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Kidney International, Vol. 55 (1999), pp. 2289–2298

Characterization of the rat mesangial cell type 2
sulfonylurea receptor

KENICHIRO ASANO, PEDRO CORTES, JEFFREY L. GARVIN, BRUCE L. RISER,
ALICIA RODRÍGUEZ-BARBERO, BALÁZS SZAMOSFALVI, and JERRY YEE

Department of Medicine, Divisions of Nephrology and Hypertension, and Hypertension Research, Henry Ford Hospital,
Detroit, Michigan, USA

Characterization of the rat mesangial cell type 2 sulfonylurea pancreatic b cells as insulin secretagogues [3]. However,
receptor. in some extrapancreatic tissues, including hepatocytes,

Background. Sulfonylurea receptors are classified as either myocytes, and adipocytes, sulfonylureas directly aug-high-affinity type 1 (SUR1) or low-affinity type 2 receptors
ment glucose uptake [4–6]. These effects and those in b(SUR2), and the gene expression of SURs has recently been
cells are mediated by specific receptors that bind sulfo-demonstrated in kidney. However, functional data regarding

a renal SUR are lacking. We previously demonstrated that nylurea compounds, such as glibenclamide and tolazam-
mesangial cell (MC) gene and protein expression of extracellu- ide. High- and low-affinity sulfonylurea receptors have
lar matrix components were up-regulated by the sulfonylurea, been identified and are classified, respectively, as SUR1tolazamide. After noting this biological response, we next

and SUR2 [3, 7, 8]. SUR1 has been localized to cardiac,sought to investigate the presence of a sulfonylurea receptor
neuronal and smooth muscle tissues, brain microsomes,in rat MCs.

Methods. Equilibrium binding studies employing [3H]gliben- and pancreatic b cells.
clamide as a ligand were performed on crude MC membrane SURs also bind the nonsulfonylurea hypoglycemic
preparations. Gene expression for SUR was explored by North-

agents, linogliride and meglitinide, and several K1-chan-ern analysis of cultured MCs and whole kidney tissue. The
nel openers, including diazoxide, minoxidil, nicorandil,effect of sulfonylurea on intracellular Ca21 in MCs was assayed

by spectrofluorometry, and glibenclamide-induced changes in pinacidil, and cromakalim [9–12]. Recently, naturally oc-
the contractility of MCs were assessed. curring ligands for SUR, termed endosulfines a and b,

Results. MCs bound [3H]glibenclamide with a KD of 2.6 mm have been chromatographically isolated and purified
and a Bmax of 30.4 pmol/mg protein as determined by Scatchard

from ovine and porcine brain [13, 14]. The a isoformanalysis. Three SUR2 transcripts were detected in MCs. A
is structurally related to the porcine cAMP-regulatedmajor transcript was detected at 5.5 kb and minor transcripts

at 7.5 and 8.6 kb. Following sulfonylurea treatment of MCs, phosphoprotein. However, the function of endosulfines
real-time videomicroscopy revealed intense MC contraction, remains speculative.
coinciding with oscillatory increments of intracellular Ca21 con- SUR1 has been cloned recently, and its primary struc-
centration. Further evidence of sulfonylurea-induced MC con-

ture and membrane topology place it among memberstraction was demonstrated by glibenclamide-induced deforma-
of the adenosine triphosphate (ATP)-binding cassettetion of a silicone rubber substrate.
transporter/channel superfamily [15]. This diverse groupConclusions. These results demonstrate that SUR2 resides

on MCs. Functional activation of this receptor by sulfonylurea of transporters totals more than 100 members. Included
induces Ca21 transients that result in MC contraction. among these are the human P-glycoprotein (P-gp), which

confers multiple resistance to chemotherapeutic agents,
Pgh1, which accords chloroquine resistance to malaria-

Sulfonylurea compounds, commonly used in the treat- transmitting Falciparum species, and cystic fibrosis trans-
ment of non-insulin-dependent diabetes mellitus [1, 2], membrane conductance regulator (CFTR) [16]. All ABC
exert an antihyperglycemic effect primarily by acting on transporters have two cytosolic nucleotide (ATP/ADP)-

binding and multiple transmembrane-spanning domains.
The entire complex confers substrate specificity to ATP-Key words: tolazamide, glibenclamide, mesangial cell contraction, non-

insulin dependent diabetes, glucose uptake, hypoglycemia. regulated solute transport. Dissimilar to other ABC
transport proteins, CFTR is an ion channel, thus broad-Received for publication April 3, 1998
ening the scope of the ABC transporter family.and in revised form November 6, 1998

Accepted for publication January 6, 1999 The ATP-sensitive sulfonylurea-sensitive K1 channels
(KATP) in smooth muscle are comprised of two subunits. 1999 by the International Society of Nephrology
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These are the regulatory subunit SUR and the pore- lis, IN, USA). Rat SUR2 cDNA (pJGAR7) was a gener-
ous gift of Dr. C. Burant (University of Chicago, Chicago,forming subunit that derives from the Kir inward rectifier

gene family. Increasing the cellular ATP/ADP ratio or IL, USA) [24]. QuikHyb solution was obtained from
Stratagene (La Jolla, CA, USA). Fura-2 AM was ob-exposure to sulfonylurea inactivates KATP channels,

thereby decreasing potassium efflux. Engagement of tained from Molecular Probes (Eugene, OR, USA). Ny-
tran membranes were purchased from Schleicher &SUR1 by sulfonylureas on pancreatic b cells induces

membrane depolarization and transiently augments Ca21 Schuell (Keene, NH, USA).
influx through L-type calcium channels and accelerates

Tissue cultureinsulin secretion [17–20]. Inadvertent interactions of nor-
mal pancreatic SUR1 with compounds structurally re- The MCs used for all studies are from the previously

characterized rat cell line 16KC2, originally cloned fromlated to sulfonylurea compounds, such as sulfonamide
antibiotics, have resulted in “therapeutic misadventure” glomerular explants of Fischer rat glomeruli [28–30].

These spindle-shaped cells form hillocks in nonconfluentwith serious episodes of hypoglycemia [3]. Moreover,
mutations of the SUR1 gene locus have been predictably tissue cultures and do not exhibit dome formation. The

cells stain positively for vimentin, desmin, and a-smoothassociated with disorders of glucose homeostasis, includ-
ing persistent hyperinsulinemic hypoglycemia [21–23]. muscle actin, but not for cytokeratin or factor VIII. Cel-

lular contraction occurs following exposure to either an-The rat SUR isoform SUR2 is highly expressed in
skeletal muscle and heart [24]. The murine isoform, giotensin II or arginine vasopressin. These cells also bear

ANP receptors on their surfaces as well as the Thy-1SUR2A, is exclusively expressed by the heart, whereas
the more ubiquitous SUR2B has been localized to skele- antigen. The SV40-transformed hamster insulinoma tu-

mor b cell line (HIT) was obtained from the Americantal and intestinal smooth muscle, as well as neuronal
tissue. Not surprisingly, the intrinsic functions of these Type Culture Collection (Cat. No. CRL-1777; Rockville,

MA, USA) [31]. HIT cells have SUR1 receptors andtissues, that is, force generation, peristalsis, and impulse
conduction, are coupled to their resting membrane elec- exhibit ATP-sensitive K1 channel activity following their

exposure to sulfonylurea at nanomolar concentrationstropotentials [17, 25]. To date, renal KATP channel activity
has been documented by Ho et al and Wang [26, 27], [3, 9]. The fibroblast RNA used in Northern analysis

was obtained from SJL mouse cortical tubulointerstitialand SUR2 gene and protein expression in whole mouse
kidney has been demonstrated by Chutkow et al [24]. We fibroblasts (TFBs), as previously described by Alvarez

et al [32, 33]. Except where noted, MCs were seeded athave recently observed that the sulfonylurea compound
tolazamide enhances cytochalasin B-inhibitable 2-deoxy- a density of 1.5 3 105 cells per 150 mm diameter culture

dish and were then grown for seven days to near conflu-glucose uptake by mesangial cells (MCs) and gives rise
to marked alterations of extracellular matrix metabolism ence in RPMI 1640 medium containing 8 mm glucose,

20% Nu-Serum, and antibiotics (100 U/ml penicillin and[28]. Collectively, these data suggest that these metabolic
effects of sulfonylurea may be mediated by a SUR resid- 100 mg/ml streptomycin). The culture medium was

changed at two- or three-day intervals. HIT cells anding on the MC surface. To explore this hypothesis, we
initiated a series of experiments to characterize the puta- TFB cells were passaged weekly and cultured in a similar

medium, except that they contained 10% fetal calf serumtive MC SUR.
(FCS) instead of Nu-Serum, as previously described [7].

METHODS Cell membrane preparation
Reagents Cells were scraped into an ice-cold homogenizing

buffer (pH 7.4) containing 20 mm HEPES, 2 mm EDTA,RPMI 1640 medium and RNA markers were pur-
chased from Life Technologies (Gaithersburg, MD, 250 mm sucrose, 0.1 mm phenylmethylsulfonyl fluoride

(PMSF), 1 mm pepstatin, and 1 mm leupeptin. Cells wereUSA). Nu-Serum and insulin-transferrin-selenium (ITS)
were obtained from Becton Dickinson (Bedford, MA, immediately homogenized by 20 strokes in a glass

dounce with a matched Teflon pestle. The homogenateUSA). Glibenclamide, dimethylpolysiloxane, antibiotics,
morpholino-(propane)-sulfonic acid (MOPS) buffer, and was centrifuged for 10 minutes at 760 g. The supernatant

was pooled and centrifuged at 100,000 g for 60 minutesMOPS-ethylenediaminetetraacetic acid (EDTA)-sodi-
um acetate (MESA) buffer were purchased from Sigma in a Beckman model L5-65 ultracentrifuge (Beckman

Instruments, Palo Alto, CA, USA). The pelleted crudeCo. (St. Louis, MO, USA). [3H]glibenclamide (50 Ci/
mmol) and [a-32P]dCTP (3000 Ci/mmol) were purchased membrane preparation was resuspended in a buffer con-

taining 20 mm MOPS and 0.1 mm PMSF, pH 7.4, andfrom Dupont NEN (Boston, MA, USA). Bicinchoninic
acid proteins assay kits were obtained from Pierce was aliquoted and stored at 2708C in preparation for

binding studies. Prior to binding studies, the membrane(Rockford, IL, USA). Random oligomer priming kits
were obtained from Boehringer Mannheim (Indianapo- preparation was briefly rehomogenized, and the mem-
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brane protein concentration was assayed by the bicin- washed twice in 2 3 SSC (sodium chloride sodium ci-
trate: 0.3 m sodium chloride and 0.03 m sodium citrate)choninic acid method, using bovine serum albumin

(BSA) as the standard. containing 0.1% sodium dodecyl sulfate for 15 minutes
at 258C and once in 0.1 3 SSC containing 0.1% sodium

Equilibrium binding assays dodecyl sulfate for 30 minutes at 608C. Autoradiography
with intensifying screens was carried out for 16 to 72For high-affinity SUR receptor-binding studies, 200

mg protein fractions of cell membranes were incubated hours at 2708C.
with [3H]glibenclamide (specific activity, 50 mCi/nmol).

Spectrofluorometric measurement of Ca21
Incubation mixtures contained final concentrations of 0
to 10 nm [3H]glibenclamide, 50 mm MOPS, and 0.1 mm Mesangial cells were plated on cover slips and cultured

for three to four days until a confluence of 60 to 70%PMSF (pH 7.4). Incubations were carried out at 258C
for 60 minutes before their rapid termination by filtration was achieved. A 10 mm solution of Fura-2 AM dye in

dimethylsulfoxide (DMSO) was added to a perfusionthrough Whatman GF/F filters and immediate washing
two times with 4 ml of chilled 80 mm MOPS (pH 7.4) solution containing 120 mm NaCl, 5 mm KCl, 25 mm

NaHCO3, 2 mm Na2HPO4, 1.2 mm MgSO4, 2.5 mm CaCl2,containing 1% BSA. Filtration and washing were com-
pleted within 10 seconds. The amount of radioactivity 8 mm glucose, and 1% FCS, pH 7.4. MCs were loaded

with dye and then placed in an environment of 95% airretained by filters was determined by liquid scintillation
counting in a Beckman model LS 3801 counter. For and 5% CO2 for 60 minutes at 378C. After incubation,

cover slips were placed for 20 minutes in a temperature-the high-affinity SUR receptor, nonspecific binding was
determined by adding 1 mm nonradioactive glibenclam- regulated chamber and mounted on a Diaphot-TMD

inverted microscope (Nikon, Tokyo, Japan) that waside to the incubation solution. For the low-affinity recep-
tor, 500 mg of cell membrane samples and 0 to 4 mm continuously irrigated with the perfusion solution at 1 ml/

min. The intensity of fluorescence was measured during[3H]glibenclamide (specific activity, 2 mCi/nmol) were
used, and all other steps were carried out as described alternating excitations of the fluor at 340 and 380 nm

wavelengths. Fluorescent images were filtered by a high-earlier here. In this case, nonspecific binding was deter-
mined by adding 400 mm of nonradiolabeled glibenclam- pass 510 nm filter, and measurements were conducted

at 20-second intervals. Autofluorescence of cells was neg-ide to the incubation solution. The low solubility of gli-
benclamide precluded the use of higher concentrations ligible. Fluorescence was digitally acquired with an image

intensifier at a magnification of 3100 (Video Scope In-to determine nonspecific binding. Scatchard analysis of
the data was performed with commercial software (Prism ternational, Herndon, VA, USA) and a CCD camera

(Hamamatsu, Hamamatsu City, Japan). Digitized im-vs. 2.0.3; GraphPad, San Diego, CA, USA).
ages of the spectrofluorometric ratio A340/380 were ana-

Northern analysis lyzed by the Image One MetaFluor system (Universal
Imaging, West Chester, PA, USA). After three controlTotal RNA was extracted from Fischer rat (Charles

River Labs, Long Island, NY, USA) brain, heart, and measurements, 10 mm of glibenclamide in DMSO was
added to the perfusion solution to achieve a final concen-kidney. Organs were immediately snap frozen in liquid

N2, pulverized to powder in a liquid N2-cooled mortar, tration of 3 mm within five minutes. An increase in the
fluorescence ratio A340/380 signified an increase of the in-and homogenized in RNA Stat-60 (Tel-Test, Friends-

wood, TX, USA). RNAs were then extracted with a tracellular Ca21 concentration [35, 36].
modified guanidinium thiocyanate method [33, 34]. Cul-

Silicon membrane preparationtures of MCs and TFBs were washed twice with ice-cold
Hank’s buffered saline solution prior to RNA extraction. A thin silicon rubber substratum for cell contraction

experiments was prepared using a modification of theExperimental and control RNA species were vacuum
dried and denatured at 708C in 2 3 MESA buffer con- protocol of Harris, Wild, and Stopak [37]. One hundred

microliters of dimethylpolysiloxane (60,000 cS) were ap-taining 2.4 m formaldehyde, 15% formamide, 0.8 mg/
ml ethidium bromide, and 10 mm EDTA. RNAs were plied as a thin layer to the surface of round glass cover

slips (18 mm diameter). Grid markings were engravedfractionated on 1% agarose gels containing 1 3 MESA
and 0.4 m formaldehyde. RNA species were transferred on these coverslips to assist in the identification and

location of cultured MCs. To polymerize the substrate,by downward capillary action to Nytran membranes. A
4.1 kbp Eco RI restriction fragment of the rat SUR2 the dish was placed in a Hummer V sputter coater cham-

ber (Technics Inc., Baltimore, MD, USA), 4 cm from acDNA was radiolabeled in the presence of [a-32P]dCTP
by the random oligomer priming method [32]. Mem- gold-palladium target [38, 39]. Air was evacuated from

the chamber by gradual application of vacuum to 0.1branes were prehybridized at 688C for 20 minutes in
QuikHyb solution. Hybridization was carried out at 688C torr. The vacuum was continued at this level until air

bubbles were no longer present on the surface of thefor 14 hours (1 3 106 cpm/ml). Membranes were then
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substrate. Next, the sputter coating chamber was flushed
with argon gas until a pressure of 0.2 torr was achieved.
A vacuum was gradually reapplied until the pressure
declined to 0.1 torr, and this sequence was repeated a
total of three times. Argon plasma was produced by the
introduction of gas into the chamber during application
of a steady 20 mA current for 16 to 20 seconds.

Mesangial cell contraction

Mesangial cells were grown on the coated coverslips
described earlier at a density of 2 3 104 cells/cm2 in RPMI
1640 containing 20% Nu-Serum for two days. Twenty-
four hours before experiments, the culture media were
replaced with RPMI 1640 containing 0.1% FCS and an
ITS culture supplement to provide per liter the following:
6.3 mg insulin, 6.3 mg transferrin, 6.3 mg selenious acid,
1.3 g bovine serum albumin, 5.4 mg linoleic acid. Prior
to the experiments, cells were incubated for 60 minutes
in a perfusion solution similar to that used during intra-
cellular Ca21 measurements, but containing 0.1% FCS.
For experiments, coverslips were placed in a tempera-
ture-regulated observation chamber and observed with
a Hoffman contrast-modulation optical system. Images
were obtained at a magnification of 3100 with a CCD
camera and a videocassette recorder (Sony Corp.,
Tokyo, Japan). The temperature and pH of the perfusion
solution were 37.0 6 0.58C and 7.45 6 0.05, respectively.
In eight independent experiments, 30 to 50 cells per
experiment were located for observation with help of
the coverslip grid markings. The perfusion solution in
the chamber was then replaced with the same solution,
but containing 5 mm glibenclamide or the vehicle used
for its dissolution (DMSO). After 20 minutes, images of
the same cells were recorded again. A change in the
cell contractile force was determined by an increase or
decrease in the number of wrinkles surrounding each
cell. Each cell was then classified as having either “con- Fig. 1. Identification of a high-affinity, hamster insulinoma tumor b
tracted,” “no change,” or “relaxed” from its original cell line (HIT) cell sulfonylurea receptor. Two hundred micrograms of

HIT and mesangial cell (MC) membrane proteins were incubated atmorphology, according to the appearance of wrinkles
258C for 60 minutes with increasing amounts of [3H]glibenclamide at ain the neighboring substratum. In addition, during the constant specific activity of 50 mCi/nmol during equilibrium radioligand

experimental period some cells underwent detachment. binding studies. The results of a representative experiment are shown
(N 5 2). Specific binding of ligand (s) was calculated following theDifferences between the numbers of cells classified in
subtraction of nonspecific binding (m) from total binding (d). Specificeach category, before and after exposure to glibenclam- saturable binding of glibenclamide to HIT cell membranes is depicted

ide or its vehicle, were analyzed by a two-tailed unpaired (A) with a Scatchard plot of the binding data (inset). Nonspecific binding
to MC membranes (B) is evident over the concentration range shownt-test. Comparisons were considered significant at the
(N 5 2). However, no specific binding (s) to MC membranes is demon-level of P , 0.05. strated.

RESULTS

Identification of sulfonylurea receptors clamide to HIT membranes (N 5 2). At nanomolar con-
centrations of sulfonylurea, specific and saturable bind-To determine whether sulfonylurea receptors were

present on MCs, we performed equilibrium binding stud- ing of the radioligand to HIT membranes was docu-
mented over the concentration range of 0 to 10 nm (Fig.ies on crude membrane preparations. Using pancreatic

HIT cells as a positive control, we first validated our 1A). Scatchard analysis of these data established an ap-
parent KD of 0.65 nm and Bmax of 0.65 pmol/mg protein,methodology by demonstrating the binding of [3H]gliben-
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Fig. 3. Mesangial SUR2 gene expression. In Northern analysis, 20 mgFig. 2. Identification of a low-affinity mesangial cell sulfonylurea recep-
quantities of total RNAs extracted from rat MCs, brain, heart, andtor. Five hundred microgram samples of MC membrane proteins were
kidney and mouse kidney fibroblasts were probed with rat SUR2 cDNAused for binding studies, using increasing concentrations of glibenclam-
(A). In brain, heart, and kidney, hybridization at 7.5 kb was detectedide according to the methodology described in Figure 1, except that
after 16 hours of autoradiography. In MCs, a major transcript appearedthe specific activity of the sulfonylurea was 2 mCi/nmol. Total binding
at 5.5 kb and a minor transcript at 8.6 kb. SUR2 transcripts were not(d), nonspecific binding (m), and specific saturable binding (s) of
detected in renal fibroblasts. In a separate experiment (B), after 72[3H]glibenclamide to MC membranes are shown. A Scatchard plot of
hours of autoradiographic exposure, we reproducibly hybridized threethe binding data and apparent values for binding parameters are shown
mesangial transcripts at 5.5, 7.5, and 8.6 kb with the rat SUR2 cDNA(inset). Each data point represents the pooled results obtained in four
used in (A).independent experiments. In each experiment, samples were tested in

duplicate. Values are expressed as means 6 se. Except for the lowest
amount tested (0.2 mm), differences between specific and nonspecific
binding are statistically significant (P , 0.05) at all concentrations.

Scatchard analysis of binding data yielded an apparent
Kd of 2.6 mm and a Bmax of 30.4 pmol/mg protein (Fig.
2, inset).

values consonant with those previously reported for
high-affinity SUR receptors (Fig. 1A, inset). To establish SUR2 gene expression
the presence of a high-affinity SUR in MCs, we per- To determine whether the SUR2 gene was expressed
formed similar binding studies on MC membranes. How- by rat MCs and whether this receptor was homologous
ever, in contradistinction to our HIT cell results, there to that previously described in extrapancreatic tissues,
was no specific or saturable binding of radioligand to we probed total RNAs extracted from cultured MCs and
MC membranes at the nanomolar concentrations tested rat brain, heart, and kidney. In Northern analysis, we
(Fig. 1B). To determine whether a low-affinity SUR re- probed for the SUR2 message with a 4.1 kbp Eco RI
ceptor resided on MCs, we subsequently increased final fragment of the rat SUR2 cDNA. Under high-stringency
glibenclamide concentrations to 0.2 to 4.0 mm. Apparent conditions, we demonstrated hybridization to a 7.5 kb
equilibrium binding was attained within 30 minutes of transcript from whole brain and kidney, after autoradiog-
incubation and did not change afterward (unpublished raphy for 16 hours (Fig. 3A). However, this hybridization
data). In four independent experiments in which samples signal was much stronger in cardiac tissue. In total RNA
were tested in duplicate, we demonstrated specific bind- from MCs, a signal equal in intensity to that of the heart

7.5 kb transcript was apparent at 5.5 kb, and a faintering of glibenclamide to MC membranes (Fig. 2). The
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Fig. 4. Glibenclamide-induced Ca21 transi-
ents in mesangial cells. The changes in the
mesangial cell fluorescence ratio A340/380 over
a 15-minute time course are shown. Following
loading of subconfluent mesangial cell cul-
tures with fura-2 dye, cells were incubated at
378C in an incubation/observation chamber
irrigated by a perfusion solution containing
1% FCS. A representative experiment is
shown in which three cells were marked, and
then spectrofluorometric measurements were
obtained after the addition of glibenclamide
to the perfusion reservoir at t 5 25 minutes.
At t 5 22.5 minutes, small initial spikes repre-
senting increases in Ca21 concentration were
demonstrated in all three cells, as glibenclam-
ide entered the incubation/observation cham-
ber. Glibenclamide concentration in the
chamber’s incubation solution reached a max-
imum 2.5 minutes later at t 5 0 min (arrow).
Ca21 transients in all observed cells oscillated
synchronously at two- to three-minute inter-
vals following exposure to glibenclamide until
the end of the observation period.

signal was detected at 8.6 kb. In addition, because fibro- respective fluorescence ratios, occurred at two- to three-
minute intervals, the magnitude of elevation varyingblasts share phenotypic similarities to activated MCs, we

attempted to discern if there was SUR2 gene expression among cells. Notably, changes in intracellular Ca21 were
frequently accompanied by alterations of cell morphol-by TFB. SUR2 transcripts were undetectable from these

renal fibroblasts, despite probing up to 40 mg of total ogy due to cell contraction (unpublished data). In some
instances, the cells contracted with sufficient force toRNA [32, 33]. Following 72 hours of autoradiography,

we reproducibly detected two minor transcripts at 7.5 cause their total detachment from the coverslip.
and 8.6 kb in replicate studies (Fig. 3B).

Mesangial cell contraction
Glibenclamide-induced elevation of intracellular Ca21

To demonstrate further that MC contraction was at-
Because cell depolarization is associated with SUR tributable to Ca21 elevations mediated through sulfonyl-

receptor binding and this results in the generation of urea stimulation, we assessed the tensile forces generated
intracellular Ca21 ion transients in pancreatic b cells, by cells cultured on the silicon rubber substrate. In these
we hypothesized that exposure of MCs to sulfonylurea cultures, tensile forces generated at points of MC adhe-
would induce alterations of their intracellular Ca21 lev- sion are visually evident as a series of wrinkles in the
els. To explore this issue, we treated fura 2-loaded MCs elastic substrate. Exposure of MCs to glibenclamide at
with either a therapeutically relevant concentration of a final concentration of 5 mm resulted in cell contraction,
glibenclamide (3 mm) or the vehicle used to dissolve it evident as “new” wrinkle formations (Fig. 5), in a signifi-
and then continuously monitored their respective fluo- cant number of cells, as compared with vehicle-treated
rescence ratios (A340/380) in a perfusion/observation cells in which only infrequent spontaneous contractions
chamber over a period of 15 minutes. Glibenclamide, were detected (39 vs. 6%; Fig. 6). In addition, a significant
incorporated into the perfusate’s reservoir, reached the number of cells underwent detachment in the presence
perfusion/observation chamber within 2.5 minutes, of glibenclamide (Fig. 6). As previously observed during
achieving its maximum concentration of 3 mm 2.5 minutes the intracellular Ca21 studies, this detachment is likely
later. Coincident with the initial appearance of gliben- related to the generation of large increments in tensional
clamide in the observation chamber, oscillations in the forces by some cells. Only a few cells in either vehicle- or
Ca21 concentration were apparent (Fig. 4). As gliben- glibenclamide-treated groups demonstrated relaxation
clamide reached its final maximal concentration of 3 mm, from their baseline states.
intracellular Ca21 concentrations markedly increased si-
multaneously in all cells under observation (Fig. 4).

DISCUSSIONThese elevations returned to baseline after approxi-
These studies represent the initial demonstration of amately 60 seconds. Thereafter, oscillatory elevations of

intracellular Ca21, as indicated by an increase in their functional sulfonylurea receptor in MCs. We have shown
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Fig. 5. Glibenclamide-induced mesangial cell contraction. Subconfluent cultures of mesangial cells were grown on polymerized dimethylpolysiloxane
membranes and were then serum deprived for 24 hours at 378C. Cells were then perfused with glibenclamide in 0.1% FCS to achieve a final
concentration of 5 mm during continuous videomicroscopic recording. Cell contractions (arrowheads) and new glibenclamide-induced wrinkle
formations that deformed the silicon rubber substrate (arrows) are shown at 0 (A), 10 (B), and 20 minutes (C).

The detection of competitive binding of sulfonylurea
agents to membrane preparations from various tissues
has been used extensively to demonstrate and character-
ize the presence of SUR receptors in these tissues. SUR1
receptor is a high-affinity 140 kDa receptor with KD of
0.05 to 1.0 nm. SUR2 is a 170 kDa receptor with an
apparent KD of 0.6 mm for glibenclamide [7, 8]. Northern
analysis of rat tissues has documented constitutive ex-
pression of a 7.5 kb SUR2 transcript in heart, skeletal
muscle, kidney, brain, and testis [24]. In addition, a SUR2
isoform has more recently been localized in rat brain by
Inagaki et al [8]. The 5.5 kb transcript detected in our
studies has not been previously described in rat, although
a homologue may exist in human skeletal muscle that

Fig. 6. Degree of glibenclamide-induced mesangial cell contraction. expresses transcripts of 5.6, 8.6, and 9.4 kb [24]. Our
Cells were grown on grid-marked cover slips coated with a dimethylpo- results suggest that the rat mesangial SUR2 representslysiloxane substrate under the same conditions as in Figure 5. In each

an alternatively spliced variant of SUR2 that has notexperiment, the exact locations of 30 to 50 cells were identified, and
the corresponding degree of wrinkling produced by each cell was quanti- been previously described in kidney. The differential
tated at baseline and after 20 minutes of exposure to 5 mm glibenclamide gene expression of the mesangial 5.5 kb transcript, in(N 5 8). Control (h, N 5 5) and glibenclamide-treated cells (j, N 5

comparison to those found in whole rat kidney, insinu-8) were classified as contracted, detached, no change, or relaxed after
comparison to baseline. *P , 0.05; †P , 0.005; §P , 0.002. ates that there is differential gene regulation of SUR2

among different nephronal compartments.
Characteristically, ligation of sulfonylureas by their

receptors closes KATP channels [3, 8, 12]. By contrast,
members of this channel family are activated by potas-that MC membrane preparations bind glibenclamide at
sium channel openers such as diazoxide and pinacidilconcentrations typical for those of lower affinity SURs
that are operative at a locus distinct from the binding[3, 8]. The binding kinetics imply that receptor binding
site of sulfonylureas [9, 10]. Physiologically, KATP chan-may occur at the micromolar concentrations that may
nels are reversibly inhibited by increasing cellular ener-be encountered during therapeutic administration of sul-
getics, that is, elevated intracellular (ATP/ADP) ratio.fonylurea compounds [40]. In this study, gene expression
Therefore, channel activation and ion transport are func-of the putative mesangial SUR2 was constitutive, and
tionally linked to cellular metabolism. Currently, SURshighly abundant levels of a 5.5 kb transcript were de-
and Kir6.0-type K1 channels, respectively, comprise thetected by Northern blotting. In addition, the functionality
regulatory and ion pore permeation subunits of a struc-of this mesangial SUR2 is exemplified by the oscillatory
turally and functionally engaged hetero-octameric KATPCa21 transients and intense cell contraction that occur

following the exposure of MCs to glibenclamide. complex (Kir6.2:SUR)4 [41, 42]. Evidence for a func-
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tional interaction between Kir and SUR is found in stud- traction via elevations of intracellular Ca21. The impor-
ies involving Kir6.2 where C-terminus truncation mu- tance of this newly described receptor and its pathophysi-
tants exhibit ATP sensitivity, but neither sulfonylurea ological relevance will require further studies to elu-
(tolbutamide) nor diazoxide sensitivity in the absence cidate whether SURs participate in other MC functions,
of SUR1 coexpression [43]. Furthermore, Inagaki et al including regulation of extracellular matrix metabolism.
generated a glibenclamide-inhibitable potassium current Nevertheless, it is intriguing to speculate the role that
in CV-1 origin of SV40 (COS) cells, presumably follow- sulfonylureas might play in diabetic renal disease,
ing generation of KATP channel activity (Ki 5 1.8 nm) wherein glomerular hyperfunction has been considered
after functional coexpression of Kir6.2 and SUR1 [43]. a significant contributor to the development of glomeru-
Moreover, the authors also noted the presence of distinc- losclerosis. Because this hyperfunction is attributed, in
tive KATP channel activity following reconstitution of part, to diminished mesangial contractility, the restora-
Kir6.2 and SUR2A [8]. tion and normalization of MC contractility by sulfonyl-

Multiple K1 channels have been described in the kid- ureas may exert a salutary effect on glomerular injury
ney. Among these are the Kir1.1/ROMK channels found [55]. The question of whether the summation of meta-
in the distal nephron [44]. However, dissimilar to classic bolic and functional consequences of sulfonylurea ad-
KATP channels, the Kir1.1 channel subfamily does not ministration is beneficial or deleterious in the evolution
exhibit ATP sensitivity. Interestingly, Ämmälä et al con- of diabetic renal disease represents an appealing avenue
ferred sulfonylurea sensitivity to HEK 293 cells by cou- of future inquiry.
pling SUR1 to either Kir1.1 or Kir6.1, with a consequent
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J, Nelson DA: Cloning of the b cell high-affinity sulfonylurea Chelation of intracellular calcium prevents mesangial cell prolifera-

tive responsiveness. J Am Soc Nephrol 9:14–25, 1998receptor: A regulator of insulin secretion. Science 268:423–425,
1995 37. Harris AK, Wild P, Stopak D: Silicone rubber substrata: A new

wrinkle in the study of cell locomotion. Science 208:177–179, 198016. Higgins CF: The ABC of channel regulation. Cell 82:693–696, 1995
17. Henquin JC: Tolbutamide stimulation and inhibition of insulin 38. Chrzanowska-Wodnicka M, Burridge K: Rho-stimulated con-

tractility drives the formation of stress fibers and focal adhesions.release: Studies of the underlying ionic mechanisms in isolated rat
islets. Diabetologia 18:151–160, 1980 J Cell Biol 133:1403–1415, 1996

39. Singhal PC, Scharschmidt LA, Gibbons N, Hays RM: Contrac-18. Dean PM, Matthews EK: Electrical activity in pancreatic islet
cells. Nature 219:389–390, 1968 tion and relaxation of cultured mesangial cells on a silicone rubber

surface. Kidney Int 30:862–873, 198619. Philipson LH, Steiner DF: Pas de deux or more: The sulfonylurea
receptor and K1 channels. Science 268:372–373, 1995 40. Anonymous: Tolazamide (Tolinase). Off Lit N Drugs 10:423–427,

196620. Aguilar-Bryan L, Nichols CG, Rajan AS, Parker C, Bryan
J: Co-expression of sulfonylurea receptors and KATP channels in 41. Shyng S-L, Nichols CG: Octameric stoichiometry of the KATP

channel complex. J Gen Physiol 110:655–664, 1997hamster insulinoma tumor (HIT) cells. J Biol Chem 267:14934–
14940, 1992 42. Clement JPIV, Kunjilwar K, Gonzalez G, Schwanstecher M,

Panten U, Aguilar-Bryan L, Bryan J: Association and stoichiom-21. Thomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM,
Rabl W, Aguilar-Bryan L, Gagel RF, Bryan J: Mutations in the etry of KATP channel subunits. Neuron 18:827–838, 1997

43. Inagaki N, Gonoi T, Clement JPIV, Namba N, Inazawa J, Gonza-sulfonylurea receptor gene in familial persistent hyperinsulinemic
hypoglycemia of infancy. Science 268:426–429, 1995 lez G, Aguilar-Bryan L, Seino S, Bryan J: Reconstitution of

IKATP: An inward rectifier subunit plus the sulfonylurea receptor.22. Dunne MJ, Kane C, Shepherd RM, Sanchez JA, James RF,
Johnson PR, Aynsley-Green A, Lu S, Clement JP iv, Lindley KJ, Science 270:1166–1170, 1995

44. Ho K: The ROMK-cystic fibrosis transmembrane conductance reg-Seino S, Aguilar-Bryan L: Familial persistent hyperinsulinemic
hypoglycemia of infancy and mutations in the sulfonylurea recep- ulator connection: New insights into the relationship between

ROMK and cystic fibrosis transmembrane conductance regulatortor. N Engl J Med 336:703–706, 1997
23. Nestorowicz A, Wilson BA, Schoor KP, Inoue H, Glaser B, channels. Curr Opin Nephrol Hypertens 7:49–58, 1998

45. Munzenmaier DH, Greene AS: Angiotensin II mediates a sus-Landau H, Stanley CA, Thornton PS, Clement JP IV, Bryan
J, Aguilar-Bryan L, Permutt MA: Mutations in the sulfonylurea tained rise in nuclear and cytoplasmic calcium via multiple receptor

subtypes. Am J Physiol 269:H565–H570, 1995receptor gene are associated with familial hyperinsulinism in Ash-
kenazi Jews. Hum Mol Genet 5:1813–1822, 1996 46. Stehno-Bittel L, Lückhoff A, Clapham DE: Calcium release

from the nucleus by InsP3 receptor channels. Neuron 14:163–167,24. Chutkow WA, Simon MC, Le Beau MM, Burant CF: Cloning,
tissue expression, and chromosomal localization of SUR2, the puta- 1995

47. Allbritton NL, Oancea E, Kuhn MA, Meyer T: Source of nu-tive drug-binding subunit of cardiac, skeletal muscle, and vascular
KATP channels. Diabetes 45:1439–1445, 1996 clear calcium signals. Proc Natl Acad Sci USA 91:12458–12462,

199425. Zini S, Ben-Ari Y, Ashford MLJ: Characterization of sulfonyl-
urea receptors and the action of potassium channel openers on 48. Gilchrist JS, Czubryt MP, Pierce GN: Calcium and cal-

cium-binding proteins in the nucleus. Mol Cell Biochem 135:79–88,cholinergic neurotransmission in guinea pig isolated small intestine.
J Pharmacol Exp Ther 259:566–573, 1991 1994

49. Himpens B, De Smedt H, Casteels R: Relationship between [Ca21]26. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kana-
zirska MV, Hebert SC: Cloning and expression of an inwardly changes in nucleus and cytosol. Cell Calcium 16:239–246, 1994
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