Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology

Carri K. Glide-Hurst
Percy Lee
Adam D. Yock
Jeffrey R. Olsen
Minsong Cao

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/radiationoncology_articles

Recommended Citation

This Article is brought to you for free and open access by the Radiation Oncology at Henry Ford Health Scholarly Commons. It has been accepted for inclusion in Radiation Oncology Articles by an authorized administrator of Henry Ford Health Scholarly Commons.
Authors

This article is available at Henry Ford Health Scholarly Commons: https://scholarlycommons.henryford.com/radiationoncology_articles/316
Physics Contribution

Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology

Carri K. Glide-Hurst, PhD,* Percy Lee, MD,† Adam D. Yock, PhD,‡ Jeffrey R. Olsen, MD,§ Minsong Cao, PhD,¶ Farzan Siddiqui, MD, PhD,** William Parker, MS,* Anthony Doemer, MS,* Yi Rong, PhD,** Amar U. Kishan, MD,‖ Stanley H. Benedict, PhD,** X. Allen Li, PhD,∥ Beth A. Erickson, MD,†† Jason W. Sohn, PhD,‡‡ Ying Xiao, PhD,§§ and Evan Wuthrick, MD‰

*Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin; †Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; ‡Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; §Department of Radiation Oncology, University of Colorado- Denver, Denver, Colorado; ¶Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California; *Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan; ‡Department of Radiation Oncology, McGill University, Montreal, Quebec, Canada; **Department of Radiation Oncology, University of California-Davis, Sacramento, California; ‖Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin; ††Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, Pennsylvania; ‡‡Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania; and ‰Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida

Received Mar 12, 2020. Accepted for publication Oct 19, 2020.

Corresponding author: Carri K Glide-Hurst, PhD; E-mail: glidehurst@humonc.wisc.edu

Disclosures: S.H.B., Y.R., and Y.X. have nothing to disclose. M.C. reports personal fees from ViewRay Inc and Varian Inc, outside the submitted work. A.D. reports honoraria and lecturing for ViewRay Inc. B.A.E. reports departmental research support from Elekta, outside the submitted work. C.K.G.-H. reports travel and honoraria for speaking engagements from ViewRay Inc; advisory board membership and a master research agreement from Philips Healthcare; grants from NIH, National Cancer Institute of the National Institutes of Health under Award Number R01CA204189; and a research agreement from Modus Medical, outside the submitted work. A.U.K. reports honoraria from and consulting for Varian Medical Systems; a grant and honoraria from ViewRay Inc; advisory board membership for Janssen; and consulting fees from Intelligent Automation, outside the submitted work. P.L. reports personal fees and nonfinancial support from ViewRay Inc; grants, personal fees, and nonfinancial support from AstraZeneca Inc; and personal fees and nonfinancial support from Varian Inc, outside the submitted work. X.A.L. reports research grants to institution from Elekta AB, Manteia Med, and Siemens Med, outside the submitted work. In addition, X.A.L. has a patent/license on ART techniques. J.R.O. reports in the past (>48 months ago) receiving industry research funding in support of MR guided radiation therapy and travel/speaking fees to give presentations on MR guided radiation therapy. W.P. reports being an employee of McGill University Health Centre, outside the submitted work. F.S. reports personal fees from Varian and Sanofi/Regeneron, outside the submitted work. A.D.Y reports grants and personal fees from Varian Medical Systems, outside the submitted work; In addition, A.D.Y has a patent pending adaptive radiotherapy phantom. J.W.S. discloses grants from NIH under award numbers R21DE028690 and R01CA187053 outside of the submitted work.

Supplementary material for this article can be found at https://doi.org/10.1016/j.ijrobp.2020.10.021.

0360-3016/$ - see front matter © 2020 Published by Elsevier Inc.
https://doi.org/10.1016/j.ijrobp.2020.10.021
The integration of adaptive radiation therapy (ART), or modifying the treatment plan during the treatment course, is becoming more widely available in clinical practice. ART offers strong potential for minimizing treatment-related toxicity while escalating or de-escalating target doses based on the dose to organs at risk. Yet, ART workflows add complexity into the radiation therapy planning and delivery process that may introduce additional uncertainties. This work sought to review presently available ART workflows and technological considerations such as image quality, deformable image registration, and dose accumulation. Quality assurance considerations for ART components and minimum recommendations are described. Personnel and workflow efficiency recommendations are provided, as is a summary of currently available clinical evidence supporting the implementation of ART. Finally, to guide future clinical trial protocols, an example ART physician directive and a physics template following standard NRG Oncology protocol is provided. © 2020 Published by Elsevier Inc.

Introduction

Adaptive radiation therapy (ART) was introduced in the late 1990s as “a closed loop radiation treatment process where the treatment plan can be modified using a systematic feedback of measurements with the intention to improve radiation treatment by systematically monitoring treatment variations and incorporating them to reoptimize the treatment plan early on during the course of treatment.”1 By accounting for changes in the patient’s anatomy during the treatment course, isotoxic-based radiation therapy (escalating or de-escalating target doses to maintain a constant, acceptable risk of clinical toxicity based on the dose to organs at risk [OARs]) has been demonstrated.2-4 ART may be implemented to address patient-specific treatment variations, including systematic changes in weight, tumor, and organ geometric and biological response, as well as stochastic variations such as organ deformation, filling change, and respiration and peristaltic motion. These variations may occur at different time scales ranging from seconds to hours to days. As a result, the implementation of ART is often binned into 3 major classes: (1) offline between treatment fractions, (2) online immediately before a treatment fraction, and (3) real-time during a treatment fraction, with major steps outlined in Figure 1.

Offline ART mostly addresses systematic and progressive changes that occur during the treatment course, such as patient weight loss and tumor morphologic changes.5 For offline ART, adjustments to a patient’s treatment plan parameters based on these observed changes are modified after the current treatment fraction and typically follow the same clinical workflow as regular initial treatment planning. Repeat simulation may be required if the acquired in-room image is not sufficient for treatment planning, followed by contouring, planning, and patient-specific quality assurance (PSQA). The resultant new treatment plan is reviewed by the physician and then implemented in subsequent delivery sessions. Offline ART has been shown in prospective clinical trials in the prostate, head and neck, and lung to yield improved target coverage and OAR sparing.6-9

Many treatment variations, such as interfractional target and organ displacement, particularly in the abdomen and pelvis, and deformation of OARs will occur during a shorter time scale; thus, offline ART is not sufficient to account for these variations. Online ART is a process in which the patient’s treatment plan is adjusted before or during treatment delivery to account for temporal and stochastic changes detected in a single treatment fraction while the patient remains in the treatment position. As a result, online ART requires imaging, rapid replanning, plan review, and an acceptable form of PSQA. Although resource and time intensive, online ART has shown promise for conventional and stereotactic body radiation therapy to enable better OAR sparing and improved target coverage, particularly in the head and neck,10 abdomen,11-14 and pelvis,15-18 and more recently for ultracentral lung cancer.19 Promising data have emerged for using daily online magnetic resonance (MR)-guided ART for localized prostate cancer, showing a low incidence of early gastrointestinal and genitourinary toxicities in clinician- and patient-reported outcomes.20 A multi-institutional prospective phase 2 study of stereotactic MR-guided on-table ART with real-time respiratory gating for patients with locally advanced pancreatic cancer is currently enrolling to evaluate toxicity, overall/progression-free survival, and patient-reported quality of life (QOL) using daily online ART.21 Daily target dose escalation has also been proposed when OARs are in a favorable location, although clinical evidence is still emerging.

To account for variations that occur within a treatment fraction, such as respiration, internal status changes, and peristalsis motion, real-time ART has been introduced, in which the treatment plan is automatically adapted during treatment delivery without operator intervention. Real-time ART may be performed through treatment gating, dynamic tracking by the treatment machine (eg, CyberKnife [Accuray, Sunnyvale, CA] or Vero22 [Brainlab, Munich, Germany] systems), by the multileaf collimators (MLCs), and intrafraction replanning, although such an approach typically requires continuous imaging with constant replanning and rapid dose calculation.23-25 The CyberKnife Stereotactic Radiosurgery System with Synchrony Respiratory Tracking System dynamically tracks...
tumors that move during respiration via an external to internal motion correlation model updated throughout treatment using x-ray imaging. More recently, the Radixact (Accuray), a next-generation helical tomotherapy system, has integrated intrafraction motion management based on the Synchrony to predict motion based on implanted fiducials or the tumor itself. Real-time ART has also been realized using simultaneous intrafraction monitoring for target identification and MLC tracking to align the beam to the target for stereotactic body radiation therapy (SBRT) prostate cases using a standard linear accelerator (linac).

In addition to classification based on the time domain, ART may be characterized as anatomically or biologically driven based on treatment variations. Biologically guided ART holds great promise because changes at physiologic and molecular levels usually occur before anatomic change, leading to early treatment adaption. Patient-specific biological changes during treatment have been shown to correlate with clinical outcomes and toxicity profiles, suggesting strong clinical benefits of biological-guided ART in personalized treatment. However, biologically guided ART remains limited in clinical practice. The majority of the current studies focus on adjustment of target volumes based on classification, requirements, and patient-specific biological changes.

Fig. 1. Typical elements in adaptive radiation therapy workflows, including online, offline, and real-time approaches.
on functional imaging obtained during the treatment course, with a comprehensive review of biologically guided ART provided in the literature.30 Several ongoing clinical trials are underway (e.g., NCT02031250, NCT03416153, NCT03224000, and NCT01504815) that aim to investigate functional subvolume boosting and dose scheme changes based on functional imaging.

Regardless of the class of ART implementation or combinations thereof, the increasing interest in ART along with emerging vendor-provided products and workflows will undoubtedly increase ART utilization. Yet, ART introduces complexities into the clinical workflow that will necessitate rigorous benchmarking and evaluation. This need will become even greater as ART is applied to clinical trials, in which safe and consistent implementation is of paramount importance to ensure high fidelity in trial outcomes. Overall, this work describes considerations pertinent to the implementation of ART techniques and establishes a foundation for the safe and effective implementation of ART both in conventional clinical contexts and in clinical trials.

Technological Considerations for ART

Image acquisition

Performing the necessary steps for ART requires adequate information for tumor/OAR delineation, accurate dose calculation, and sufficient image quality. Table 1 summarizes the major imaging modalities used in different ART workflows at the present time, their advantages and disadvantages, and special considerations for their implementation, accompanied by a consensus subjective grading system for the merits of each modality. Although Table 1 highlights the current imaging modalities being implemented, new image reconstruction algorithms are emerging that may have implications for ART performance, such as iterative cone beam computed tomography (iCBCT), which has shown promise for improved image quality and more complete fields of view (FOVs) than conventional CBCT.31,32 Recently, Ethos (Varian, Palo Alto, CA) was introduced; it integrates iterative CBCT for dose calculation on the anatomy of the day, with clinical integration efforts ongoing.33 Furthermore, with the recent trend toward hypofractionated treatment regimens, imaging doses are expected to become less of a concern in the future.

Deformable image registration

Deformable image registration (DIR) is an important step commonly used during ART to account for changes in the shape and size of internal organs between the initial and adaptive planning images acquired during the treatment course. For offline ART, DIR is used as needed. The adaptive planning image may include high-quality computed tomography (CT) images, images that were used for image guided radiation therapy (IGRT) (ie, CBCT and magnetic resonance imaging [MRI]), or an interim functional image such as a positron emission tomography (PET)-CT or MRI. For online ART workflows, DIR is often used at every fraction before treatment delivery for tasks such as deforming contours or performing electron density mapping between the initial planning data set and the daily images used for patient positioning. At present, many treatment planning vendors and standalone image registration software suites offer DIR and ART workflows, as summarized in Table 2.

Deformation vector fields (DVF), or the voxel-by-voxel 3D transformation matrix obtained from DIR,34 are often applied for tasks such as contour propagation, plan adjustment, and fractional dose accumulation.23,35 Therefore, any errors introduced in the image deformation process may be propagated downstream in the ART workflow. Error and uncertainty originating from DIR often arise from the image quality of the 2 input images, inaccuracy of the DIR algorithms, and any parameter selection or manual adjustment during the registration process. For online and offline ART, the input images include the original planning data set (the moving image) and the stationary image acquired during treatment. It is important that both the moving and stationary image be evaluated for image quality because errors from the input images often arise from image artifacts (eg, noise, blur caused by motion, image truncation) or image distortion, such as in MRI.

In 1998, Maintz and Viergever36 summarized image registration variables and categorized them using 9 criteria, including dimensionality, nature of the registration basis, domain of the transformation, degree of interaction, optimization procedure, image modalities, involved subjects, and body sites. Twenty years later, these classifications still hold, with minor revisions.37 All of these variables introduce various degrees of errors and uncertainties during DIR that are convoluted in the DVF obtained from image deformation, which will then be applied for contour mapping and dose deformation/accumulation tasks. Therefore, it is essential for the end user to perform validation of the DIR algorithm.

However, direct quantitative validation of DIR using the DVF has proven difficult owing to the lack of ground truth. Recently, AAPM Task Group 132 (TG-132) has provided guidelines on using qualitative and quantitative measures for evaluating image registration accuracy.34 Qualitative methods include visual checking with various display methods, including image-to-image comparison with or without mapped contour/structure overlays. Quantitative metrics include target registration error, mean distance to agreement, the Dice similarity coefficient (DSC), Jacobian matrix (identifying local volume changes such as expansion or contraction that may indicate erroneous regions of interest), and consistency (or the independence of the algorithm to the direction of the registration). TG-132 has provided expected tolerances to each of these metrics based...
<table>
<thead>
<tr>
<th>ART imaging modality considerations</th>
<th>CT (on rails or simulation)</th>
<th>CBCT</th>
<th>MVCT</th>
<th>MRI</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image quality and contrast—soft tissue differentiation</td>
<td>Diagnostic quality. Same as planning CT scan</td>
<td>Good contrast for large-density differences such as bone/tissue/air. Scatter significantly decreases contrast.</td>
<td>Good contrast for large-density differences such as bone/tissue/air. Scatter significantly decreases contrast.</td>
<td>Excellent soft tissue contrast but provides quantitative functional information</td>
<td>No soft tissue differentiation</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>Same as planning CT scan—submillimeter, can be limited longitudinally</td>
<td>Same as planning CT scan—submillimeter, longitudinally typically 1 mm</td>
<td>Same as planning CT scan—submillimeter, longitudinally typically 2 mm</td>
<td>Similar to planning CT scan—submillimeter, longitudinally typically 1 mm</td>
<td>Typically few mm in each direction PET, depends on body site</td>
</tr>
<tr>
<td>Motion artifacts</td>
<td>Fast scan but motion must be managed to avoid artifacts</td>
<td>Long scan times prone to motion artifacts</td>
<td>Long scan times prone to motion artifacts</td>
<td>Scan times can be long or short, prone to motion artifacts</td>
<td>Very long scan times, prone to blurring from motion</td>
</tr>
<tr>
<td>Clinical motion management solutions</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Reconstruction artifacts</td>
<td>Prone to hardening artifacts from high Z materials or elongated body shape, motion</td>
<td>Same artifacts as CT, as well as scatter, ring, aliasing, and misalignment artifacts</td>
<td>Same artifacts as CT, zipper artifacts</td>
<td>Susceptibility, motion, distortion</td>
<td>Same artifacts as CT, attenuation correction, motion, CT reconstruction and partial volume</td>
</tr>
<tr>
<td>Geometry</td>
<td>Anatomy changes from CT, organ localization</td>
<td>Anatomy changes, organ localization</td>
<td>Anatomy changes, organ localization</td>
<td>Anatomy changes, organ localization</td>
<td>Metabolic uptake changes</td>
</tr>
<tr>
<td>FOV limitations</td>
<td>60 cm FOV</td>
<td>Up to 50 cm FOV, large FOV results in poor image quality</td>
<td>Up to 50 cm FOV, large FOV results in poor image quality</td>
<td>Up to 50 cm FOV</td>
<td>Up to 70 cm FOV</td>
</tr>
<tr>
<td>Patient position issues</td>
<td>Same as planning CT scan</td>
<td>Can affect image quality depending on position on treatment couch</td>
<td>Can affect image quality depending on position on treatment couch</td>
<td>Bore size may limit patient position, coil placement may limit use of accessories</td>
<td>May not be same as simulation setup, PET scan bore size may limit patient position</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Truncated structures</td>
<td>Same as planning CT scan</td>
<td>FOV limitations may truncate structures</td>
<td>FOV limitations may truncate structures</td>
<td>FOV limitations may truncate structures and external contour</td>
<td>Same as planning CT scan</td>
</tr>
<tr>
<td>Tracking organ motion</td>
<td>Not available during treatment</td>
<td>Not available during treatment</td>
<td>Not available during treatment</td>
<td>Available</td>
<td>Not available during treatment</td>
</tr>
<tr>
<td>Density</td>
<td>Same as planning CT scan</td>
<td>Can build custom HU table 1%-2% accuracy in dose calculation</td>
<td>MVCT number, similar to HU table, must be monitored at high frequency</td>
<td>Not available, surrogate needed</td>
<td>Same as planning CT scan if PET-CT</td>
</tr>
<tr>
<td>Online/offline ART</td>
<td>CT on rails</td>
<td>CBCT</td>
<td>Tomotherapy able to sum plans and “dose of the day”</td>
<td>MRI-cobalt, MRI-linac</td>
<td>Under development</td>
</tr>
<tr>
<td>Additional dose to patient</td>
<td>Up to 3 cGy per scan</td>
<td>Up to 10 cGy per scan</td>
<td>Up to 5 cGy per scan</td>
<td>Not applicable</td>
<td>Up to 3 cGy whole body plus CT dose</td>
</tr>
</tbody>
</table>

Grading system: (least to most advantageous, 1* to 5*) based on consensus grading by authors.

Abbreviations: ART = adaptive radiation therapy; CBCT = cone beam computed tomography; FOV = field of view; HU = Hounsfield units; linac = linear accelerator; MVCT = megavoltage computed tomography; MRI = magnetic resonance imaging.
on the application and image voxel dimensions. Validation of DIR performance often consists of verifying landmarks such as bifurcations or implanted markers. In addition, subjective scoring methods for evaluating the mapped structures have been proposed. Phantom data sets for multiple modalities (ie, CT, CBCT, PET, and MRI) have been made available by TG-132 for DIR validation and are currently under evaluation by the NRG Image Deformation Working Group. Publicly available data sets have also been created for image registration validation, including brain MR images, head and neck CT images, prostate CT images, and thoracic CT and 4DCT images, to benchmark DIR performance.

Dose accumulation and tracking

ART may yield significant improvements in accommodating tumor and OAR changes during the treatment course when the original planning data set is not fully representative of the anatomy of the day. However, as the anatomy and corresponding contours change, the initial dose calculated by using the planning data set may have limited accuracy and may not continue to represent the actual delivered dose. For example, in a head and neck cohort of 13 patients, a dose reduction of 0.2 to 7.4 Gy was observed in the planning target volume (PTV) coverage (D95%) with increased maximum doses of 0.6 to 8.1 Gy and 0.2 to 15.4 Gy in the brain stem and cord, respectively. Recently, MR-guided ART has shown that for pancreas SBRT, the dose to the duodenal loop would increase by up to 6 Gy whereas the PTV coverage would be reduced by up to 4.5% if the plan were not adapted. Therefore, ART calls for an updated 3D data set representing the current anatomy, an adaptive plan tailored to the anatomy change, and, ideally, an accurate summary of the “as delivered” dose. Here, “as delivered” refers to updated dose reporting that takes into account tumor and adjacent OAR anatomy changes, with a determined dose (dose-volume histogram) that was delivered to the patient. To provide such an updated delivered dose, a voxel-by-voxel dose accumulation for each delivery timepoint needs to be determined by deforming the dose.

Table 2 Summary of currently available deformable image registration and relevant adaptive radiation therapy components

<table>
<thead>
<tr>
<th>Vendor</th>
<th>DIR algorithm</th>
<th>Unimodal registration (CT, CBCT)</th>
<th>Multimodal registration (CT, PET, MR)</th>
<th>Contour propagation</th>
<th>Dose warping and summation</th>
<th>Offline ART</th>
<th>Online ART</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIM (v 6.8)</td>
<td>Free-form, Demons optical flow</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Velocity (v 3.2)</td>
<td>Multipass B-spline</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes*</td>
<td>No</td>
</tr>
<tr>
<td>Mirada (v RTX1.8)</td>
<td>Unimodal: free-form Multimodal: radial basis function</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes*</td>
<td>No</td>
</tr>
<tr>
<td>Raystation (v 9A)</td>
<td>ANACONDA, MORFEUS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Eclipse (v 15.6)</td>
<td>Unimodal: accelerated Demons Multimodal: adaptive grid-based radial basis function</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pinnacle (v 9.10)</td>
<td>Fast symmetrical Demons, salient-feature—based registration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Monaco (v 5.51)</td>
<td>Gradient-free dense hybrid MI deformation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Precision (v 2.1)</td>
<td>Multiorgan B-spline</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ViewRay (v 5.2.5)</td>
<td>Free-form Unimodal: correlation coefficient Multimodal: mutual information</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Partial offline ART functionality (no treatment planning).

Abbreviations: ANACONDA = ANAtomically CONstrained Deformation Algorithm; ART = adaptive radiation therapy; CBCT = cone beam computed tomography; CT = computed tomography; DIR = deformable image registration; MI = mutual information; MORFEUS = multiorgan finite element modeling algorithm; MR = magnetic resonance; PET = positron emission tomography.
based on the calculated DVF from DIR over the treatment course with the dose warped back to the initial planning CT for dose accumulation for the total fractions to date.

An alternative approach to obtain the daily delivered dose is to deform the initial planning data set to match the daily IGRT image (ie, CBCT, megavoltage computed tomography, CT on rails, or MRI) for calculating the “dose of the day.” By applying DIR, the dose calculated based on a deformed planning CT has been shown have 95% of the voxels agree at 2 mm/2% with the resimulated CT dose, which may be considered clinically acceptable. This methodology of deforming the adapted planning image yields improved dose estimation compared with conventional dose calculations based on the rigid registration of the planning CT or directly on the CBCT itself.

Nevertheless, estimating the cumulative dose is still highly dependent on the choice of DIR algorithm and the underlying image quality. For online ART, ideally, a fully integrated treatment planning, imaging, and dose delivery system accompanied by an optimized DIR algorithm would be needed to implement this computationally intense adaptive workflow in an efficient fashion. The calculated “dose of the day” for each fraction can be warped back to the reference CT (ie, the planning CT) or MRI data set and summed to obtain the estimated accumulated dose. The accuracy of this accumulated dose is highly dependent on the DVF generated from the initial steps of image deformation. A wide range of DIR accuracy has been reported, from <1 mm up to 10 mm depending on the disease site and DIR algorithm used. Corresponding dose deviations illuminated via accumulation may have clinical impact, depending on the cancer site, image modality and quality, DIR algorithm, parameter choices, dose evaluation metrics (eg, mean, maximum, minimum, D95), organ volume/motion, and other factors. The accuracy of dose warping and accumulation depends on the accuracy of the DVF, which may be limited by internal target changes (ie, shrinkage or growth) and movement of the adjacent organs that may challenge boundary detection. Mass changes are a particular challenge for DIR, and other methods to accommodate them, such as integrating models of tumor regression, have been described in the literature. To date, limited studies provide reliable quality assurance (QA) methods to ensure the accuracy of dose warping and accumulation for patient data sets; thus, caution must be taken when applying to ART decision-making.

Rapid replanning

Replanning cases for ART involves consideration of the strategy (offline vs online), timely delineation of targets and/or OARs, the time it takes to replan, and the clinical criteria as to what necessitates the adaptation. RTOG 1106 is an example of an offline ART clinical trial schema for advanced stage lung cancer in which the experimental arm includes a PET/CT and CT resimulation acquired after fraction 18, offline replanning, and a new treatment plan beginning on fraction 22 to allow sufficient time for the development and QA of the adapted plan. A recently published offline ART protocol for oropharynx cancer included weekly adaptation using geometric criteria (when the gross tumor volume [GTV] shrinkage exceeded 2 mm) via CT and MR simulation data acquired at intervals of 5 ± 2 fractions. An offline adaptive scheme using CBCT-generated contours from the initial 6 fractions of radiation therapy for prostate cancer has been used to generate average positions of the CTV and rectum, with ~7 ± 0.5 hours additional time needed to perform the additional replanning. Offline ART workflow solutions are becoming commercially available to help in the decision-making process regarding adaptation. For example, Accuray’s PreciseART treatment planning system allows for automated dose monitoring and volume-based statistics that may be reviewed offline to assess the need for adaptation, with example cases taking 2 to 8 fractions between plan evaluation and treating with a new adapted plan. The total time required for offline ART will depend on several factors, including the amount of multimodality imaging needed, total number of organs that need to be recontoured, dose accumulation/plan evaluation, PSQA if warranted, and any treatment planning dose constraint challenges that may be introduced.

To facilitate online ART, contours required for replanning must be generated rapidly while the patient is on the treatment table. Strategies to expedite recontouring have included implementing rigid or DIR to propagate delineated volumes from the initial simulation images or previous fractions to the daily image. Another strategy is to perform manual recontouring limited to regions in close proximity to the target volume, such as in an MR-guided online ART scenario in the abdomen where only the OARs within a 3-cm expansion of the PTV are delineated. The rationale for using a subset of the OAR volume is that OAR dose tolerances are often expressed as a small-volume dose constraint (typically D0.5cc), and presumably these will be located close to the target volume. Recent results presented for MR-guided online ART showed clinically acceptable contouring times (median, 9 minutes; range, 2-24 minutes) to allow for daily adaptation in a clinical trial setting using this contouring strategy. Recent efforts using rapid autocontouring approaches such as deep learning are emerging and offer great potential to facilitate more efficient online ART. One such example is Varian’s Ethos online x-ray—based ART solution that uses neural networks involving a large library of images and ground truth contours to autosegment the anatomy of the day.

Aside from recontouring, plan reoptimization must also be performed quickly for online ART. For head and neck cancer cases using CT on rails and a conventional linac, an online ART workflow for plan reoptimization can be completed in 5 to 8 minutes. To perform a more expedited optimization, one strategy includes combining all OARs...
into a single optimization structure to decrease the total objectives that need to be achieved by the optimizer and thereby simplify the optimization process. This also makes for a more robust planning approach because the achieved dose distribution will be less sensitive to expected daily changes, although caution must be exercised to ensure all necessary OARs are included in the optimization. Sophisticated workflows for online optimization have been implemented, including using an artificial neural network that provided robust parameters that consistently met the OAR constraints, compared with a failure rate of 36% of fractions in which a conventional optimization approach was used. Reoptimization times ranging from 10 to 223 seconds for full reoptimization of lumbar spine bone metastases have been achieved on a 1.5T MR linac.

To ensure accurate dose calculation, an accurate CT number (and, hence, electron density) is required. In an MR-guided ART workflow, multimodality DIRs between the CT, daily electron density map, and MRI may severely warp the images, as shown in Figure 2, and introduce uncertainties in dose calculation. This also requires substantial personnel effort to fix the underlying electron density map via manual overrides of air and tissue. Indeed, the evaluation and correction of electron density maps is a rate-limiting QA step requiring significant resources in many MR-only and ART workflows, and thus appropriate QA steps are required to address these uncertainties during online replanning.

Overall, performing the entire online MR-guided ART process including IGRT, recontouring, replanning, and QA has been reported to have a median on-table time of ~80 minutes per fraction (range, 36-160 minutes) for abdominal malignancies and 45 minutes (40-70 minutes) for prostate SBRT (typically 7.25 Gy/fraction). For high-field MR-guided ART of abdominal SBRT using 4D-MRI guidance, the median overall total treatment was ~62 minutes using an adapt-to-shape workflow. For an online adapt-to-shape prostate SBRT (35 Gy/5 fraction) workflow, a median fraction treatment time of 50 minutes (range, 46-65) has been reported.

Pretreatment plan and delivery QA

Offline ART strategies follow treatment planning and delivery QA procedures that are standard of practice. Online ART, on the other hand, requires plan and delivery checks to be performed in an accelerated timeframe. At present, commercially available options are limited; thus, many groups are developing in-house QA tools. One such example is for MR-guided ART in which a software program reads DICOM data from the base and daily adapted plan and compares the beam angles, number of segments, beam-on time, fluence patterns, and volumes (initial vs replanned). An independent secondary dose calculation was also developed to ensure the adapted plan’s integrity before treatment. Another in-house QA tool built in C++ can be used for conventional and MR-guided linacs and checks demographics, imaging information (ie, patient orientation, electron density), contour integrity, monitor units, MLCs and jaws within machine specifications, and dose calculation accuracy. The MRIdian Linac (ViewRay Inc, Mountain View, CA) has a vendor-provided online adaptive QA tool that runs on the treatment console and performs a rapid secondary dose calculation of the new adapted treatment plan. A report is automatically generated with plan comparisons, 3D...
gamma analysis, contour/dose statistics, and per-beam fluence comparisons. ART workflows may integrate third-party independent dose calculation and adaptive plan QA, such as the Varian Ethos system that uses the Mobius QA platform. Other commercial options are emerging or are being customized that provide independent dose calculation checks, such as MU2Net and RadCalc. Ideally, automated plan checks and secondary dose calculation tools would perform an independent evaluation of plan quality; however, these are still works in progress for many vendors and remain an unmet need.

Dose reporting

A methodology for dose reporting is also required to ensure homogeneity across clinical trial study sites. For example, the protocol could state that full OAR delineation is required (whether in real time or postdelivery) or that a more limited delineation scheme (i.e., a few centimeters from the PTV) can be performed to facilitate more rapid contouring for online dose evaluation and subsequently reviewed offline with full delineations. An alternative strategy would be to implement concepts from brachytherapy, as carried out in NRG-GY006. Here, volume dose parameters are defined for dose tracking and reporting per ICRU Report #89. In GY006, the specific reference point locations and volume definitions are well defined (i.e., D2cc of the bladder, rectum, and sigmoid) and are recorded for each fraction.

Quality Assurance Needs

Deformable image registration and contour propagation benchmarking

Direct qualitative evaluation of a DIR result can be performed via what TG-132 defines as an image-image visual validation of the deformed image with respect to the stationary image, including split screen displays, region of interest overlap, overlay assessment, or side-by-side display via a linked cursor. Many commercially available software packages include functionality to visually display DVFs that can be overlaid on the deformed data set, including incorporating color coding and vector length displays to highlight potential regions of nonphysical or erroneous deformations. Although TG-132 recommends that DIR programs be able to export a DVF in DICOM format, vendor compliance is still a work in progress. Nevertheless, to properly perform a quantitative benchmarking of DIR accuracy, appropriate physical or digital phantoms are required. Although deformable physical phantoms with implanted landmarks have been built, at present they are not widely commercially available.

Benchmarking multimodality ART workflows such as MRI/CT or PET-CT/CT with physical phantoms also introduces challenges in phantom construction and landmark visibility. The major advantage of using physical phantoms is to perform end-to-end testing in a clinical setting with consideration of the entire ART workflow. However, more straightforward DIR benchmarking can be achieved via the use of a digital phantom for comparing a user-obtained DVF generated by the DIR software with a gold-standard DVF. A digital validation set can be created in software from virtual phantoms or patient scans by generating a warped image and its associated structure set from an original image (and its associated structure set) with a known DVF. Ideally, the original image and structure set, warped image and structure set, and ground-truth DVFs can all be imported to a user’s DIR software for testing. Several studies have explored this approach, and TG-132 also provided data sets created from ImSimQA software and recommended commercial DIR software vendors to provide feasible tools for user validation.

Yet, few commercial systems adopted by radiation oncology departments have the recommended function for importing or comparing DVFs. In this case, indirect validation metrics (e.g., target registration error, DSC, mean distance to agreement) may have to be adopted for clinically feasible evaluation of DIR quality comparing propagated landmarks and structures with the ground truth. A detailed multi-institution evaluation of DIR commissioning and QA is currently underway by NRG Oncology to provide benchmarking guidelines for clinical trials involving DIR and ART. The testing criteria include TG-132 compliance, rigid registration accuracy, and deformable registration accuracy between the planning CT and other image modalities (CT, CBCT, PET, and MRI) for various body sites including head and neck, lung, and prostate.

Autosegmentation may also be part of an ART workflow. These contours, whether created de novo or through DIR contour propagation, should be reviewed by a radiation oncologist or other appropriately trained personnel. A rate-limiting step in the process may be reliance on a physician to recontour the relevant OARs or target. Opportunities to make this more efficient include workflows that enable safe remote contouring and viewing, training therapists or other auxiliary staff to perform the initial recontouring with physician approval, and systematic applications of autocontouring tools. Evaluation of the autocontouring functionality should be assessed before clinical implementation, and a protocol for the review of contours generated during online ART should be established. Ultimately, the accuracy of the final contours should be within the uncertainty of an expert contouring the structure from scratch, with a tolerance for the DSC value between 2 contours to be within the contouring uncertainty (approximately 0.8-0.9).

Generally speaking, many online ART workflows consist of rigidly copying the target volumes to the daily image in lieu of deforming or modifying the target during the online process.
process. \(^{11}\) The clinical rationale for this decision is that complementary, multimodality diagnostic images as well as consultation of surgical or diagnostic reports are often used to assist in target delineation but are not typically available at the time of online replanning. For example, in a prospective clinical trial for prostate SBRT, the prostate target volume was rigidly registered to the anatomy of the day and only edited as needed, such as with rotational differences. \(^{62}\)

Dose accumulation may be used for retrospective evaluation of the delivered dose, with the verification carrying particular significance when plans are created based on images other than a conventional simulation CT (eg, dose based on a CBCT or a synthetic CT generated from MRI). Dose accumulation accuracy depends on the DIR accuracy as well as mass changes occurring during the treatment course. \(^{83}\) Efforts are currently underway to further develop validation schemes, such as developing new methods for dose mapping, \(^{84}\) using the energy conservation criterion, \(^{85}\) developing uncertainty metrics, \(^{86}\) and using computational \(^{87,88}\) or deformable phantoms.

Machine-specific quality assurance

As is the case with non-ART workflows, the treatment machine needs to perform within specifications for reliable radiation delivery. For conventional mechanical and dosimetric assessment of machine performance, a standard QA program as described in AAPM Task Group Reports 142 is appropriate. \(^{89}\) ART features an increased dependence on imaging systems in the treatment room. This underscores the need for appropriate periodic QA regarding image quality. Robust examination of factors such as geometric distortion, image artifacts, and HU-to-electron density calibration curves is necessary if the imaging system is to be used for ART replanning.

End-to-end testing of ART workflows

An end-to-end verification test should be conducted before clinical implementation of ART to evaluate the system holistically and to establish confidence in the dose delivered to the patient. To benchmark offline ART, digital phantoms such as the TG-132 test suite or POPI model can be implemented to benchmark DIR and dose accumulation depending on the imaging modality used in the workflow. For online ART, end-to-end verification should include the imaging of at least 2 geometries of a physical phantom using the modalities used in the ART workflow (eg, CT, CBCT, MRI), the clinical use of ART subsystems (eg, DIR, autocontouring, dose accumulation, and plan reoptimization), and ultimately, the comparison of cumulative delivered dose with the intended dose modeled by the treatment planning system. A verification of the secondary dose calculation or verification system should also be performed using the modified geometry. Regardless of the additional tasks and subsystems involved in an ART workflow, the final dosimetric accuracy should be within the conventional guideline of ±5% of the intended dose. \(^{5}\)

At present, only a few physical phantoms have been made by independent investigators to meet all these needs. Multimodality anthropomorphic pelvis phantoms that mimic internal organ kinematics have been built recently. \(^{88,90}\) Deformable lung \(^{91}\) and abdominal phantoms \(^{75,92}\) have also been devised and have been implemented to evaluate accumulated dose. In addition to end-to-end tests to verify the planning and delivery of an ART workflow, failure mode effects analysis may be used to characterize the ART process and to further direct efforts of the associated QA program, such as described for real-time \(^{93}\) and online \(^{94}\) ART.

Adaptive plan-specific quality assurance

For online ART, PSQA options may be limited before treatment delivery. Performing measurements on each plan can become impractical if additional plans are created frequently, and predelivery measurements may not be feasible for online workflows when the patient is on the table. \(^{95}\) As a result, one must balance the practical costs of plan-specific QA while ensuring the dose delivered is safe and appropriate. In vivo portal dosimetry allows for patient-specific or transmission measurements that have been applied in several ART scenarios, including using an electronic portal imager integrated into a 1.5T MR-linac. \(^{96}\)

Reoptimization methods such as implementing MLC aperture morphing from a base plan as opposed to a fully generated reoptimization may lessen the likelihood of a PSQA failure. Finally, clinical trial endpoints (eg, dose that causes a specific toxicity) may need to consider the possibility that protocols will adopt limited manual recontouring of OARs within some distance of the PTV.

Generally speaking, adaptive plans should be held to a standard with prescribed clinical criteria similar to those in the original plan. AAPM Task Group Report 218 discusses techniques for plan-specific intensity modulated radiation therapy (IMRT) QA and recommends tolerance limits and action limits of 95% and 90% γ passing rates, respectively, for 3%(global)/2 mm, with a 10% dose threshold for both the perpendicular field-by-field and true composite methods. \(^{9}\) Another approach receiving increased attention is to simulate rather than measure the delivered dose. For offline workflows, machine log files generated during QA delivery of the plan with or without a phantom can be used. \(^{7,8}\) For online workflows, it may be possible to perform a dry run, in which the mechanical components of the delivery are enacted but no dose is delivered. This could be performed with the patient on the table, but with obvious caveats regarding added time and risk. Lastly, for online workflows, various systems could be used to monitor the delivered dose in real time in lieu of pretreatment QA. Machine log files can be used in this...
way, retrospectively determining the fidelity of the delivered plan. Additionally, transmission detectors attached to the treatment machine or portal imaging devices may verify treatment field apertures and instantaneous output during delivery.

Although various PSQA methods are available, it remains imperative that rigorous plan-specific checks be performed before treatment, including verification of plan data integrity and plan dosimetric quality, monitoring of unit calculations, and correct data transfer from the treatment planning system to the record and verify system. Software solutions are likely to play an increasing role in verifying consistent treatment parameters and accurate data transfer in the accelerated ART workflow. Where feasible, QA on the deliverability of the treatment plan should be conducted before the patient’s treatment. This applies to offline ART plans and to the initial treatment plan for both online ART and offline ART. Posttreatment analysis of the delivered parameters will suffice where pretreatment measurements are not feasible (eg, adapted online ART plans), provided the other checks on plan integrity and data transfer have been performed properly.

ART action levels and evaluation criteria

Clear ART directives are required a priori to facilitate both online or offline ART in a systematic fashion. For offline ART, directives may be based on empirical data (ie, at set time points for replanning) or practical clinical considerations (eg, weight loss, tumor volume changes, review of anatomic changes in daily setup images, treatment breaks, or ill-fitting immobilization devices). Example online ART objectives may include violations of predetermined OAR dose limits or target dose coverage considerations, although it is important to note that these should be evaluated using the dose expected on the geometry and delineated organs of the day.

Daily planning objectives will often be similar to those used for generation of the initial plan and, whenever possible, should be prespecified and imported into the treatment planning system to minimize time required for adaptive plan generation.

To facilitate routine practice of offline ART, an automated dose-volume evaluation based on the daily treatment fraction would be ideal. The PreciseART tool (Accuray) is a semiautomated tool that initiates the dose-volume evaluation process as soon as each fraction delivery is completed. The tool automatically creates the merged daily and plan images, deforms the plan contours, calculates dose on the daily image, accumulates the daily dose onto the planning CT, and generates a structured report with dose-volume data, user-defined metrics, flags, trends, and triggers for ART. The plan reviewer can thus identify at a glance whether a particular dose-volume objective is no longer being met and if an adaptive plan is needed based on a predefined action level for future fractions.

For online ART, a solution to automatically and objectively determine when online ART is required immediately after the acquisition of the daily image is highly desirable. For example, Lim et al reported a method to rapidly determine the need for online ART by analyzing the Jacobian determinant histogram obtained from the DIR between the plan and daily images without time-consuming and labor-intensive structure delineation based on the daily image. The recently introduced iterative CBCT-based online ART platform incorporates guided clinical decision-making at several steps in the ART process, including image approval, autocontouring, and plan approval. It is anticipated that rapid evaluation solutions will be an active area of development.

Summary of minimum requirements and recommendations

Table 3 provides a summary of minimum elements and QA requirements to integrate ART into clinical trials, with associated rationale provided for potential clinical impact.

Currently, the most comprehensive benchmarking of ART was that implemented by the Trans Tasman Radiation Oncology Group for a multi-institutional clinical trial of ART for bladder cancer. The ART schema consisted of delivery of a conventional plan for the first 7 days of treatment, with the remainder of the treatment delivered using 1 of 3 plan options with varied bladder-filling conditions. The 3 different plans were generated based on a hybrid of the original planning CT and 5 CBCT bladder volumes acquired during the first week of treatment. Credentialing consisted of the following: (1) a facility questionnaire, (2) a treatment planning exercise, and (3) a site visit, including a phantom-based implementation of image guidance. For clinical treatments, the presence of a trained team member was required during daily IGRT. The training of this individual consisted of a 1-day course or an e-Learning module. The treatment planning exercise included the delineation of structures and the generation of plans with varied treatment planning margins based on the union of contours generated from several treatment fractions. Of interest is the on-site visit by trial coordinators, which included discussions, lectures, review of the planning exercise, and past clinical CBCT data sets, as well as a mimicked ART workflow procedure. Here, treatment planning was conducted on digital phantom data with an initial bladder-filling condition, and IGRT and ART plan selection were performed based on differing anatomy. Dosimetric verification with thermoluminescent dosimeters was also conducted.

Another such example of multi-institutional implementation and credentialing for ART clinical trials is the Radiotherapy Trials Quality Assurance group, which has coordinated efforts across 10 centers and 71 radiation therapists in the United Kingdom. Here, real patient data were used for credentialing, including contouring,
treatment planning, IGRT, the plan selection process, and rapid review of the first enrolled patient. Overall, the credentialing process tested the main components of the trial ART workflow, including hardware and software, and included the decision-making process. This broad benchmarking underscores the fact that ART is dependent not only on technology but also on workflow and procedure. For that reason, both preimplementation and periodic QA need to evaluate the technique from a comprehensive perspective.

Personnel Recommendations

Online ART physician directive and approval

Regardless of ART approach, the attending physicians must first specify quantitative adaptation criteria based on a physician directive to determine the necessity of adaptive replanning. Typical components include the structures to be recontoured, OAR volumetric constraints, and minimum target coverage criteria subject to the OAR constraints. If all OAR constraints are met owing to favorable geometry, another ART action criterion may be target coverage improvement above a certain threshold, such as >10%, compared with the original plan.

When online ART is anticipated, substantial physician involvement may be required and analogous to that required for nonadaptive or offline treatment planning, but with increased time constraints for online ART. For online ART, physician approval may be required for patient localization and positioning, which is analogous to approval of simulation in the offline setting. Subsequent delineation and thorough review of target and OAR segmentation are required to evaluate the need for online adaptation and facilitate plan reoptimization if clinically indicated. Similar to offline ART processes, review and approval are required for target and OAR segmentation before replanning, with objectives provided for target coverage and OAR sparing.

Although physicians often participate in this process, recent efforts have been implemented to train radiation...
thearists or other staff members to perform contouring. Ultimately, if a new plan is found to be justified based on predefined clinical criteria, documented physician approval of the new plan and associated QA is required to confirm the adapted prescribed dose, volume, and technique and to document any planned escalation or de-escalation in the prescribed target dose based on the patient anatomy of the day. In the context of clinical trial implementation, the physician directive should also include the objective indication for ART to generate data regarding prevalence of specific ART indications.

Online ART tasks and responsibilities

An online ART workflow can be best described as a choreographed process involving contributions from several team members, including radiation therapists, medical physicists, and physicians, with typical roles as outlined in Table 4. An example low-field online MRgART workflow is described because it has been previously published in several clinical trials, with similar workflows also being reported for high-field MRgART.

First, the radiation therapists bring the patient into the room, perform initial setup, and acquire a volumetric MRI suitable for target alignment and with a large enough FOV to facilitate online treatment planning. The radiation therapist then aligns the treatment target in the image guided radiation therapy workspace and pages the covering physician and adaptive planner (typically a physicist or dosimetrist). Deformable registration-based auto-segmentation is initiated, followed by manual edits of autogenerated critical structure contours. Critical structure contours may be edited by the adaptive planner and may be reviewed by the covering physician or other qualified personnel. The gross tumor volume is rigidly propagated (not deformed) and may be edited by the covering physician as deemed necessary. Derived structures, such as PTV expansions or optimization volumes, are generated based on predetermined workflows that can be rapidly applied online. Dose is then recalculated on an electron density data set derived from registration of the initial plan’s electron density to the daily setup image. The “predicted dose,” or the dose that would have been delivered if the plan were not adapted, is then evaluated using dose-volume histograms based on the new anatomy and recontoured structures. Based on the predicted dose, the current anatomy visualized in the setup image, and predetermined clinical criteria, a decision is made whether to treat as-is or to adapt.

Attending physicians specify quantitative adaption criteria per plan based on a physician-directive planning sheet that are then used to determine the necessity of adaptive replanning. If the decision is made to adapt, in one example online workflow, IMRT optimization is performed with the same structure weights and beam angles as the offline plan (only the structures themselves, and the electron density map, having changed). Beam angles and structure weights can be edited if needed, but they usually are not edited because of the corresponding increase in time required. Dosimetry of the adaptive plan is evaluated and a decision is made whether to treat the adaptive plan, treat the initial plan, or abort the fraction. Finally, gating parameters are set, if applicable, and the treatment is initiated.

Offline ART physician directive and approval

Offline ART is often triggered by clinical observations such as loose-fitting masks, patient weight loss, or changes observed over time on volumetric on-board imaging such as CBCT. One such example is highlighted in Figure 3 for a patient with stage III cT3N2cM0 nasopharyngeal carcinoma who was scheduled to receive 70 Gy in 33 fractions with concurrent chemotherapy. Major reductions in the primary tumor and bilateral neck nodes were observed on the CBCT by the 12th fraction and a weight loss of ~ 10 lb was also observed, prompting a resimulation and new plan generation. DIR was conducted between the initial TPCT

Table 4 Example online adaptive workflow actions and potential corresponding staff roles

<table>
<thead>
<tr>
<th>Action</th>
<th>Therapist</th>
<th>Dosimetrist</th>
<th>Physician</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquire setup imaging and align patient</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical structure recontouring</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Gross tumor volume contour, as needed</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Create derived contour structures</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Preadaptation evaluation</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Plan reoptimization</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Plan evaluation</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Quality assurance checks</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Configuration of gating and beam-on</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

● Performed by
✓ Reviewed by

Roles may be adjusted based on internal credentialing processes.
and the resimulation CT using a Demons-based algorithm (SmartAdapt, version 13.0, Varian Medial Systems). Local regions of deformation and tumor regression can be observed.

In offline ART settings, requests are often made ad hoc by the physician and documented in the electronic chart. However, to implement offline ART more systematically in clinical trials, more rigid criteria are required, such as defining a predetermined timepoint (e.g., after an initial dose or specific fraction) or using a geometric constraint (i.e., for a head and neck trial when GTV shrinkage exceeded 2 mm via weekly imaging). The offline directive should include the adaptive criteria, dose limits of the plan summation (either rigid or deformable as validated by the physics team), and physician approval of the final plan.

Efficiency Recommendations

Frequency of plan adaptation

In an ART workflow, the frequency of plan adaptation can have many practical and dosimetric ramifications. In principle, increasing the frequency with which plans are adapted to changes in patient position, anatomy, and dose will maintain or improve the clinical goals of treatment, including the therapeutic ratio. However, the dosimetric improvement—and therefore the cost-benefit ratio—of increasingly frequent adaptation is dependent on the clinical context and may exhibit diminishing returns. Specifically, increasing the frequency of adaptation when OARs are anatomically stable and tumor response occurs during the course of weeks may result in a decreasing incremental benefit and increasing use of clinical resources, as has been demonstrated in lung cancer treatment planning studies. In contrast, daily online adaptation has been shown in a prospective clinical trial to allow substantial simultaneous dose escalation and OAR sparing for abdominal SBRT, in which daily anatomic variation both in tumor and OAR anatomy is present. The optimal timing and frequency of adaptation therefore depends on anatomic changes characteristic of the treatment site, the time interval of anatomic change, and the proximity of a given target or an OAR to a steep dose gradient. These factors, in conjunction with the increased workload of repeating plan preparation steps such as contouring, optimization, and verification, affect the optimal frequency of ART. In the context of clinical trial implementation, it is important to clarify the specific goal of adaptation, with objective action thresholds to allow multi-institutional uniformity of the adaptive technique. For example, if anatomic change results in violation of a previously defined OAR constraint or coverage goal, adaptive replanning may be objectively warranted.

Offline optimization and replanning

For disease sites in which anatomic changes occur gradually (over the course of several treatment fractions), offline optimization is generally preferred to online ART owing to greater flexibility in time constraints and less required personnel. Definitive head and neck radiation therapy is a scenario in which the anatomy exhibits small changes that trend during the course of treatment. Examples include the

![Patient with stage III cT3N2cM0 nasopharyngeal carcinoma who underwent an offline adaptive replan due to volume reductions in the primary tumor and bilateral neck nodes. (A) Initial planning computed tomography (CT) scan at the level of the maximum extent of the primary nasopharyngeal cancer; (B) resimulation CT scan at fraction 12 showing a major reduction in the primary tumor volume, with the original extent of the primary tumor in red; (C) resultant deformation map at the level of the primary tumor; (D) initial planning CT scan at the level of the neck nodes; (E) resimulation CT scan (fraction 12) at the level of the neck nodes showing the original extent of the neck nodes outside of the external anatomy; and (F) resultant deformation map at the level of the neck nodes. Scale shown is the 3D vector displacement in millimeters. (A color version of this figure is available at https://doi.org/10.1016/j.ijrobp.2020.10.021.)](https://doi.org/10.1016/j.ijrobp.2020.10.021)
decrease in volume and movement toward the midline of head and neck tumors. This pattern of change suggests that an ART workflow focused on occasional offline adjustments in response to the observed anatomic trends is appropriate, but it must be based on objective criteria of decreased target coverage or clinically impactful increases in OAR dose. Offline ART is also appropriate when the adaptation is determined based on imaging findings that are available sufficiently in advance of the planned adaptation. This generally is the case when adaptation is based on planned interim imaging assessments, as was performed in the RTOG 1106 trial using FDG-PET/CT-based adaptation for lung cancer as shown in Figure 4.

Online optimization and replanning

Online ART offers greater theoretical benefit for clinical scenarios in which significant random interfraction anatomic change occurs, in particular when the change corresponds to a region with a steep dose gradient. In prostate radiation therapy, large random changes such as bladder and rectal filling can affect the delivered dose. Because of the random nature of these changes, online corrections may be more appropriate for maintaining the desired dose distribution than offline corrections intended to address trending changes. Furthermore, intrafractional changes may occur on the timescale of an individual treatment fraction, so the duration of the imaging and replanning effort is of particular concern. A potential benefit of online ART has also been suggested for abdominal SBRT, which provides a similar clinical scenario of random interfractional changes, including variable OAR position along a high-dose gradient and high dose per fraction, all of which may significantly affect the delivered dose and associated toxicity risk.

Example ART implementation for cancer sites

Appendix E1 highlights key evidence outlining the potential clinical benefits for major cancer disease sites. Considerations were given for online, offline, prospective, and retrospective trials with clinical and dosimetric endpoints summarized.

Specialty ART planning considerations

Proton therapy

Because of the sensitivity of protons to interfractional uncertainties relative to that of photons, ART is particularly advantageous for proton therapy. In a retrospective study of advanced non-small cell lung cancer, 61% of patients replanned with intensity modulated proton therapy would have required adaptation during treatment owing to anatomic changes. For online adaptive proton therapy, CBCT has been implemented with postprocessing corrections to correct for the Hounsfield numbers because small inaccuracies may lead to large-range uncertainties. An ART proton therapy workflow has been described that generates a virtual CT scan (derived from CBCT coupled with DIR) to produce more accurate CT numbers and improved image quality for replanning. Mobile helical CT has also been implemented for online ART proton planning to produce high-quality data sets in the ART process. Further reduction of the range uncertainty is currently being investigated at multiple institutions, but...
as of yet, they do not appear to be available in the treatment room, which will only permit offline adaptive regimens.

Brachytherapy

Brachytherapy is perhaps one of the most conformal and adaptive approaches to deliver dose to a defined target. With the advent of the GEC ESTRO guidelines\(^{107}\) outlining the definition of a GTV, high-risk CTV, and intermediate-risk CTV on MRI at the time of cervical brachytherapy, as well as the recent ICRU 69 Report\(^{108}\) further elaborating on volumetric brachytherapy, we have moved from film-based point dosimetry to volume-based brachytherapy for both the targets and the adjacent OARs. Brachytherapy is now referred to as image guided adaptive brachytherapy.\(^ {109}\)

With the advent of CT and MR-compatible applicators as well as sophisticated 3D digital images, radiation plans can be generated on these images with the applicators in place. This reveals the doses to key volumes of these targets as well as the OARs so that modifications can be made to enhance target coverage and decrease dose to the critical organs. Manipulation of dwell times and positions and use of interstitial and intracavitary applicators can be done for each fraction to optimally balance these competing dose constraints. Given that usually 4 to 5 fractions are delivered for cervical cancer, each implant offers a new opportunity to adapt the dose distribution. This has led to a decrease in complications and an increase in both local control and survival that parallel and exceed the impact of concurrent chemotherapy.\(^ {109-111}\) Combining the doses delivered with external beam and brachytherapy remains a challenge, and a dedicated working group has been formed at NRG to address this topic. Current state of the art uses an EQD2 worksheet downloadable at:

https://www.americanbrachytherapy.org/ABS/assets/file/public/consensus-statements/gyn_HDR_BT_docu_sheets.xls), which converts both the brachytherapy and external beam doses to equivalent 2 Gy doses for dose summation.

Ideally, voxel-by-voxel dose accumulation of the external beam and brachytherapy components of treatment would be implemented; however, these are currently works in progress.

Forward-Looking Statements and Unmet Needs

Isotoxic dose escalation

Isotoxic-based radiation therapy refers to treatment planning that is driven primarily by the acceptable clinical toxicity risk rather than a mandated target dose. For isotoxic planning, the target dose is escalated or de-escalated to maintain a constant, acceptable risk of clinical toxicity based on the dose to OARs. Isotoxic planning is not new, with prior implementations described for multiple disease sites including lung, prostate, and liver malignancies.\(^ {2-4}\)

Prior reports of isotoxic planning are driven by inter-patient variability assumed to remain stable during a treatment course. In contrast, adaptive isotoxic treatment also allows treatment modification for a given patient due to anatomic changes that occur on an interfraction or intrafraction basis.

Adaptive isotoxic treatment planning has several implications that must be accounted for in the context of clinical trial implementation. First, the maximum dose believed to be of clinical benefit should be determined a priori to prevent adaptive delivery of a higher target dose than is clinically warranted when OAR anatomy is favorable. Similarly, if the relationship between target and OAR anatomy is unfavorable, investigators must decide whether a sacrifice in target coverage is truly warranted to maintain OAR isotoxicity.

In the absence of ART, application of an initial treatment plan to variable patient anatomy is known to frequently result in a dose to OARs that violates traditional hard planning constraints.\(^ {112}\) Although ART reoptimization may be performed to avoid violation of constraints, previously established dose constraints in the nonadaptive setting may not accurately reflect true OAR tolerance. Because previously established constraints are based on static OAR anatomy, it is plausible that such toxicity metrics did not account for drift of OARs into a high-dose region unknown to the clinician. Such variability may be accounted for with current ART techniques. Therefore, in the context of clinical trial implementation, the delivered dose to OARs with isotoxic planning should be carefully documented so that clinical toxicity rates observed with isotoxic ART may be verified relative to prior expected values. In addition, online adaptive therapy allows the potential to explore multiple novel facets of dose delivery, including daily alterations in dose per fraction, daily changes in dose homogeneity, and daily dose escalation or de-escalation.

Biological or functional guided ART

Traditional treatment response assessment based on tumor size and anatomic change is not always timely and does not necessarily correlate with final treatment outcome. Changes at the physiologic and molecular levels characterize the true underlying biological response to radiation treatment and usually occur much earlier than detectable morphologic changes. Therefore, imaging biomarkers hold great promises for adaptive radiation therapy, wherein the treatment plan can be adjusted during therapy based on individual patient’s biological response. Recent studies have shown promising results of monitoring tumor biological and functional changes using the image guidance system of radiation therapy treatment machines for potential biological image guided ART.\(^ {1,113}\) Recently, a prototype PET scanner coupled with a linac (ReflexXion, Hayward, CA) was introduced to conduct biologically adapted radiation therapy,\(^ {114}\) offering potential for PET-guided online ART in the future.\(^ {115}\) To deploy these advanced techniques in clinical trials, a few key challenges need to be overcome.
Standardization of imaging acquisition protocols, measurement, and analysis methods is essential for reproducible and consistent assessment of treatment response among multiple institutions. A rigorous QA program needs to be established to allow for accurate quantification with sufficient validation. Most importantly, strategies and methods for incorporating biological information into decision-making of treatment planning need to be developed.

Integration of advanced computing

Several advancements in computing and programming offer strong potential to make both online and offline ART more efficient. One such example is the integration of a graphics processing unit that enables high processing efficiency and yields accelerated processing speeds for radiation therapy tasks at a relatively low cost. Many vendors have integrated graphics processing units into their clinical software solutions, often for dose calculation and treatment planning. Current major unmet needs in the online ART workflow include rapid delineation and replanning that may be improved by the integration of deep or machine learning techniques into the workflow. For example, a convolutional neural network deep learning model was trained in ~12 hours using 100 patient abdominal data sets for online MR-guided ART, generating contours in ~5 seconds with good overall accuracy. Deep and machine learning offer great potential for several other ART tasks, such as automating treatment planning via accurate dose distributions, generating high-quality planning data sets for accurate dose calculation, and performing automated plan quality evaluation.

Clinical trial integration

When incorporating ART into clinical trial design, the role of ART as a primary or secondary trial endpoint should be clearly defined. When characterization of ART benefit is a primary endpoint, the trial will generally be designed to report outcomes (1) from a population treated exclusively with ART in a phase 1/2 manner with descriptive clinical and toxicity outcomes or (2) in a randomized phase 2/3 setting with patients either receiving or not receiving ART based on trial randomization, with direct comparison between trial arms. Given that online ART in particular is a relatively new approach, to facilitate more rapid evaluation of ART, it may often be more feasible to incorporate ART as a secondary trial endpoint. As a secondary endpoint, ART may be incorporated or allowed for a broad spectrum of trials, in which ancillary data may be generated to characterize ART benefits in the context of a nonadaptive primary study question. For such secondary integration, use and allowance of ART is similar in concept to current trial designs, which often allow for variable planning techniques including 3D, IMRT, or proton-based treatment, depending on institutional preference.

For any trial in which ART is a primary or secondary endpoint, objective criteria that determine the specific action threshold to trigger an ART intervention are mandatory to ensure treatment uniformity. Such thresholds may be based on observed violations of initial study constraints during the ART evaluation or a prespecified improvement in target or OAR dose resulting from ART that is deemed to be clinically significant. An alternative clinical trial strategy that may implement ART as the stratification approach is to apply ART for each treatment fraction in a manner that has been reported in the literature. Another important consideration is the extent of plan review performed for ART. One institution evaluated its clinical practice of having the physicians and physicists perform a visual assessment of daily MR images without a full dose prediction for 7 pancreas patients (35 data sets) to determine the need for daily ART. Importantly, a more thorough offline dosimetric analysis revealed that daily image review was not reliable and was insufficient to determine the benefit of ART for a patient; visual assessment only resulted in 14 of 35 fractions undergoing ART whereas 25 of 35 were revealed to have potential clinical benefit. Thus, it is recommended in an online ART clinical trial setting that daily contouring and dose prediction with a full dosimetric evaluation be performed with the appropriate time allocated for a safe and effective implementation of this process.

Given that noncompliance with radiation therapy protocol guidelines is known to correlate with inferior clinical outcomes, it is imperative to verify that both physician recontouring and adaptive plan quality are in accordance with protocol recommendations. The uniformity of physician recontouring may be particularly challenging if imaging obtained for adaptive replanning does not clearly differentiate the extent of tumor response or of residual subclinical disease. Although protocol-mandated central review of physician contours and the treatment plan are widely implemented in current trials, such central review is not feasible for online ART due to the immediate nature of plan adaptation. Potential alternatives may be to develop a site-specific delineation atlas using the ART imaging modality or to require initial delineation cases for physician benchmarking. It is also recommended that a process be incorporated in the clinical trial design that before patient enrollment, in addition to physics and machine credentialing, institutional ART workflow will be confirmed. Such a process will confirm appropriate departmental workflow as per the personnel requirements section, with central review of the first ART case to include physician recontouring, adaptive planning, and appropriate evaluation regarding the clinical indication for adaptive treatment. It is also recommended that the initial (minimum 3) clinical adaptive cases for a new institution be retrospectively reviewed centrally after each adaptive fraction to ensure adherence to protocol.

Different adaptive strategies are appropriate for different treatment sites due to site-specific adaptive
radiation therapy goals and tumor and OAR characteristics. Recommendations on the range of possible adaptive frequencies and timing can be established based on estimates of inter- and intrafractional motion and their dosimetric impact. For example, plan adaptations could be triggered when the volume of the target has changed by a prespecified action threshold or when dose to an OAR exceeds a tolerance level. Such action thresholds may often be defined by the baseline coverage and OAR-sparing goals of the trial. Recommendations can also take the form of action levels based on assessments made at predetermined time points or intervals (eg, based on a single interval FDG-PET/CT as assessed in the RTOG 1106 trial or on more frequent intervals). Regardless of the details of a particular ART workflow, the timing and frequency of adaptation should balance objectively the clinical value added to the patient with considerations of the finite resources of the clinic. A template for clinical trial language supporting an online ART workflow has been provided in Appendix E2, including considerations for IGRT, daily adaptation, and ART-related QA that would be added to standard treatment planning and credentialing protocols for new clinical trials.

Conclusions

Overall, although resource intensive, ART shows incredible promise for offering gains in OAR sparing and improving target coverage. As vendor offerings increase and our ability to perform workflows within standard clinical operation becomes easier, the likelihood of implementing ART more routinely—when clinically indicated—is rapidly expanding.

References

74. [No authors listed] Prescribing, recording, and reporting brachytherapy for cancer of the cervix. J ICRU 2013;13:NP.

