressive utilization of iron

stored during the corrective and maintenance phases of treat-
ment. Tarnget al. (51) disclosed that those patients who
achieved target hemoglobin levels originally maintained on
average ferritin of 1582 ng/ml and TSAT of 51%. By contrast,
patients failing to achieve target hemoglobin levels had signif-
icantly lower mean ferritin and TSAT values of 141 ng/ml and
25%, respectively.

Intravenously administered iron as iron dextran, iron glu-
conate, iron-hydroxide sucrose complex, or ferric saccharate is
processed by the RES before its transferrin-mediated transport
to the marrow and other tissues (Figure 2A). The most com-
monly used parenteral iron regimen uses intermittent dosing.
Typically, 0.5 to 1.0 g of elemental iron is provided in divided
doses when critical thresholds for TSAT or ferritin levels are
reached (52–55). This scheme and modifications of single total
dose infusion (54) are typically administered intermittently, on
an “as needed” basis. These strategies are suboptimal. Several
recent studies have established that maintenance parenteral
iron administration as opposed to an “as needed” strategy
achieves target hematocrits with lower epoetin doses, presum-
ably abrogating the iron-limited erythroid response to epoetin
(13,32,46,47,56–66). Our studies (32) have determined that
maintenance iron treatment, with an average iron dose of 58
mg/wk (range, 20 to 150 mg/wk) for 72 wk, safely decreased
the erythropoietin dose by 40%. Others have advocated for HD
session-based iron dosing in 15- to 20-mg doses (58–60,67)
or, for those patients being initiated into hemodialysis, iron
therapy alone during the initial management phase (68). Other
groups affirm the use of intravenous iron in pre-ESRD (69) and
peritoneal dialysis patients (70,71). In CAPD patients, a single
1-g infusion over 4 h iswell tolerated (72). Our experience has
shown that peritoneal dialysis patients require approximately
700 mg of parenteral iron yearly, compared to dialysis patients
who receive an average of 2.5 g yearly as maintenance therapy.

The efficacy of iron has been amply demonstrated. In one
striking example, iron treatment alone successfully combated
the anemia of HD patients (68). Patients with no stainable
marrow iron increased their hemoglobin levels from 7.5 to 11.0
g/dl within 1 yr and to 12.6 g/dl by 2 yr without epoetin,
following iron saccharate therapy at a weekly dose of 62.5 mg.
The TSAT increased from 21 to 35% as ferritin increased from
268 to 393 ng/ml. Two control groups who received neither
oral iron alone nor supplemental iron could not correct their
anemia and required monthly packed red cell transfusions of 36
to 53 ml.

The magnitudes of the reductions in epoetin dose associated
with parenteral iron administration have varied significantly
among studies. The results are summarized in Figure 4. Aver-
aged over 13 studies, ferritin increased from a pretreatment
mean of 209 to 447 ng/ml after iron restoration, while mean
TSAT increased from 22 to 35%. Overall, hemoglobin in-
creased 18% while epoetin dosage decreased by 42%. Rosenet
al. (73) and Senger and Weiss (66) noted 75% reductions in
epoetin dose when intermittent monthly iron dosing of 100 mg
was used. Two studies have shown the potential cost benefit of
maintenance iron therapy that is generated by reducing epoetin
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dose (64,65). Even patients with elevated ferritin levels benefit
from parenteral iron and can reduce their epoetin doses (45,74).

We maintain that the optimal application of maintenance
iron therapy in patients on fixed doses of erythropoietin re-
quires judicious proportioning of iron delivery to the marrow,
marrying it to the rate of erythropoiesis. Excessive transferrin
saturation does not enhance erythropoiesis. The very high
TSAT (i.e., .60%) that follow pulse iron therapy (i.e., 10
weekly doses of 100 mg) or large single total dose infusions
(Figure 5) are superfluous (32). We believe that the initial

period during which TSAT may exceed 50% does not offset
the latter intervals of iron-limited erythropoiesis. Achieving a
sustained but lower level of TSAT of 30 to 50% requires
weekly or biweekly iron administration and ensures that eryth-
ropoiesis is not restrained by limitations of iron delivery,
except in the rare circumstance of severe depression of TIBC
to ,150 ng/ml. Recent trends suggest that the “epidemic” of
iron deficiency of HD patients in the United States reported by
the Core Indicator Project has decreased recently. Between
1993 and 1996, the proportion of patients receiving parenteral
iron has doubled to 51% while the fraction of those with TSAT
.20% has increased from 44 to 63%. In addition, the propor-
tion of patients with a ferritin level.100 ng/ml has increased
from 63 to 73% (75).

Safety
In the United States, parenteral iron is administered as an

iron dextran complex, while ferric sodium gluconate and sac-
charate are widely used in Europe and other countries. The
most effective dosing strategies remain undefined. Some reg-
imens deliver iron alone during each HD session, whereas
others coadminister iron with heparin (60,76,77). Iron dextran
preparations can be given slowly as 25- to 200-mg boluses, or
alternatively, infused in 0.5- to 1.0-g quantities. A 25-mg test
dose is recommended before administration of the remaining
dose. Adverse reactions include wheezing, dyspnea, and hypo-
tension. Other side effects include myalgias and arthralgias
(41,54,78,79). Life-threatening reactions are rare, occurring in
only 0.7% of patients, many of whom received multiple doses
(78). In the Veterans Administration EPO trial, Kaufmann and

Figure 4.Regression analysis of 13 published studies examining the
effect of parenteral iron therapy in ESRD hemodialysis patients.
Parenteral iron protocols increased the ferritin from 209 to 447 ng/ml
and the TSAT from 22 to 35%. On average, the EPO dose was
decreased by 42% with an 18% increase in hemoglobin.

Figure 5. Temporal profiles of TSAT achieved by intermittent on-demand iron doses (dashed bold line) in response to decreased TSAT or
ferritin (solid bold line) differ from those achieved by repeated 100-mg doses of iron administered intravenously every 2 wk as maintenance
protocol (solid line). Based on data in reference (32).
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colleagues cited two “possible” severe reactions in their study
involving 2400 doses of epoetin (41). The anaphylactoid reac-
tions are not dose-dependent and may occur after the test dose
or after many previous doses. The mechanisms mediating
hypersensitivity to iron dextran remain unclear, but may in-
volve mast cell degranulation without immune complex in-
volvement (80). However, the symptoms of arthralgias, myal-
gias, and hypotension are rate-related. In our experience,
anaphylactoid reactions are extremely uncommon. The few
patients with documented severe reactions have received iron
dextran without incident, after pretreatment with prednisone,
diphenhydramine, and a type-2 antihistaminic. It is our policy
to administer iron dextran at a rate that does not exceed 5
mg/min. There is no substantial difference in the adverse
reaction profiles of the two available United States iron dextran
preparations (81).

The safety profile of nondextran iron preparations is equiv-
alent to and occasionally superior to that of iron dextran. Faich
and Strobos (82) estimated an overall adverse event rate for
iron dextran of 1.2 adverse reactions per million doses. For iron
gluconate, the overall frequency was 0.6 adverse reactions per
million doses. More fatalities occurred over a 21-yr period
(1976–1996) from iron dextran than from iron gluconate (46
versus0). However, one should note that the types of iron
dextran preparations differed during this period and that the
reporting monitors for iron gluconate may have been less
complete than for iron dextran. More recently, Nissenson and
colleagues (83) reported that iron gluconate administration was
a safe alternative for patients with iron dextran hypersensitiv-
ity.

The European experience with iron saccharate is based on
data from Sunder-Plassman and Hörl (84), who administered
single doses from 10 to 100 mg to their HD patients. TSAT
increased in a dose-dependent manner, but decreased rapidly
within 1 min after the dose. Doses of 40 to 100 mg increased
serum iron when measured 30 min after the dose. The serum
ferritin remained elevated for the entire interdialytic period
only in those who had received a 100-mg dose. “Oversatura-
tion” of transferrin by iron (i.e., TSAT.100%) did not occur
when transferrin levels exceeded 180 mg/ml. In patients with
very low transferrin levels, TSAT exceeded 100%, but the
absence or presence of adverse reactions was not commented
on. Using iron gluconate, administered over either 30 or 240
min, Zanenet al. (85) detected oversaturation in those who
were rapidly infused with iron. Some of these patients exhib-
ited reactions, including hypotension. The authors attributed
these symptoms to the presence of free iron in plasma, result-
ing from delivery of a quantity of iron that transiently exceeded
the iron-binding capacity of all iron-binding plasma proteins,
including transferrin. It has also been speculated that dissoci-
ation of iron from gluconate and saccharate complexes pro-
ceeds more rapidly than for dextran congeners.

More recently, the issue of the appearance of plasma-free
iron during rapid iron infusion has been studied by the bleo-
mycin iron assay (86). In general, bleomycin-detectable iron is
not present when iron sucrose infusions contain,50 mg of
elemental iron. However, bleomycin-detectable iron is consis-

tently present after rapid infusions that contain more than 100
mg of iron. The significance of the bleomycin-detectable iron
is currently unclear. However, adverse reactions are nearly
always obviated by low dose or slow iron infusion. Finally, the
concept of transferrin oversaturation with iron may be mislead-
ing. We have noted that iron oversaturation frequently occurs
with high single dose iron or multiple dose iron-dextran infu-
sions (i.e., 10 weekly 100-mg doses) if TSAT and transferrin
measurements are obtained within 2 to 3 d of infusion (32).
Essentially, during oversaturation, serum iron—the numerator
of transferrin saturation calculation (serum iron divided by
TIBC)—is spuriously increased, thereby elevating TSAT. Cur-
rent calorimetric methods cannot separately determine the frac-
tions of iron resident on dextran and transferrin (87).

Clinical Risks of Iron Therapy
The major biologic functions of iron, aside from its incor-

poration into heme, are its participation in a variety of oxida-
tion-reduction reactions. Normally, iron on transferrin or fer-
ritin is shielded from participation in unwanted redox reactions
(88). However, if iron is released from its ferritin core, it can
catalyze a variety of deleterious reactions. Iron, in the presence
of superoxide and its dismutation product hydrogen peroxide,
can induce chain reaction formation of highly reactive hy-
droxyl radicals by the Haber-Weiss reaction that may depoly-
merize polysaccharides, fracture DNA, inactivate enzymes,
and initiate peroxidation of the cell membrane lipid bilayer. To
counteract rogue free radicals, cells use a primary line of
defense (Table 2) involving superoxide dismutase, catalase,
and glutathione peroxidase. Phospholipid hydroperoxide glu-
tathione peroxidase provides a secondary line of defense, lim-
iting membrane lipoperoxidation. Antioxidants such as vita-
mins E and C may, in part, limit chain reaction formation of
free radicals.

The potential toxicity of chronic iron exposure warrants
concern for dialysis patients. This concern relates to the fol-

Table 2. Mechanisms used to minimize toxic effects of iron

Primary prevention—Iron is chaperoned and shielded
extracellular Fe: transferrin
extracellular heme: haptoglobin, albumin, and hemopexin
intracellular iron: ferritin (normal) and hemosiderin (tissue

accumulation)
transcellularly: carrier proteins (mobilferritin, transferritin,

apoferritin) and chelators (pyrophosphate).
Secondary prevention—Cellular defenses against free radical

formation
enzyme systems within cells
superoxide dysmutase, catalase, glutathione peroxidase
specific enzyme at lipid membranes
phospholipid hydroperoxide glutathione peroxidase
antioxidants

vitamin E, vitamin C, vitamin A
cellular chelators of iron

citrate, ADP, pyrophosphates
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lowing potential complications: (1) parenchymal iron infiltra-
tion; (2) permanent organ damage, including complications of
cirrhosis, pancreatic fibrosis, cancer, and myocardial infarc-
tion; (3) an increased risk of infection; and (4) free iron-
mediated oxidant tissue injury. During inflammation or isch-
emia, the presence of iron in tissues may perniciously
potentiate oxidative injury. This is particularly relevant be-
cause chronic inflammatory states are often concomitants in
the chronically iron-exposed ESRD population.

Tissue Iron Accumulation/Damage
In ESRD, the major risk for iron accumulation stems from

either excessive red cell transfusions or excessive parenteral
iron administration. Bodily iron stores are generally,1 g and
the storage limit of the RES is exceeded at approximately 5 g
of iron with overflow into parenchymal cells (89). Before the
advent of epoetin, iron overload in HD patients was common
and represented the consequence of repeated blood transfu-
sions that offset blood losses (Figure 2B). In the anemia
associated with CRF, red cell iron is shifted into RES storage
deposits. Iron was deposited principally in hepatocytes and
Kupffer cells during concomitantly depressed periods of eryth-
ropoiesis (90). Further iron uptake by nonerythroid tissues was
fostered by downregulation of surface transferrin receptors
during erythropoietin deficiency. Ferrokinetic studies of such
untreated HD patients demonstrated direct correlations be-
tween nonerythroid iron turnover, serum iron levels, and trans-
ferrin saturation. Ultimately, iron overload was demonstrated
in biopsies of marrow and liver (90–93). Elevated serum
ferritin levels were seen even in those patients who had never
received exogenous iron (93).

A variety of methods are available for diagnosing iron
overload. The “gold standard” remains the assessment of the
hepatic iron index in a liver biopsy specimen (94). Noninvasive
means include computed tomography, magnetic resonance im-
aging, and magnetic susceptibility measurement (95). The as-
sessment of iron overload in ESRD patients is confounded by
the normal age-associated increment in iron. If one accepts the
following three suppositions: (1) tissue iron overload results
from red blood cell transfusion or excessive parenteral iron, (2)
RES storage limits are not exceeded until 5 g of iron have
accumulated (96,97), and (3) each nanogram of ferritin per
milliliter corresponds to approximately 8 mg of storage iron
(97), then spillover into parenchymal cells should not occur in
healthy subjects until ferritin levels exceed 625 ng/ml. How-
ever, ferritin levels are affected by inflammation. CRP, serum
amyloid-A, and circulating cytokines are increased in ESRD
patients. Because of the acute phase reactivity of ferritin, the
relationship of tissue iron to serum ferritin is altered such that
ESRD patients probably have lower levels of tissue iron at any
given level of ferritin, compared to age- and gender-matched
healthy individuals. If so, tissue iron deposition in CRF pa-
tients is unlikely at ferritin levels,625 to 800 ng/ml. How-
ever, there are no contemporary studies that specifically exam-
ine the relationship of ferritin to tissue iron in patients who are
already on or are being initiated into a maintenance hemodi-
alysis program.

Figure 6 summarizes the results of one study, conducted
before epoetin was routinely used, that correlated ferritin with
RES stores in liver and spleen (44). These tissue stores did not
correlate with those in the bone marrow (44). Most studies of
iron overloaded dialysis patients have included patients who
received parenteral iron and blood transfusions
(44,92,93,98,99). Gokalet al., in the pre-epoetin era, reported
the distribution of serum ferritin levels in 120 maintenance HD
patients who had received periodic blood transfusions and
parenteral iron dextran (99). In nearly 71% of subjects, ferritin
levels exceeded 800 ng/ml. More than half of the study pop-
ulation had ferritin levels exceeding 1000 ng/ml, a level gen-
erally reflecting iron overload. Hepatic and splenic iron was
detected post mortem in 16 of 22 individuals who had elevated
iron burden that averaged 8.8 g. However, hepatic fibrosis was
present in a single patient. Iron was present in the cardiac
myocytes of five patients, but there was no evidence of fibro-
sis. One investigation has attempted to isolate differences in
the degree of iron overload of HD patients treated for anemia
exclusively by either intravenous iron or blood transfusion
(93). In both groups, ferritin levels ranged from normal to
.1000 ng/ml. Serum ferritin levels were 3- to fivefold greater
in iron-treated individuals. More than half of these maintained
values .1000 ng/ml. Iron was present in hepatocytes and
Kupffer cells in some patients from both groups. The degree of
fibrosis was mild, but the presence of cirrhosis was not spe-
cifically reported. The absence of cirrhosis by liver biopsy was
demonstrated even when ferritin levels approached 3000 ng/ml
after repeated intravenous iron administration. Finally, and
concordant with the above data, parenchymal injury from iron
overloading is exceedingly difficult to achieve in the experi-
mental setting (100,101).

Distinguishing among mechanisms that promote parenchy-
mal iron deposition is important. Hepatic fibrogenesis occurs
after a critical mass of iron has accumulated, approximately 20
to 30 mg iron/g dry wt. Hemosiderosis from iron overload
secondary to red cell transfusions is often complicated by the
acquisition of transfusion-related hepatitis (102), which, in

Figure 6.Relationship of hepatosplenic iron stores to serum ferritin.
Adapted fromLancet1: 652–656, 1982.
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turn, facilitates the deposition of iron into the hepatic paren-
chyma (103). Ethanol-induced or viral hepatic injury may
significantly lower the ferruginous threshold that predisposes
to the development of cirrhosis. There is little direct evidence
that persuasively links parenchymal damage to an iron over-
loaded state in HD patients. Since a diverse group of disorders
can produce histologic and functional changes in liver (hepa-
titis B or C), pancreas (diabetes), and heart (hypertension,
anemia, coronary artery disease [CAD]), and these disorders
frequently complicate the clinical course of the dialytic patient,
the issue is confounded further.

Erythropoiesis is stimulated in the anemic patient treated
with epoetin (Figure 2C). Epoetin induces synthesis and ex-
pression of transferrin receptors on the cell surface by activat-
ing iron regulatory protein-1 (IRP-1). IRP-1 stabilizes the
messenger RNA of the transferrin receptor for its subsequent
translation to receptor protein (104). Consequently, the prefer-
ential uptake of iron by the erythron reduces the likelihood of
iron deposition in nonerythroid tissues. Serum ferritin levels
decrease abruptly after initiation of epoetin in CRF patients
(3,105), and in healthy subjects (2,39). In fact, stored iron is
mobilized to support new hemoglobin synthesis. Hence, pa-
renchymal iron deposition should no longer constitute a prob-
lem because most patients deprived of iron while receiving
EPO quickly deplete their iron stores (2,39,105). Moreover,
further depletion of iron stores occurs in the HD patient due to
ongoing treatment- and dialyzer-related blood losses. Iron
overload described in the early epoetin era was in fact treated
rapidly by periodic phlebotomy and escalating doses of epoetin
(106,107). Today, very few dialysis patients are iron over-
loaded to the extent seen before availability of epoetin; how-
ever, iron overload may still occur when one of several specific
circumstances occurs. These are a continued requirement for
blood transfusions, an inability to be successfully treated with
epoetin, and the presence of the hemochromatosis gene (108).
Penetrance of the abnormal allele is high; 1 in 300 Caucasians
is a homozygote and 1 in 10 people is a heterozygote.

Increased Free Radical Generation from Free Iron
The potentially noxious effects of increased iron burden in

the CRF patients cannot be dismissed. The dialytic procedure
itself induces free radical formation (109,110). Free radicals
are difficult to quantify, and indirect methods have been used
to assess free radical formation. The most direct assays quan-
tify changes in polyunsaturated fatty acids or advanced oxida-
tion protein products. Less direct methods measure cellular
malondialdehyde (MDA) content or carbonyl-containing com-
pounds. The least specific method measures thiobarbituric ac-
id-reactive substances (TBAR). Peroxidation can also be as-
sessed by the consumption of antioxidants such as vitamins E,
C, A, and substance Q (ubiquinone). Finally, changes in anti-
oxidant enzyme systems, including catalase, glutathione per-
oxidase, and superoxide dismutase, are also used to infer thede
novogeneration of reactive oxygen species.

During periods of oxidative stress, an increased bodily iron
content may represent increased liability for the ill dialysis
patient. Leukocytes are known to migrate into areas of tissue

injury where they can generate superoxide, which can reduce
ferritin-bound Fe31 (ferric iron) to Fe21 (ferrous iron) and
generate free radicals. In experimental models, increased tissue
iron content amplifies free radical-mediated oxidative tissue
damage (111). In addition, iron has been linked to mutagenesis
and carcinogenesis (112). Chronic inflammation, a frequent
concomitant of dialysis patients, can conceivably prompt the
emigration of activated circulating leukocytes from the circu-
lation into iron-rich tissues, and their presence within inflam-
matory loci could potentiate ongoing cellular injury. However,
these unfavorable circumstances are mitigated, in part, by
upregulation of antioxidant systems that protect cells against
lipoperoxidation (113). Overall, the contributory role of iron to
such pathogenic events in dialysis patients is controversial.

Iron-induced lipoperoxidation and reactive oxygen species
formation in HD patients have been ascribed to infusions of
iron dextran and gluconate after their administration as 40- to
60-mg doses over 15 min (114). Both preparations increased
4-hydroxinonenal, a marker of lipid peroxidation, by nearly
25% within 2 to 4 h after the dose. These increases are modest
and their significance is unclear, since healthy control subjects
have not been studied. The study by Banyaiet al.(86) indicates
that a rapid 100-mg infusion of iron sucrose is associated with
bleomycin-detectable free iron for up to 3 h after the dose.
However, the authors reported no evidence of acute or chronic
toxicity in their study patients. Other studies have shown that
the oxidative stress that succeeds an iron hydroxide sucrose
infusion is of minor degree and attenuated by a single 1200 U
dose of vitamin E (115).

When levels of oxygen free radicals and markers of peroxi-
dation (MDA, advanced oxidation protein products, carbonyl
content) are examined in HD, the latter are increased, whereas
the levels of intrinsic antioxidants (vitamins C, E, and Q)
decrease. However, long-term epoetin treatment of anemia,
regardless of intravenous iron therapy, does not alter these
parameters, despite marked differences in ferritin levels (116).
The latter studies are in keeping with those performed by
Delmas-Beauvieuxet al. (113), who could not demonstrate
significant erythrocyte membrane lipoperoxidation or changes
in antioxidant enzyme levels unless anemia was managed
solely with parenteral iron. Then, MDA increased and antiox-
idant enzymes decreased. Taken collectively, the data suggest
that there may be some risk from free radical formation asso-
ciated with solitary iron therapy in anemia management, but
not when iron is chronically used (,200 mg/mo) in combina-
tion with epoetin.

CAD and Myocardial Infarction
Iron stores in nonazotemic men progressively increase with

age (117). In nonazotemic women, the increase occurs after
menopause. To explain the lower incidence of CAD in women
(118), Sullivan formulated the “iron hypothesis,” which stated
that the large gender differences in myocardial infarction rates
among developed countries could be attributed to the gender-
related differences in bodily iron stores. The generation of free
radicals by iron and the consequent oxidation of LDL-choles-
terol lent further credence to the theory. The adverse effects of
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iron on CAD were first described in Finland, where it was
shown that the risk of acute myocardial infarction increased
twofold independently of LDL cholesterol as the ferritin level
surpassed 200 ng/ml (119). However, other studies using case-
control or prospective cohort designs have not confirmed an
increased rate of risk of CAD attributable to iron (120–122). In
fact, in the NHANES I study, greater iron intake was associ-
ated with decreased CAD risk (123). In the elderly non-
azotemic population, mortality from cardiovascular disease
and all-cause mortality is associated with lower iron levels
(124). Nurko and Young (125) found no relationship between
baseline ferritin levels and death attributable to cardiovascular
disease in 2021 patients examined during WAVE I of the
USRDS Mortality Morbidity Study. All-cause mortality over a
2-yr period was similarly independent of ferritin levels in this
analysis. Significantly, multiple covariates were examined in
this study, reflecting the prospective format of its data collec-
tion. Two recent reviews have examined the conflicting epi-
demiologic observations relating iron to CAD and suggest that
only future clinical trials can resolve this issue (126,127).

Findings in nonazotemic patients are difficult to extrapolate
to patients with ESRD. For instance, repeated phlebotomy in
nonazotemic male subjects with ferritin levels.200 ng/ml
reduces the extent of free radical generation as assayed by
TBAR (128). To the extent that declines in TBAR reflect
diminished oxidative stress, reducing iron stores might reduce
the rate of myocardial infarction if carried out over a sufficient
time period. However, there is no existing long-term study that
confirms this hypothesis even in nondialysis patients.

Two studies have impugned an increased risk for cardiac
death associated with the repetitive administration of iron
dextran over 5 to 6 mo (21,129). Collins and coworkers found
a relative risk (RR) for cardiac death of 1.11 in HD patients
who received at least 1.7 g of iron dextran in a 3- to 6-mo
period, compared to individuals who did not receive any iron
during a preceding 6-mo entry period (21). Besarabet al. (129)
reported, in apost hocanalysis, an increased risk for all-cause
mortality in the “normal hematocrit” subgroup of the Normal
Hematocrit Trial in patients with cardiac disease. Within the
normal hematocrit subgroup, the average cumulative iron dex-
tran dose over 6 mo was 372 mg greater in subjects who died
than in survivors. The odds ratio (OR) for death was 2.4 for
patients who receivedany amount of iron compared to none
during the 6 mo preceding death or censoring. However, mul-
tivariate analysis was not performed with respect to the hemat-
ocrit finally achieved, loss of vascular access and its effect on
Kt/V, or four other important baseline covariates: age, NYHA
III cardiac disability, presence of peripheral vascular disease,
and absence of hypertension. Inpost hocanalyses and epide-
miologic studies, it is difficult to separate cause from effect. As
a group, the normal hematocrit patients had lower, not higher,
ferritin levels. Kalantar-Zadeh and Don (130) recently docu-
mented that ferritin levels.600 ng/ml reflected increased
morbidity, manifested by increased duration of hospitalization,
more than they reflected iron excess in ESRD patients.

Certainly, a patient who demonstrates a progressive increase
in ferritin during iron therapy without a hematopoietic response

should not continue to receive iron. Increased iron administra-
tion may be a marker for patients who are refractory to epoetin
regardless of whether a hemoglobin of 11 to 12 g/dl (NKF-
DOQI guidelines) or 13 to 15 g/dl (Normal Hematocrit Trial)
is targeted. The reason for refractoriness may not always be
obvious, but includes infection, inflammation, malignancies,
and chronic blood loss. It is currently not possible to optimize
erythropoiesis by establishing a level of iron depletion that
does not impair one’s ability to manage anemia. Clearly, new
and improved indicators of iron availability that more precisely
reflect iron storage than that currently provided by conven-
tional iron indices are required. In summary, the available
evidence does not suggest that any additional cardiovascular
risk accrues in ESRD patients when ferritin levels are main-
tained within the range recommended by NKF-DOQI guide-
lines.

Infection
Microorganisms require iron for survival (131). Iron uptake

by most follows the same steps as occur in the human gut. Iron
is first chelated before its transit into the cell as ferric ion via
a specific uptake system. Because of the interaction between
iron and free radicals and the danger to the cell, microbial
organisms, like higher species, have evolved regulatory mech-
anisms that partition iron from the cytosol and control its
assimilation (132). Stored bodily iron is unlikely to render an
organism more virulent.In vitro, the absence of free iron is
crucial for proper phagocytosis and killing. Any putative effect
of stored iron would likely proceed through mechanisms in-
volving neutrophil dysfunction after release of free iron from
storage.

In hereditary hemochromatosis, there is no convincing evi-
dence for increased susceptibility to infections other than those
due to Yersiniaspp. (133), a susceptibility shared by HD
patients (134). Approximately 12% of patients with idiopathic
hemochromatosis die from pneumonia (135), usually those
who have developed marked organ dysfunction. In animal
models, massive iron excess must accrue to enhance virulence
of microorganisms, but the clinical relevance of such models is
highly doubtful.

Is the risk to ESRD patients significant in view of the fact
that neutrophil function is impaired by uremiaper se? An
increased incidence of infection has been reported in dialysis
patients with iron overload (136–140). The incidence of over-
all infections in ESRD patients in the United States in 1996,
depending on age, was 16 to 24% (141). Many factors foster
neutrophil dysfunction in HD patients, including malnutrition,
increased intracellular calcium, the dialysis treatmentper se,
and low and high molecular weight circulating plasma factors
(142). In HD patients (143,144) and healthy individuals (145),
in vitro studies show suppression of phagocytosis by iron. It is
this process that is invoked to explain the increased suscepti-
bility to infection of HD patients.

Patrutaet al.(143) reported that patients with functional iron
deficiency demonstrated impaired neutrophil function after
iron treatment. The functionally iron-deficient group had a
mean TSAT of 16.5% and a mean ferritin of 911 ng/ml, a
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profile more consistent with RES blockade. Moreover, the
TSAT in the healthy control group was 19.5%, considerably
lower than that seen in the general population (117). The study
found that phagocytosis was diminished in these HD patients.
Polymorphonuclear neutrophiles (PMN) from control patients
ingested 90% of organisms, whereas those from HD patients
ingested only 80% of organisms. Intracellular killing by PMN
was significantly decreased from 70% in control patients to 50
to 52% in HD patients whose ferritin levels exceeded 650
ng/ml. The baseline oxidative burst capacity of PMN was
increased in HD patients, but decreased to half-normal after
stimulation by zymosan. The degree of neutrophil impairment
in HD patients was similar to that seen in nonazotemic iron-
overloaded patients. Taken together, the data attest that iron
overload as reflected by a ferritin level.650 ng/ml can pro-
duce measurable decreases in neutrophil functionin vitro. The
clinical significance of these changes remains enigmatic.

Collins et al. (20) reported that frequent low-dose, but not
high-dose, iron therapy produced a 35% increase in infection-
related deaths. Their initial report analyzed the survival during
the last 6 mo of 1994 of 33,120 Medicare recipients who had
survived the first 6 mo. The actual dose of iron given and its
schedule of administration, pulse, or maintenance was not
described. Collins’ group has since rendered a more detailed
analysis, centered on a claims-based analysis of 309,219 prev-
alent patients and distributed as four, 6-mo survival cohorts
from 1994 to 1995 with a 1-yr follow-up. Patients with cath-
eters or previous admissions for sepsis (6.4%) were excluded
(21,22). The categories of iron use were expanded to 12,
stratified by frequency of administration and number of vials.
Using a reference group that received no iron during a 6-mo
period, the RR for infectious mortality was 1.14 to 1.20 in
those who received high-dose, high-frequency intravenous iron
(.17 vials over 3 to 6 mo). All-cause mortality was similarly
increased. The RR for hospitalization from sepsis was 1.13. In
both studies, the important clinical parameters of TSAT, fer-
ritin level, and mean hematocrit were not available. It is there-
fore impossible to determine whether those who had been
treated with more iron were more ill than those who had
received less. Therefore, it is difficult to establish a physiologic
link between iron and the observed results. This aspect should
be addressed in future studies.

Simple extrapolation of historical data before the epoetin era
is inadequate to assess whether there is an increased risk of
infection for HD patients. In view of the known immunosup-
pressive effects of red cell transfusions (146) and neutrophil
dysfunction secondary to anemia (147), alternative explana-
tions that are unrelated to iron administration may contribute to
the increased rate of infection of HD patients. Approximately
40% of the infectious complications of HD patients are related
to the type of vascular access as delineated by Hoenet al.
(136). Lower pulmonary tract and urinary tract infections con-
stitute the remainder of these, and the presence of a central
venous catheter represents the strongest predictor of infection
(OR, 31, compared to native fistulas) followed by a history of
prior bacterial infection (OR, 3.9). A ferritin level.500 ng/ml,
however, bears a much lower risk (OR, 1.7). Unexamined

aspects of this investigation included the acquisition of ferritin
levels relative to the time of infection and the effect(s) of
covariates, such as the adequacy of dialysis and the type of
hemodialyzer membrane used. Importantly, this study was
conducted at a time when 14% of patients were receiving
epoetin to correct anemia. A more recent report from Hoenet
al. examined the risk factors for developing at least one bac-
teremic episode in a predominantly epoetin-treated population
and reiterated that the dominant risk factors for infection were
presence of a dialysis catheter and a previous episode of
bacteremia (137). Significantly, epoetin-resistant anemia also
appeared to be a risk factor. Patients with higher hemoglobin
levels had a RR of 0.7. Neither parenteral iron administration
nor serum ferritin possessed sufficient power to predict infec-
tion.

Ferritin levels of 500 ng/ml (138) and 1000 ng/ml (140) have
been used as putative thresholds for increased infectious risk.
During the epoetin era, there has been a marked change in the
distribution of the ferritin levels that constitute an increased
level of risk. Before the advent of epoetin, many more HD
patients had ferritin levels that exceeded 1000 ng/ml than the
5% or less that do so today. Treatment of patients with ferritin
levels greater than 2000 ng/ml with desferrioxamine decreased
overall infectious risk (148). Chelation by desferrioxamine
therapy (148) not only decreases the degree of iron overload,
but also increases the degree of erythropoiesis by enhanced
mobilization of iron to the erythron (149). This effect may be
mediated by accelerated carriage of iron from ferritin across
the erythroblast membrane, or, alternatively, from enhanced
cell expression of surface transferrin receptors. Thus, increased
erythropoiesis negates the infectious risk of iron overload. The
reduction in risk for infection in iron-overloaded patients after
epoetin therapy is conceivably attributable to improved gran-
ulocyte function after anemia correction (147,148). It is not
only the degree of iron overload that is important, but also how
the iron is utilized.

Summary
Recombinant epoetin therapy and correction of the chronic

anemia of renal failure have greatly reduced the number of red
cell transfusions and hence the propensity to iron overload. The
majority of HD patients require intravenous iron therapy to
achieve the hematocrit levels that correspond to improved
outcome measures. Although the short-term benefits of intra-
venous iron have been clearly defined, the long-term risks of
intravenous iron are less well-defined. Iron overload before the
availability of epoetin constituted a serious problem; our re-
view of the literature does not decisively conclude that these
patients had more serious bacterial infections or increased
mortality when compared with their non-iron overloaded coun-
terparts, unless chronic transfusion-related hepatic disease was
superimposed. Specifically, no data unequivocally confirm that
iron overload from parenteral iron contributes to all-cause
patient morbidity or mortality. Furthermore, therapy that main-
tains intravenous iron optimal iron stores and replaces iron
losses associated with the dialytic procedure does not engender
iron overload in the carefully monitored patient. Optimized
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anemia therapy in ESRD requires individualized and specific
application of epoetin and iron for each patient, and significant
cost savings can result from such a strategy. Prospective stud-
ies are clearly necessary to define those parameters that reflect
adequacy of iron storage in renal failure patients. We should
develop alternative means of iron delivery and develop moni-
tors that accurately discriminate between patients who will
respond to additional iron therapy and those who will not.
Whether ferritin should be supplanted by another parameter
and whether iron itself poses an increased risk to those patients
it has so beneficially served are issues that must be resolved.
Until these answers are known, the importance of carefully
crafted iron therapy cannot be overstated.
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