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Review Article

Artificial Intelligence for the Orthopaedic Surgeon:
An Overview of Potential Benefits, Limitations,
and Clinical Applications

ABSTRACT

Artificial intelligence (AI), along with its subset technology machine

learning, has transformed numerous industries through newfound

efficiencies and supportive decision-making. These technologies have

similarly begun to find application within United States healthcare,

particularly orthopaedics. Although thesemodalities have the potential

to similarly transform health care, there exist limitations that must also

be recognized and understood. Unfortunately, most clinicians do not

have an understanding of the fundamentals of AI and therefore may

have challenges in contextualizing its impact inmodern healthcare. The

purpose of this review was to provide an overview of the key concepts

of AI and machine learning with the orthopaedic surgeon in mind. The

review further highlights the potential benefits and limitations of AI,

along with an overview of its applications, in orthopaedics.

The application of artificial intelligence (AI) in the field of medicine has
been widely forecasted since JohnMcCarthy first coined the term over
60 years ago. In his proposal in 1955, McCarthy originally envisioned

AI as “the science and engineering of making intelligent machines.”1 He
predicted that these machines would one day be capable of doing feats
previously thought to be exclusive to the domain of human intelligence, such
as abstract thought, advanced problem-solving, and iterative self-
improvement. In fact, in 1976, Jerrold S. Maxmen,2 a professor of psychi-
atry at Columbia University, predicted that AI would bring about the
“postphysician era” by the 21st century,3 describing the change as “possible,
inevitable, and desirable.”

The true impact of AI on the future practice of medicine is still unknown.
What is clear, however, is that AI has already begun to transform numerous
industries in a variety of sectors. Some common examples include autonomous
vehicles, online purchase recommendations, targeted advertising, and even
forecasting of stock market fluctuations. However, the incorporation of AI in
the healthcare sector has lagged behind that of other industries. Despite initial
excitement over the possibilities of AI in the medical field, practical applica-
tions of AI have only recently begun to materialize.
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Within the field of orthopaedic surgery, AI holds
promise for several cutting-edge applications that can
transform the quality of care rendered, accelerate the
delivery of services, and improve the value rendered.
The technology also has important limitations and
vulnerabilities that must be understood to maintain
(and improve on) the current healthcare quality
standards. The purpose of this review was to provide a

summary of AI and highlight its potential applications
and limitations within the context of clinical ortho-
paedics. In particular, the review will summarize the
key-related technical aspects and subtopics of AI. This
framework may be beneficial to practitioners who
wish to understand the role of this important tech-
nology in the context of healthcare quality and
operations.

Table 1. Definitions of Relevant ML Terms and Concepts

Term Definition

Artificial intelligence (AI) A broad term referring to the application of computational
algorithms that can analyze large data sets (ie, “Big Data”) to
classify, predict, or gain useful inference

ML A subset of AI that involves using real-world data sets to predict
or estimate an outcome; these data sets encompass “training
sets” that the machine is able to study and “learn” from using
pattern recognition, which is then compared with a “test set”
that quantifies the accuracies of the aforementioned inferences
for further calibration

Deep learning Sophisticated algorithms that require little to no human
supervision to analyze, calibrate, and provide inferences; these
include deep neural network models

Variance inflation factor (VIF) A measure of multicollinearity in a regression analysis. A higher
VIF indicates that predictors are highly correlated with each
other, generally indicating a less reliable result.

Python StatsModel package A Python module that provides resources for conducting
statistical analysis in Python.

K nearest neighbors A pattern recognition algorithm used for both classification and
regression. This algorithm classifies a case based on the
classification of most its neighbors.

Naïve Bayes An algorithm that classifies cases based on the application of
Bayes’ theorem with the assumption of conditional
independence.

XGBoost A ML algorithm that utilizes a gradient boosting framework to
solve prediction problems.

Top three ensemble An ensemble algorithm that incorporates multiple machine
learning algorithms (top three) to augment predictive
performance.

Broyden-Fletcher-Goldfarb-Shanno optimizer An iterative algorithm that allows for the solving of
unconstrained optimization problems.

Brier score loss A calculation of the mean squared error between predicted and
expected values. A low Brier score indicates better predictions.

Area under the curve (AUC) of the receiver operating
characteristics curve

An aggregate measure of a model’s classification performance.
AUC ranges in value from 0 to 1.0, with an AUC 1meaning that a
model is capable of distinguishing between classes 100% of
the time.

SHapley Additive exPlanations (SHAP) scores A measure of feature importance in predictive modelling. A
higher SHAP value indicates a factor that predicts higher injury
probability, whereas a lower SHAP value indicates a factor that
predicts a lower injury probability

ML = machine learning
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Definitions
Broadly speaking, the term AI (Table 1) refers to the
“mimicking of human cognition by computers.”4 One
important subset of AI is that of machine learning (ML),
which involves the use of computational algorithms that
can analyze large data sets to classify, predict, or gain
useful inference.5,6 In its most rudimentary form, ML
models are given inputs and outputs of “training sets”
using real-world data to analyze and determine rela-
tionships using various methods of pattern recognition.
The models are then tasked with creating predictions,
given inputs from a “testing set,” and these predictions
are compared with actual known outcomes to quantify
and refine the accuracy of the algorithm with positive or
negative reinforcement. These algorithms are compa-
rable to the same experiential “learning” associated
with human intelligence, having the capacity to con-
tinually assess, and improve the quality of its analyses,
given an adequate amount of data inputs, with the
potential to continue learning after implementation
because new data are available.7–9 Thus, the predictive
power and accuracy of an AI algorithm is only as
powerful as its training experience and volume, not
unlike the expertise and judgment of a surgeon.
Moreover, these algorithms can be seen as doing similar
tasks as traditional regression analyses, which determine
relationships between disparate variables.

Deep learning can be thought of as an additional
subset of ML. Made possible with increasingly powerful
computational processing capabilities, deep learning
models are more sophisticated algorithms that require
less human supervision for development. Also known as
deep neural networks, these models mimic the structure
and function of the neuron by receiving several inputs (ie,
dendrites) than determining which signal meets the
internal threshold to pass forward along the axon to the
next neuron. Unlike traditional ML algorithms, which
generally require human expertise and the predetermined
transformation of raw data into a suitable format, deep
learning models are a form of representation learning.
They function autonomously, allowing the system to
discover alternative representations with differing levels
of abstractions. The neural network begins with an input
tier that receives the raw data. The network then pro-
gresses to a number of “hidden tiers” that each respond
to different features of the input.10 Similarly, “back-
propagation” of the neural network exists, in which the
model continues to learn through the refinement of
weighting regarding the known training sets. Through
this process of developing multiple hidden layers, the

model continues to develop more and more abstract
representations of the data. Similar to the way the
human brain functions, the machine is able to make
“neuronal” connections from “dendrites” on multiple
hierarchical data levels.8 Eventually, the model learns to
appreciate a concept on multiple layers and dimensions,
building on itself to create a web of interconnected re-
lationships.7 However, there is room for bias because
these models rely on arbitrary weightings that must be
manually assigned.

Role of Artificial Intelligence in United
States Healthcare: Potential and
Limitations
Modern healthcare is primed for positive transformation
by AI.5 Despite having the highest healthcare expendi-
ture per capita among developed countries, the United
States consistently ranks poorly in key quality metrics
such as average life expectancy, maternal and infant
mortalities, and health equity.11,12 Innovation in the
form of AI offers exciting potential in both improving
healthcare outcomes and reducing inefficiencies that
currently plague modern medicine. A second contrib-
uting factor is the recent generation of tremendous data,
known as “Big Data.” From high-resolution medical
imaging, granular electronic medical records (EMRs)
data, genome sequencing, and numerous diagnostic
testing capabilities, each patient encounter generates
tremendous Big Data that cannot be effectively analyzed
with human processing or standard statistical methods.
One study of EMRs found that a single patient’s health
record was associated with an average of approximately
32,000 data elements.13 As another example, the human
genome of a single individual requires 125 gigabytes of
data storage.5 In an age of information overload and
evidence-based decision-making, the physician is tasked
with the integrating this overwhelming amount of data
and synthesizing a clinical decision, a seemingly
impossible task, given limited time and context.5 Judi-
cious use of AI and its predictive abilities represent a
solution to delivering high value care in the setting of an
overwhelming degree of Big Data.

It is important to note the inherent limitations of these
technologies. As with all data analysis, the quality of the
output and conclusion is heavily dependent on the quality
of the input data. Therefore, just as in clinical research
efforts, applicationofMLalgorithms todatabases that are
of low quality is unlikely to yieldmeaningful and accurate
results. Examples of low-quality input data include data
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sets with large amounts of missing information, poorly
organized data sets (which can introduce error upon at-
tempted analysis), low-volume databases that are not
powered enough to draw meaningful conclusions, and
inaccurate but accessible databases. Additional opportu-
nities for external validation of predictive models exist,
suchas throughTransparentReporting of aMultivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) standards of reporting.14

A second concern regarding data inputs lies in the
relevance of the data. Many large databases in ortho-
paedics draw on administrative and claims-based data
that can be susceptible to discrepancies 25% of the
time.15 This concern affects traditional clinical research
and AI-driven research. Moreover, although claims
based data are important, ample evidence exists that
they do not represent the most relevant and meaningful
outcomes to patients,16 particularly regarding patient
satisfaction.17 Instead, they represent data that are rel-
atively easy to extract and aggregate from EMRs. Data
inputs such as patient-reported outcome measures
(PROMs) and social determinants of health may be far
more relevant in predicting clinical outcomes when
compared with this claims-based data, which was not
intended to be primary inputs for such ML algorithms.

Finally, despite the relatively autonomous nature of
analysis throughML algorithms, a potential for bias still
exists. This bias may be a result of the algorithm that is
used to analyze the data orwith the data itself (eg, skewed
datasets). For example, in one study by Obermeyer
et al,18 the authors identified racial bias in the “ground
truth,” which led to the conclusion that Black patients
are more medically complex and costly to the system
than White patients, when in reality the model failed to
account for access. Similarly, when Amazon (Seattle,
Washington, United States) attempted to build an AI-
based tool to aid in recruiting new talent, the algorithm
negatively selected against women because the training
data were primarily rooted in male-dominated appli-
cations to accrue data.5

These guidelines, however, are not comprehensive
and do not encompass the importance of model vali-
dation. As technically challenging as it may be to build
and train an accurately predictive model, clinical
application requires external validation on an outside
cohort, as was done by Ramkumar et al with primary
hip and knee replacement patients using both institu-
tional and National Inpatient Sample data.19,20

Without external validation using institutional data,
the model from the National Inpatient Sample data-
base could have created many false predictions if

applied too soon, given the inherent weaknesses of
this administrative database. Thus, external valida-
tion with multiple data sets is important beyond
simply reporting performance metrics.

A commonly critiqued limitation is the “black box”
nature of AI-based algorithms, which intimates that the
inner workings of the model’s decision-making or
“rationale” behind particular inferences will never be
known. However, there exist several vehicles to deter-
mine the weight or importance of the data inputted into
the algorithm. As one example, Shapely Additive
Explanation summary aggregate Plots are a method to
show the relative importance and direction of each
modeling variable used to generate a prediction across a
data set. For image processing, as with classifying im-
plants from plain radiographs, heatmaps (Figure 1) can
be developed to identify aspects of the image that trigger
specific classification. These images are created through
layering techniques that, when retroactively analyzed,
help make the “black box” nature more transparent.

Applications in Orthopaedics
Remote Patient Monitoring
Remotepatientmonitoring systems (Table 2) represents an
avenue that can increase the value of care during the
perioperative period and has become increasingly impor-
tant since the coronavirus disease 2019 (COVID-19)
pandemic. Although many companies have developed
software to monitor step counts and activity level, the
application of ML with an open architecture system (eg,
one that allows broad sharing and integration with other
systems) allows patients and healthcare providers to track
their participation in home exercise programs and general
activity levels.7,8 The surgical team can therefore track
rehabilitation and intervene with calls or additional office
visits if postoperative milestones are not being met.

Remote patient monitoring systems have been proven
to be effective for patients undergoing primary total knee
arthroplasty (TKA) for osteoarthritis. In one cohort
study of 25 patients, patients who underwent this pro-
cedure, downloaded an AI-based, open architecture
mobile application (FocusMotion) onto their personal
iPhones (Apple), and recorded preoperativemobility and
PROMs, beginning 2 to 4weeks before surgery.27 A knee
sleeve was paired with the patient’s iPhone via Blue-
tooth, and the application notified the patient to
complete weekly exercises. Home exercise compliance
and range of motion were detected by AI-based inter-
pretation of the sensors on the knee sleeve that displayed
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range of motion and overall compliance with exercise
form. This system was found to be reliable, low main-
tenance and well received during the process of recovery
from TKA.27

Postoperative Outcomes and Cost
ML has been shown to be useful in using patient-specific
factors to predict postoperative outcomes. This feature

can be applied to further improve payment models by
bringing greater, more nuanced specificity to tiered
reimbursement. The Comprehensive Care for Joint
Replacement model for bundled payments and quality
measures was established to improve value and incen-
tivize high-quality care at lower costs. However, hospi-
tals that have demonstrated savings with bundled
payments are more likely to be large, high volume, and

Figure 1

Heat map illustrates unique stem features from pixel processing and analysis that contributed to implant classification.

Table 2. Summary of Artificial Intelligence-based Studies in Orthopaedics

Genre/Author Application

Remote patient monitoring: Ramkumar et al20 AI-driven wearable technology demonstrating benefit in
monitoring of patient compliance with home exercise program,
range of motion

Postoperative outcomes and cost: Karhade et al21 Machine learning algorithm for preoperatively predicting
prolonged opioid prescription after total hip arthroplasty

Postoperative outcomes and cost: Navarro et al22 Postoperative detection of length of stay and cost according to
factors such as age, race, sex, and medical comorbidity after
total knee arthroplasty

Postoperative outcomes and cost: Ramkumar et al19 Neural network in predicting length of stay, charge, and
disposition after total knee arthroplasty with application to
value-based care delivery

Imaging and gait analysis: Urish et al23 Development of algorithms used for predicting the presence of
osteoarthritis from radiograph images

Imaging and gait analysis: Kotti et al24 Correlation of body kinetics with likelihood of the presence of
knee osteoarthritis

Imaging and gait analysis: Karnuta et al25 Classification of hip and knee arthroplasty implants from
radiographs with manufacturer model

Implant design: Kozic et al26 Optimization of implant design according to implant shape and
bone characteristics
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associated with postacute care facilities.28 Although
bundling care has been shown to improve outcomes
(readmissions decreased from 5% to 1.6%–2.7%, and
patients are more likely to be discharged home), bun-
dling care does not account for the specific factors each
patient possesses.29 Patient-level factors are essential in
predicting the likely true cost and outcome of a proce-
dure.30,31 These specificities may shape or determine the
course of their treatment. A single reimbursement fee
for a single procedure may therefore fall short, failing to
acknowledge or incorporate patient-level factors that
influence cost. A comprehensive model that can identify
patient-specific factors that influence cost may be able to
help determine more appropriate reimbursements and
reduce the phenomenon of “cherry-picking” or “lemon-
dropping” patients.32,33

ML has also been applied to predict the necessity of
prolonged opioid prescription after an operation.A2019
study by Karhade et al21 developed ML algorithms for
preoperative prediction of prolonged opioid pre-
scriptions after total hip arthroplasty. In addition, the
algorithm’s predictive power presents an opportunity to
more accurately estimate the true cost of a procedure—a
cost estimate that includes the likelihood of prolonged
opioid prescription or dependence, in addition to the
direct costs of the procedure.21

In this manner, ML technologies can be applied to
determine a particular patients’ likelihood of increased
resource utilization—in this highlighted study, inves-
tigators predicted prescription utilization, but others
have examined length of stay and inpatient charges.
These specific outcomes help characterize a case’s pre-
dicted complexity based on the patient’s specific factors.
Identifying and understanding the complexity of a case
creates an opportunity to more accurately understand
value. Although value has been understood as the rel-
ative benefit of the outcome to the cost, value is not
standardized because individuals may require different
resources, bring different goals, and achieve different
outcomes.

Beyond simply identifying risk factors for increased
cost, risk stratification for the purpose of improving cost
maybe auseful tool in improving equity.A2018 studyby
Navarro et al22 used a Bayesian model to forecast length
of stay and cost, using factors such as age, race, sex, and
comorbidity scores. A proposed risk-based patient-
specific payment model was created based on the out-
put. As patient complexity increased, cost add-ons then
increased in tiers of 3%, 10%, and 15% for moderate,
major, and extrememortality risks. This proposition has
the potential to encourage cost sharing, reduce patient

selection, and even reinforce patient access by reim-
bursing in proportion to complexity. The ability to
predict a specific patients’ outcomes and resource uti-
lization based on their preoperative variables has
important implications in increasing the efficiency of
payment models to improve cohort health. In the pre-
sent era, risk is not distributed equally between payers
and the treating team—surgeons are not incentivized to
take on a large proportion of patients with increased
comorbidities or case complexity. However, using ML
to predict complexity offers an opportunity to fairly
reward surgeons and institutions who take on greater
risk. In the context of an aging cohort with increased
comorbidities, a flat bundle reimbursement fee for pa-
tients with varying risk fails to match value with
reimbursement.

Similarly, a 2019 study by Ramkumar et al20 devel-
oped and validated an artificial neural network that was
able use patient-specific factors and outcomes to “learn”
and predict length of stay, inpatient charge, and dis-
charge disposition in unfamiliar patients undergoing
TKA. Furthermore, this predictive model was applied to
propose a risk-based, patient-specific payment model.
The neural network was created using 175,042 total
knee arthroplasties and had an area under the curve of
0.748 for length of stay, 0.828 for charges, and 0.761
for discharge disposition. The model “learns” iteratively
from training groups until it is able to predict value-
based patient outcomes. This predictive capability has
promise in application to patient-specific payment
models and tiering reimbursement based on case com-
plexity, in which patients may be preoperatively as-
signed to a tier based on their risk factors, with a
reimbursement commensurate with their stratified risk.

With the advancement of data aggregation and deep
learning algorithms, the field or orthopaedics is on the
cusp of a transformation. The adoption of ML in
orthopaedics has the power to improve patient care by
estimating complexity of cases and supporting progress
toward patient-specific payment models that are more
capable of incorporating specificities of each case.8

Imaging and Gait Analysis
ML has important applications in diagnosis, using both
imaging and gait analysis. It has been used to automati-
cally detect osteoarthritis using imaging patterns and
movement patterns, a feature that holds promise for
efficient and objective automated diagnosis.23

For example, preprogrammed mathematical algo-
rithms andmeasurements have been shown to accurately
diagnose arthritis on a radiograph. Urish and Reznik23
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describe the use of medical imaging data in a technique
that analyzes pixels in a radiograph image to recognize
pertinent structures and specific features to create a
pattern. When presented with an unknown image, the
algorithm was shown to “decide” whether it was con-
sistent with a known model for osteoarthritis or whether
it did not match. This algorithm may be used in both
clinical applications and research applications to
confirm the presence of osteoarthritis. Furthermore, it
could be expanded to predict which patients have
more advanced pathology or would benefit most from
surgical intervention. With an algorithm capable of
processing images, a health system may be able to
more efficiently triage a patient to the appropriate
care provider—whether it be a specialist arthroplasty
surgeon, sports medicine surgeon, or a nonsurgical
physician. These clinical decisions can be made using
data rather than reliance on nonclinical schedulers. In
addition, they provide the benefit of increasing
efficiency.

ML has utility in detecting knee osteoarthritis using
gait analysis. A computer system developed by Kotti
et al24 took input body kinetics and produced as output
an estimate of the likelihood of the presence of knee
osteoarthritis. Furthermore, it identifies the discrimi-
nating parameters and set of rules that led to the deci-
sion. This explanation mimics “interpretation” and
increases the value of the diagnosis. With an accuracy of
72.6%, this automatic detection of knee osteoarthritis
provides a unique opportunity to create objective, sen-
sitive diagnostic tools that can increase efficiency and
quality of care delivered to patients.

Recently, Karnuta et al34 trained, validated, and
externally tested a deep-learning system to classify total
hip arthroplasty and hip resurfacing arthroplasty fem-
oral implants as one of 18 different manufacturer
models from 1,972 retrospectively collected AP plain
radiographs from four sites in one quaternary referral
health system (Figure 1). After 1,000 training epochs
by the deep-learning system, the system discriminated
18 implant models with an area under the curve of
0.999, accuracy of 99.6%, sensitivity of 94.3%, and
specificity of 99.8% in the external-testing data set of
206 AP radiographs. Similarly, the same group25

built a deep-learning system to identify TKA, uni-
compartmental knee arthroplasty, and distal femoral
replacement images and found the model discrimi-
nated nine implant models with an area under the
curve of 0.99, accuracy 99%, sensitivity of 95%, and
specificity of 99% in the external-testing data set of 74
radiographs.

Implant Design
Optimization of implants and devices can increase the
value that they provide both to the patient and the value
of investments made by developers. Currently, implant
design is not as efficient as possible because of constraints
in testing fit.

Kozic et al26 present a method to assess specific
anatomical and morphological criteria that transcend
shape variability in a cohort to optimize orthopaedic
implant design. Although implants are mostly designed
and tested through fitting on cadaver bones, which
provide only a limited sample that does not represent the
entire variability of the patient cohort, this technology
provides an alternative. The framework allows an
implant design to be virtually fit to samples drawn
from a statistical model, determining which range of the
cohort is most appropriate for a particular implant.
Certain patterns of bone variability are more important
for implant fitting, and this method allows for
improvement of implant design such that a maximum
target cohort can have a benefit.

This study demonstrated the optimization of implant
design, using their proposed design and virtual validation
method, of a proximal human tibia used for internal
fracture fixation. Overall, implant design can benefit
from these methods to improve fit for the patient,
designer, and physician.

Summary
The day-to-day employment of ML in an independent
orthopaedic practice is not yet widely used. However,
individual orthopaedic services across the United States
have pioneered the use of ML technology in recent years
and may serve as examples of what future deployment
will look like. In 2019, Goltz et al,35 in affiliation with
Duke University Medical Center, released a 90-day re-
admission risk calculator after primary unilateral total
hip and knee arthroplasties. Using patient data from
10,155 primary unilateral total hip and knee arthro-
plasties done at a single institution, a multivariable
regression model was created to “adequately predict”
the likelihood of 90-day readmission, based on preop-
erative parameters, duration of surgery, postoperative
laboratory results (hemoglobin and blood-urea-nitrogen
level), and nine comorbidities. This tool is freely avail-
able online for any provider to use and serves as an
example of how applied statistical techniques, in con-
junction with large amounts of available patient data,
can be harnessed to provide benefit in patient care.
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Although many may not consider such regression models
as “ML”, it may be useful to consider ML as a natural
extension of statistical techniques that have been used in
the profession of healthcare for decades. Other online
applications are similarly available, ranging from pre-
dicting risk of increased length-of-stay after joint arthro-
plasty to predicting inpatient payments.21,36,37 It is likely
that the use of such applications and online tools, powered
by ML algorithms, will become more ubiquitous in the
future and paid private consulting services.

In 2018, the Cleveland Clinic’s Department of
Orthopaedic Surgery established the ML Arthroplasty
Laboratory, with the goal of exploring practical im-
plementation of ML techniques in the practice of
orthopaedic medicine.38 The team has developed and
validated several ML models in several areas of research
interest, all with the ultimate focus of providing patient-
specific, value-based care.20,27,38,39 The team has recently
developed an image classifier to read preoperative radio-
graphs and identify arthroplasty implant class and man-
ufacturer before revision. Such a tool would be valuable to
any arthroplasty surgeon, avoiding the increase in costs
associated with delays in care, and misidentifications
leading to lack of appropriate equipment available during
the operation.8 Another area of study for the group has
been the establishment of value-based payment models for
hip and knee total joint arthroplasty.22,39 Although the
development of these theoretical payment models may not
serve any utility for any single orthopaedic practice, these
studies represent an initial foray exploring the utility of
ML in better informing reimbursement.

Yet a third example of incorporation of AI andML to
routine orthopaedic care lies in with decision-support
tools using PROMdata to predict outcomes after hip and
knee arthroplasties. Using AI, clinicians at the UTHealth
AustinMusculoskeletal Institute, Dell Medical School at
the University of Texas at Austin discuss likelihood of
post-operative success before scheduling surgery with
patients.40 These models have the potential to improve
in accuracy as more data/inputs are incorporated into
the models.

Although the true impact of AI and ML on clinical
orthopaedics is still yet to be determined, ample evidence
exists that these technologies may assist in generating
healthcare value through improving outcomes or
decreasing cost/inefficiencies. ML has the capability of
automating redundant tasks, thereby allowing physi-
cians to spend more time with patients. The technology
should be viewed as a physician-aid—a tool that can
better augment a physician’s capabilities rather than
replace their responsibilities. To maximize the benefit of

these tools, however, clinicians, researchers, and policy
makers must first understand the fundamentals of the
technology, along with its potential benefits and limi-
tations. Numerous applications in orthopaedics have
already been demonstrated, and these applications will
increase in quantity and impact as AI continues to grow
as a key healthcare technology.
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