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a b s t r a c t 

This paper relates the post-analysis of the first edition of the HEad and neCK TumOR (HECKTOR) chal- 

lenge. This challenge was held as a satellite event of the 23rd International Conference on Medical Image 

Computing and Computer-Assisted Intervention (MICCAI) 2020, and was the first of its kind focusing on 

lesion segmentation in combined FDG-PET and CT image modalities. The challenge’s task is the auto- 

matic segmentation of the Gross Tumor Volume (GTV) of Head and Neck (H&N) oropharyngeal primary 

tumors in FDG-PET/CT images. To this end, the participants were given a training set of 201 cases from 

four different centers and their methods were tested on a held-out set of 53 cases from a fifth center. 

The methods were ranked according to the Dice Score Coefficient (DSC) averaged across all test cases. An 

additional inter-observer agreement study was organized to assess the difficulty of the task from a hu- 

man perspective. 64 teams registered to the challenge, among which 10 provided a paper detailing their 

approach. The best method obtained an average DSC of 0.7591, showing a large improvement over our 

proposed baseline method and the inter-observer agreement, associated with DSCs of 0.6610 and 0.61, re- 

spectively. The automatic methods proved to successfully leverage the wealth of metabolic and structural 

properties of combined PET and CT modalities, significantly outperforming human inter-observer agree- 
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ment level, semi-automatic thresholding based on PET images as well as other single modality-based 

methods. This promising performance is one step forward towards large-scale radiomics studies in H&N 

cancer, obviating the need for error-prone and time-consuming manual delineation of GTVs. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

High-throughput medical image analysis, often referred to as 

radiomics, has shown its potential in unveiling relationships be- 

tween quantitative image biomarkers and cancer prognosis, includ- 

ing in the context of Head and Neck (H&N) cancer ( Vallieres et al., 

2017; Bogowicz et al., 2017 ). H&N cancer is the 5th leading can- 

cer by incidence ( Parkin et al., 2005 ) and its treatment is generally 

based on a combination of radiotherapy with systemic treatment 

(e.g. Cetuximab) ( Bonner et al., 2010 ). However, treating this can- 

cer remains challenging since local failure occurs in about 40% of 

patients in the first two years after the treatment ( Chajon et al., 

2013 ). The development of non-invasive and personalized ap- 

proaches (e.g. radiomics) is critical for improving disease character- 

ization and will, hopefully, lead to more targeted therapies based 

on phenotypic tumor characteristics. 2-[18F]fluoro-2-deoxyglucose 

positron-emission tomography (FDG-PET) and Computed Tomogra- 

phy (CT) hold a special place for disease characterization since they 

contain complementary information about the metabolism and the 

anatomy of cancer. Furthermore, they are used for initial staging 

and follow-up of H&N cancer. These modalities are therefore read- 

ily available for the creation and evaluation of radiomics models 

based on these clinically acquired images. Typical radiomics analy- 

ses rely on localized feature extraction inside delineated lesions or 

Volumes Of Interest (VOI) ( Lambin et al., 2017; Gillies et al., 2016 ). 

One of the reasons that impede the development of robust mod- 

els is the time-consuming and error-prone manual delineation of 

these VOIs. To this end, the automatic segmentation of H&N Gross 

Tumor Volume of the primary tumor (GTVt) and the lymph nodes 

(GTVn) constitutes a highly promising approach to annotate and 

analyze very large cohorts, which is critically needed to enable ro- 

bust and reproducible validation of radiomics models. Moreover, 

automatic segmentation also has the potential to allow radiation 

oncologists to improve treatment planning efficiency by reducing 

the time needed for tumor delineation as well as improving inter- 

observer reproducibility. 

The goal of the HEad and neCK TumOR (HECKTOR) challenge 

is to establish and benchmark the best-performing methods for 

H&N lesions segmentation while exploiting the rich bi-modal in- 

formation of combined PET/CT. In this first edition of the chal- 

lenge, the participants were asked to develop automatic meth- 

ods for the segmentation of the GTVt 2 on FDG-PET/CT images 

of patients suffering from oropharyngeal cancer. It is worth not- 

ing that to be part of the official ranking, the participants had 

to provide a paper describing their methods. Furthermore, partic- 

ipants had to disclose the use of external training data and were 

in this case not eligible for the official ranking. None of the par- 

ticipants reported using external data. This manuscript summa- 

rizes the methods and presents the associated segmentation re- 

sults of the different teams who participated in this 2020 edition 

of the HECKTOR challenge. It also includes several additional ex- 

tensive qualitative and quantitative analyses. This paper extends 

the material presented in ( Andrearczyk et al., 2021b ) with the 

following: 

2 For the first and second edition of the challenge, the GTVn segmentation is not 

part of the tasks but will be asked in further editions. 

• an extensive review of the prior work; 
• an analysis of the inter-observer agreement organized with four 

different observers on a subset of 21 cases; 
• an evaluation of a super-ensemble segmentation based on the 

submitted contours of the ten ranked teams; 
• an addition of new participants’ results from runs submitted af- 

ter the end of the challenge; 
• a semi-automatic segmentation based on PET thresholding as 

an additional baseline; and 

• additional extensive qualitative and quantitative analyses of the 

results. 

The paper is organized as follows. Section 2 presents the re- 

lated work. Section 3 describes the challenge setup including the 

dataset, annotations, participation, and ranking. The presentation 

and in-depth analysis of the participants’ results are provided in 

Section 4 and are discussed in Section 5 . Finally, Section 6 con- 

cludes the paper. 

2. Prior work 

2.1. Related tumor segmentation algorithms 

An abundance of works has been proposed to automatically 

segment tumors in PET and PET/CT images ranging from thresh- 

olding to unsupervised and supervised machine learning methods. 

Making an exhaustive review of all these approaches is out of the 

scope of this manuscript and is proposed in ( Foster et al., 2014; 

Hatt et al., 2017 ). Among these different strategies, the simplest 

ones are based on the thresholding of the Standardized Uptake 

Values (SUV) in PET images. These methods are difficult to autom- 

atize completely since the SUV is a semi-quantitative measure that 

highly depends on the time between the injection and the image 

acquisition, the device, the reconstruction algorithm, the shape of 

the tumor, and even the patient ( Wahl et al., 2009 ). 

More refined approaches have been proposed to further au- 

tomatize this process. Most of them are relying on the distribu- 

tion of SUV values or other handcrafted quantitative image features 

in PET only. For instance, algorithms based on Gaussian Mixtures 

( Aristophanous et al., 2007 ) or fuzzy C-means modeling ( Hatt 

et al., 2009; Lapuyade-Lahorgue et al., 2015 ) were proposed. Oth- 

ers formulated the segmentation problem as a minimization of a 

Markov random field ( Song et al., 2013 ). In the context of H&N tu- 

mors delineation, a decision-tree-based K-nearest-neighbor classi- 

fier trained with regional texture features in PET and CT images 

was used in ( Yu et al., 2009 ). 

Recent work was inspired by the success of deep Convo- 

lutional Neural Networks (CNN), and more precisely of the U- 

Net ( Ronneberger et al., 2015 ) applied to multi-modal biomedical 

image segmentation ( Zhou et al., 2019 ). PET/CT tumor segmenta- 

tion has also benefited from the advancement of this field. For 

instance, ( Blanc-Durand et al., 2018 ) applied a 3D U-Net to seg- 

ment brain tumors in O-(2-[18F]fluoroethyl)-L-tyrosine PET/CT im- 

ages. Deep CNNs was also used several times in the context of 

lung tumor segmentation ( Wu et al., 2020; Fu et al., 2021; Li et al., 

2019; Zhao et al., 2018; Zhong et al., 2018 ). A 3D U-Net was used 

by ( Jemaa et al., 2020 ) to lung cancer and lymphoma, which was 

2 
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trained on 2540 volumes and tested 1124 volumes. ( Iantsen et al., 

2021a ) used a U-Net architecture for the automatic segmentation 

of cervical tumors in PET only. 

The deep learning-based approaches were also specifically ap- 

plied to tumor segmentation in H&N cancers. A comparison of 

different CT, PET and MRI multi-modality image combinations for 

deep learning-based head and neck tumor segmentation is pre- 

sented in ( Ren et al., 2021 ). In a study including 22 patients from 

two different centers, ( Huang et al., 2018 ) used a 2D U-Net to 

segment the GTV, i.e. the union of GTVt and GTVn. ( Moe et al., 

2019 ) used a 2D U-Net for the segmentation of GTV on a dataset 

of 55 patients. In another study, ( Guo et al., 2019 ) applied a 3D 

U-Net to segment the GTVt, which was evaluated on a cohort 

of 250 patients. The authors showed that multimodal networks 

outperform networks based on a single modality. More recently, 

( Groendahl et al., 2021 ) performed an analysis of the different 

types of automatic segmentation based on thresholding, classifi- 

cation at the pixel level using a shallow classifier, and deep CNN 

methods. They did this comparison on a mono-centric cohort of 

197 patients and concluded that deep learning models outperform 

the others. 

Identifying the best performing method among all these differ- 

ent strategies requires a standardized evaluation. This was already 

highlighted by ( Hatt et al., 2017 ) and challenges constitute a suit- 

able way to systematically evaluate and compare state-of-the-art 

algorithms against the same test set and with highly controlled 

conditions. 

2.2. Medical image segmentation challenges 

The growing interest in biomedical image analysis challenges is 

illustrated by and an increasing number of new challenges orga- 

nized every year, which can be partly explained by the growing 

community. For instance at the International Conference on Medi- 

cal Image Computing and Computer-Assisted Intervention (MICCAI) 

2018, 2019, and 2020 there were 15, 22, and 25 accepted chal- 

lenges, respectively. In the past three MICCAI editions, 52 out of 

125 tasks (42%) were related to segmentation. 3 Several other chal- 

lenges are organized as satellite events of other conferences in- 

cluding the International Symposium on Biomedical Imaging (ISBI), 

the international conference on Medical Imaging with Deep Learn- 

ing (MIDL), and the annual meeting of the Radiological Society of 

North America (RSNA), as well as independently organized chal- 

lenges (e.g. on Kaggle 4 ). Remarkably successful challenges in med- 

ical image segmentation include the Brain Tumor Segmentation 

(BraTS) challenge ( Menze et al., 2014 ), Kidney Tumor Segmentation 

(KiTS) ( Heller et al., 2021 ) challenge and the Visual Concept Ex- 

traction Challenge in Radiology (VISCERAL) ( del Toro et al., 2014 ) 

challenge. Surprisingly, as of 2021, only one challenge was orga- 

nized on PET segmentation ( Hatt et al., 2018 ) and, to the best of 

our knowledge, none on PET/CT segmentation. 

3. HECKTOR 2020 challenge set-Up 

The challenge took place in 2020 and was associated with the 

23rd MICCAI conference as a satellite event the same year. It was 

hosted on the AIcrowd platform. 5 The training and test data were 

released on the 10th of June and the 1st of August, respectively. 

The participants were asked to submit their results before the 10th 

of September. The challenge’s results were communicated the 15th 

of September, and the MICCAI associated event was held the 4th 

3 https://www.biomedical-challenges.org/miccai2021/Statistics , as of October 

2021. 
4 https://www.kaggle.com/ , as of October 2021. 
5 https://www.aicrowd.com/challenges/miccai- 2020- hecktor , as of October 2021. 

Table 1 

List of scanners used in the different centers. 

Center Device 

HGJ hybrid PET/CT scanner (Discovery ST, GE Healthcare) 

CHUS hybrid PET/CT scanner (GeminiGXL 16, Philips) 

HMR hybrid PET/CT scanner (Discovery STE, GE Healthcare) 

CHUM hybrid PET/CT scanner (Discovery STE, GE Healthcare) 

CHUV hybrid PET/CT scanner (Discovery D690 TOF, GE Healthcare) 

of October. The data of the challenge are currently available on 

the AIcrowd platform after signing an end-user agreement and 

the leaderboard submission was open until the 10th of September 

2021. 6 

The following section summarizes the challenge’s set-up. A 

thorough and BIAS ( Maier-Hein et al., 2020 ) compliant description 

of the challenge organization is provided in ( Andrearczyk et al., 

2021b ). 

3.1. Dataset 

The dataset used in this challenge includes PET and CT images 

as well as patient information including age, sex, and acquisition 

center. The patients selected for this dataset suffered from H&N 

cancer, which was histologically proven, and they underwent ra- 

diotherapy treatment often combined with chemotherapy. The data 

were acquired from five centers: 

1. Hôpital Général Juif (HGJ), Montréal, CA ( n = 55 ) 

2. Centre Hospitalier Universitaire de Sherbooke (CHUS), Sher- 

brooke, CA ( n = 72 ) 

3. Hôpital Maisonneuve-Rosemont (HMR), Montréal, CA ( n = 18 ) 

4. Centre Hospitalier de l’Université de Montréal (CHUM), Mon- 

tréal ( n = 56 ) 

5. Centre Hospitalier Universitaire Vaudois (CHUV), CH ( n = 53 ) 

The four centers HGJ, CHUS, HMR, and CHUM were used for the 

training set, which amounts to 201 cases. This training data consti- 

tute a subset of ( Vallieres et al., 2017 ) which contains 298 cases in- 

cluding H&N cancers originating from various anatomical regions. 

For this initial edition of the HECKTOR challenge, we decided to 

focus on patients suffering from oropharyngeal cancer to reduce 

anatomical variations and provide more controlled conditions for 

the algorithms. The CHUV center was used for the test set, totaling 

a number of 53 test cases. 

An example of fused PET/CT images for each of the five centers 

is depicted in Fig. 1 . The list of scanners used in each center for 

image acquisition can be found in Table 1 . Additional information 

concerning image protocols are described in ( Andrearczyk et al., 

2021b ). 

The Digital Imaging and Communications in Medicine (DICOM) 

files were converted to the Neuroimaging Informatics Technology 

Initiative (NIfTI) format. The CT and PET images were stored in 

Hounsfield Units (HU) and SUVs, respectively. The code used for 

the conversion is available on the challenge’s repository 7 Each case 

comprises NIfTI files for the CT image, the PET image, and the GTVt 

mask (for the training cases), as well as patient information (age, 

sex) and center. A bounding box locating the oropharyngeal region 

was also provided (details of the automatic region detection can 

be found in Andrearczyk et al., 2020a ). The choice of preprocess- 

ing ( e.g. resampling, image standardization) was left to the partici- 

pants. Therefore, no further preprocessing was performed to mimic 

6 The leaderboard was replaced by the 2021 edition after this date: https://www. 

aicrowd.com/challenges/miccai- 2021- hecktor/leaderboards . 
7 github.com/voreille/hecktor/blob/hecktor2020/src/data/dicom _ conversion.py , as 

of October 2021. 
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Fig. 1. Case examples of 2D sagittal slices of fused PET/CT images from each of the five centers. These images are obtained after resampling the PET image and the CT image 

to 1x1x1 mm 

3 with a tricubic interpolation. The CT window in Hounsfield unit is [ −140 , 260] and the PET window in SUV is [0 , 12] . 

a clinical use of the segmentation methods. However, we provided 

some routines to crop, resample, and also train a baseline CNN 

(using NiftyNet Gibson et al., 2018 ). This code was made avail- 

able on the challenge’s repository 8 to help the participants and to 

maximize transparency, but the participants were free to use their 

methods. 

3.2. Contours 

The GTVts from the original dataset were drawn by expert radi- 

ation oncologists from multiple centers for radiotherapy treatment 

planning. In most cases, the contours used for treatment planning 

are larger than the actual tumor and are presumably not optimized 

for radiomics with sometimes the inclusion of surrounding tissue 

or even air cavities. Furthermore, only 40% (80 cases) of the train- 

ing set were delineated on the CT of the PET/CT scans. The re- 

maining 60% were drawn on a dedicated CT scan for the treatment 

planning and were registered to the PET/CT scans using intensity- 

based free-form deformable registration with the software MIM 

(MIM Software Inc., Cleveland, OH). For more information about 

the original training set, please refer to ( Vallieres et al., 2017 ). 

The original contours of the test set were all drawn on the fused 

PET/CT scans. 

To homogenize the data i.e. to obtain delineations closer to the 

true tumoral volume and to remove variability due to the annota- 

tors and the registration step, each contour was controlled by an 

expert who is both a radiologist and a nuclear physician. Two non- 

experts annotators made an initial cleaning to facilitate the ex- 

pert’s work. During this control, multiple contours were rectified 

to follow the true border of the tumor as close as possible. Many 

8 github.com/voreille/hecktor/tree/hecktor2020 , as of October 2021. 

original contours included air as well as various tissues around the 

tumor. In some cases, the registration between the dedicated CT 

planning and the PET/CT introduced artifacts that did not belong 

to the GTVt. In many cases, the GTVt and GTVn were stored under 

the same label and had to be separated. Three annotations were 

corrupted and could not be loaded, requiring the contours to be 

drawn from scratch. Among the 53 test cases, 11 images were con- 

toured from scratch with the help of the radiological report. 

Despite the high inter-observer variability (see Section 4.4 ), and 

with a slight misuse of language, we refer to these “controlled”

reference annotations as ground truth. 

Finally, the same VOI quality control process was performed for 

the GTVn contours. These contours were not directly used for the 

HECKTOR 2020 challenge but we used them in post-analysis of the 

results (see Section 4.8 ). We also plan on using these annotations 

in future editions as an auxiliary task of lymph node segmentation. 

Radiomics studies including lymph nodes may carry important in- 

formation about patient prognosis and response to treatment. 

3.3. Ranking and assement method 

Participants were given access to the test cases without the 

ground truth annotations and were asked to submit the results of 

their algorithms on these cases on the AIcrowd platform. We only 

accepted binary segmentations in the NIfTI file format. 

Results were ranked using the 3D Dice Similarity Coefficient 

(DSC) computed on images cropped using the provided bounding 

boxes (see Section 3.1 ) in the original CT resolution as: 

DSC = 

2 T P 

2 T P + F P + F N 

, (1) 

where TP, FP, and FN are the number of True Positive, False Posi- 

tive, and False Negative at the voxel level, respectively. Prior to the 

4 
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Table 2 

Summary of the algorithms in terms of main components used: 2D or 3D U-Net, resampling, preprocessing, training or testing data augmentation, loss used for optimization, 

an ensemble of multiple models for test prediction and postprocessing of the results. We use the following abbreviations for the preprocessing: Clipping (C), Standardization 

(S), and if it is applied only to one modality, it is specified in parentheses. For the image resampling, we specify whether the algorithms use Isotropic (I) or Anisotropic (A) 

resampling and Nearest Neighbor (NN), Linear (L), or Cubic (Cu) interpolation. We use the following abbreviation for the losses: Cross-Entropy (CE), Mumford-Shah (MS), 

and Mean Absolute Error (MAE). More details can be found in the respective participants’ publications. 

Team 2D/3D preproc. resampling augm. loss ensemble postproc. 

andrei.iantsen ( Iantsen et al., 2021b ) 3D C + S I/L 
√ 

soft Dice + Focal 
√ 

✗ 

junma ( Ma and Yang, 2021 ) 3D S(PET) I/Cu ✗ Dice + Top-K 
√ √ 

badger ( Xie and Peng, 2021 ) 3D C(CT) + S(PET) A/Cu 
√ 

Dice + CE ✗ ✗ 

deepX ( Yuan, 2021 ) 3D C(CT) + S I/L 
√ 

Jaccard distance 
√ 

✗ 

AIView_sjtu ( Chen et al., 2021 ) 3D C + S A/NN 

√ 

Dice ✗ ✗ 

xuefeng ( Ghimire et al., 2021 ) 3D C(CT) + S A/L 
√ 

Dice + CE 
√ √ 

QuritLab ( Yousefirizi and Rahmim, 2021 ) 3D S I/L ✗ MS + MAE ✗ ✗ 

HFHSegTeam ( Zhu et al., 2021 ) 2D C + S I/L 
√ 

soft Dice ✗ ✗ 

Fuller_MDA_Lab ( Naser et al., 2021 ) 3D C + S A/Cu 
√ 

Dice + CE ✗ ✗ 

Maastro-Deep-Learning ( Rao et al., 2021 ) 2D/3D C A/Cu ✗ Top-K 
√ √ 

Our baseline 3D PET/CT ( Andrearczyk et al., 2020b ) 3D C + S I/Cu ✗ Dice + CE ✗ ✗ 

Our baseline 2D PET/CT ( Andrearczyk et al., 2020b ) 2D C + S I/Cu ✗ Dice + CE ✗ ✗ 

challenge opening, we decided to handle missing predictions by at- 

tributing a DSC of 0 to them. However, this never happened during 

the submission phase. If the submitted results were in a resolu- 

tion different from the CT resolution, we applied nearest-neighbor 

interpolation before evaluation. We also computed other metrics 

for comparison, namely precision ( T P 
T P+ F P ) and recall ( T P 

T P+ F N ) to in- 

vestigate whether the methods were rather providing a large FP 

or FN rate. The evaluation implementation can be found on our 

GitHub repository 9 and was provided to the participants to maxi- 

mize transparency. 

Each participating team had the opportunity to submit up to 

five valid runs, in case of formatting errors the participant was in- 

formed by an error message and the run was not counted. No im- 

mediate feedback was displayed on how their run was performing 

to avoid iterative overfit. The best result of each team was used in 

the final ranking, which is detailed in Section 4 and discussed in 

Section 5 . 

4. Results 

This section regroups results in terms of challenge participation, 

algorithms used, segmentation performance, inter-observer agree- 

ment, ensembling “super-algorithm”, simple PET thresholding, the 

relation between tumor size and segmentation performance, false- 

positive analysis, and alternative ranking of the methods. 

4.1. Participation 

The number of registered teams, as of September 10, 2020 (sub- 

mission deadline), was 64. At the same date, we had also received 

and approved 85 signed end-user agreements, received 83 results 

submissions, including valid and invalid submissions. For the first 

iteration of the challenge, these numbers are high and show an 

important interest in the task. 

4.2. Algorithms summary 

Baselines We trained several baseline models using standard 3D 

and 2D U-Nets as in our preliminary results in ( Andrearczyk et al., 

2020b ). It is worth noting that ( Andrearczyk et al., 2020b ) used 

a dataset that was different from HECKTOR 2020, and that the 

same algorithms were re-trained and evaluated using the HECK- 

TOR 2020 data. We trained on multi-modal PET/CT as well as in- 

dividual modalities with a combination of non-weighted Dice and 

cross-entropy losses and without data augmentation. 

9 github.com/voreille/hecktor/tree/hecktor2020/src/evaluation , as of October 2021. 

Participants’ methods In Table 2 , we summarize some of the 

main components of the participants’ algorithms, including model 

architecture, preprocessing, training scheme and postprocessing. 

We only report the methods of the participants with an associ- 

ated publication, which was crucial to ensure the scientific rel- 

evance of the challenge. More details on the individual methods 

can be found in Appendix A as well as in the corresponding par- 

ticipants’ papers ( Iantsen et al., 2021b; Chen et al., 2021; Ma and 

Yang, 2021; Rao et al., 2021; Xie and Peng, 2021; Zhu et al., 2021; 

Ghimire et al., 2021; Yousefirizi and Rahmim, 2021; Yuan, 2021; 

Naser et al., 2021 ). In the results Section 4 , we also include results 

of the participants without publication for comparison. 

All the participants used a U-Net-based architecture. Eight used 

3D architectures, one used a 2D architecture and one used a com- 

bination of the two. All participants used some sort of preprocess- 

ing prior to training their model, generally with standard data aug- 

mentation (except for three participants), using various combina- 

tions of losses, most often including the Dice loss. The participants 

used various cross-validation schemes to optimize the generaliza- 

tion performance of their models. Half of the participants used an 

ensemble of multiple models. 

4.3. Segmentation performance 

The results, including average DSC, precision, recall, and chal- 

lenge rank are summarized in Table 3 . We also report the average 

Surface Dice SCore at 1mm (SDSC) and the median Hausdorff Dis- 

tance at 95% (HD95) as defined in ( Nikolov et al., 2021 ). Our base- 

line method, developed in ( Andrearczyk et al., 2020b ) and provided 

to participants as an example on our GitHub repository, obtains an 

average DSC of 0.6588 and 0.6610 with the 2D and 3D implemen- 

tations, respectively. Results on individual modalities are also re- 

ported for comparison. 

The results from the participants (excluding post-challenge 

submissions) range from an average DSC of 0.5606 to 0.7591. 

( Iantsen et al., 2021b ) (participant andrei.iantsen ) obtained 

the best overall results with an average DSC of 0.7591, an average 

precision of 0.8332 and an average recall of 0.7400 ( Fig. 2 ). This 

result (DSC) is not significantly higher than the second-best par- 

ticipant ( Ma and Yang, 2021 ) ( p-value of 0.3517 with a one-tailed 

Wilcoxon test). The statistical comparison of the score of each team 

is done in Fig. B.1 with the one-tailed Wilcoxon test and corrected 

for multiple hypotheses testing. Across all participants, the aver- 

age precision ranges from 0.5850 to 0.8479. The recall ranges from 

0.5022 to 0.8534, with the latter surprisingly obtained by the 3D 

PET/CT baseline (although with low precision, reflecting a trend 

to over-segment as compared to other algorithms). The median 
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Table 3 

Summary of the challenge results as of April 2021. The average DSC, precision, recall, SDSC and median HD95 are reported for the baseline algorithms and every team (the 

best result of each team). The unit of the HD95 is [mm]. The participant names are reported when no team name was provided. The ranking is only provided for teams 

that presented their method in a paper submission. The post-challenge results are denoted by an asterisk ∗ . Bold values represent the best scores for each metric, excluding 

post-challenge results since we do not have any information about their method. 

Team DSC HD95 Precision Recall SDSC Rank 

paar ∗ 0.7624 3.27 0.8304 0.7490 0.6167 - 

andrei.iantsen ( Iantsen et al., 2021b ) 0.7591 3.27 0.8333 0.7400 0.6010 1 

junma ( Ma and Yang, 2021 ) 0.7525 3.27 0.8384 0.7174 0.6003 2 

Fuller _ MDA _ Lab ∗ 0.7523 3.27 0.7838 0.7685 0.6168 - 

supratik _ bose ∗ 0.7440 3.27 0.8350 0.7085 0.5822 - 

badger ∗ 0.7377 3.27 0.8143 0.7160 0.5800 - 

badger ( Xie and Peng, 2021 ) 0.7355 3.27 0.8326 0.7024 0.5735 3 

deepX ( Yuan, 2021 ) 0.7318 3.54 0.7851 0.7319 0.5528 4 

flash ∗ 0.7280 3.54 0.8020 0.7083 0.5650 - 

AIView _ sjtu ( Chen et al., 2021 ) 0.7241 3.33 0.8479 0.6701 0.5598 5 

DCPT 0.7049 4.10 0.7651 0.7047 0.5562 - 

xuefeng ( Ghimire et al., 2021 ) 0.6911 5.06 0.7525 0.6928 0.5011 6 

ucl _ charp 0.6765 5.42 0.7231 0.7257 0.5194 - 

QuritLab ( Yousefirizi and Rahmim, 2021 ) 0.6677 5.64 0.7289 0.7164 0.5086 7 

Unipa 0.6674 4.10 0.7143 0.7039 0.4902 - 

Baseline 3D PET/CT 0.6610 21.88 0.5909 0.8534 0.4502 - 

Baseline 2D PET/CT 0.6588 26.81 0.6242 0.7629 0.4796 - 

HFHSegTeam ( Zhu et al., 2021 ) 0.6441 14.27 0.6938 0.6670 0.4922 8 

UESTC _ 501 0.6382 5.16 0.6455 0.6874 0.4339 - 

Fuller _ MDA _ Lab ( Naser et al., 2021 ) 0.6373 5.06 0.7546 0.6283 0.4730 9 

Yone ∗ 0.6341 5.92 0.7690 0.6640 0.4513 - 

Baseline 3D PET 0.6306 24.95 0.5768 0.8214 0.4399 - 

Baseline 2D PET 0.6284 27.62 0.6470 0.6666 0.4231 - 

Maastro-Deep-L. ( Rao et al., 2021 ) 0.5874 29.56 0.6560 0.6142 0.4118 10 

Yone 0.5737 21.46 0.6606 0.5590 0.4216 - 

SC _ 109 0.5633 5.64 0.7652 0.5022 0.3542 - 

Roque 0.5606 14.94 0.5850 0.6843 0.3601 - 

Baseline 2D CT 0.3071 27.54 0.3477 0.3574 0.1847 - 

Baseline 3D CT 0.2729 32.02 0.2154 0.5874 0.1218 - 

Fig. 2. Examples of results of the winning algorithm ( andrei.iantsen ( Iantsen et al., 2021b )). The automatic segmentation results (green) and ground truth annotations 

(red) are displayed on 2D slices of PET (right) and CT (left) images. The reported DSC is computed on the entire image (see Eq. 1 ). (a), (b) Excellent segmentation results, 

detecting the GTVt of the primary oropharyngeal tumor localized at the base of the tongue and discarding the laterocervical lymph nodes despite high FDG uptake on 

PET. (c) Incorrect segmentation of the top volume at the level of the soft palate; (d) Incorrect segmentation of the smaller volume below the level of the hyoid bone. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

HD95 ranges from 3.27 to 32.02 [mm]. We chose to report the 

median since a value of + ∞ is attributed when the prediction 

is null. 3.27 [mm] is a highly observed value for HD95, which is 

probably due to the coarse axial resolution of the CT on the test 

set as we computed the performance in the original CT resolution 

(see C.1 ). 

Note that two participants decided to withdraw their submis- 

sions due to very low scores. We allowed them to do so since 

their low scores were due to incorrect post-processing ( e.g. setting 

incorrect pixel spacing or image origin), which was not represen- 

tative of the performance of their algorithms. The distributions of 

DSCs across patients and across participants are reported in Figs. 3 
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Fig. 3. Box plots of the distribution of the 53 test DSCs for each participant, ordered by decreasing rank. 

Fig. 4. Box plots of the distribution of DSCs across the 10 participants for each of the 53 patients in the test set. 

and 4 respectively. Examples of segmentation results (TPs on top 

row, and FPs on bottom row) are shown in Fig. B.2 . 

4.4. Inter-observer agreement 

We realized that it was crucial to also define the baseline for 

human observers performing the GTVt delineation task ( i.e. seg- 

mentation), as well as their agreement. Three observers, i.e. two 

experts in radiation oncology and one nuclear physician, annotated 

the same 21 cases drawn randomly from the training and test sets 

and coming from all five centers. These 21 cases were chosen to 

represent approximately 10% of the dataset. It is worth noting that 

annotating the entire dataset four times was too costly. They were 

asked to delineate as close as possible the true tumoral volume as 

the aim is for radiomics studies. Together with the official chal- 

lenge delineations, it amounts to four observers. All unique pairs 

of observers were considered, resulting in six pairs of comparisons. 

We computed the average DSC of all the pairs, i.e. all possible pairs 

of the four observers, which resulted in an average DSC of 0.6110. 

It is worth noting that for a faithful delineation of the tumor, a 

contrast-enhanced CT or an MRI image is required. Furthermore, 

there are no clinical guidelines for the task of segmenting GTVt 
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on PET/CT fusion. Moreover, the clinical information ( e.g. physi- 

cal examination) brings essential information to decide whether an 

abnormal structure is malignant. In this agreement, the observers 

were asked to perform this task with the PET/CT images only. Sim- 

ilar agreements were reported in the literature. ( Gudi et al., 2017 ) 

reported the agreement of three observers with an average DSC of 

0.57 using only the CT images for annotation and 0.69 using both 

PET and CT. 

4.5. Ensemble of participants 

In this section, we evaluate the possibility to ensemble 

the different participants’ results into a ”super-algorithm”. Such 

analyses often revealed superior performances to all submitted 

runs ( Menze et al., 2014 ), leveraging the diversity of the differ- 

ent methods ( Hastie et al., 2009 ). We ensemble the (binary) pre- 

dictions of all participants (with paper submissions, i.e. 10 partic- 

ipants) using the Simultaneous Truth And Performance Level Es- 

timation (STAPLE) algorithm ( Warfield et al., 2004 ). This ensem- 

ble of predictions obtains an average DSC of 0.7574, a precision of 

0.7301, and a recall of 0.8439. This result is better than the av- 

erage performance of all participants (0.6931) and is slightly, but 

not significantly, outperformed by the best score of 0.7591 ( p- 

value = 0 . 9230 ). A simpler ensembling method is computed by tak- 

ing the average of the 10 teams for each patient, and then, thresh- 

olding to 0.5 to obtain a binary prediction. This average prediction 

scores a DSC of 0.7426 which is not as good as the STAPLE en- 

sembling ( p-value = 0 . 044 ). Note that several participants already 

reported results obtained as an ensemble of multiple independent 

network predictions. (see Table 2 ). 

4.6. PET Thresholding 

PET thresholding is de facto the most widely used method for 

lesion segmentation, at least in clinical routine, often via an ini- 

tial manual delineation of the field of interest. As a comparison to 

the results obtained by the participants using deep learning auto- 

matic segmentation algorithms, we evaluate simple PET threshold- 

ing methods (automatic and semi-automatic). For the fully auto- 

matic threshold method, we simply threshold the PET image at a 

given percentage of the maximum SUV value within the bounding 

box. 

For the semi-automatic threshold method, we mimic a man- 

ual indication of the GTVt followed by a threshold of the PET val- 

ues. To this end, we threshold the PET image, compute the 26- 

connected components and retain the component that overlaps 

with the ground truth GTVt (or multiple components if more than 

one overlap with the ground truth GTVt). In Fig. 5 , we report the 

results of both methods on the test set when varying the percent- 

age of the maximum SUV used for thresholding. Finally, we also 

evaluate the same semi-automatic thresholding method with an 

additional threshold on the CT images (at -150 HU) to remove the 

air from the predictions. The best results, with an average DSC of 

0.7409, are obtained with this semi-automatic PET/CT threshold at 

30% of the maximum SUV value, which is aligned with previous 

findings, including in the context of the identification of predictive 

biomarkers ( Castelli et al., 2017 ). 

4.7. Tumor size and segmentation performance 

In this section, we evaluate how the algorithms perform for dif- 

ferent tumor sizes. To this end, we explore the correlation of tumor 

size with the performance of the algorithms. The tumor size is cal- 

culated as the voxel count inside the ground truth GTVt multiplied 

by the voxel volume. The Spearman correlation across all ten par- 

ticipants and all tumors is 0.4301 ( p-value < 0 . 001 ). In Fig. 6 , we 

illustrate this correlation with a scatter plot of the DSC as a func- 

tion of tumor size. Fig. 7 relates the performance for each of the 

10 algorithms for four tumor size groups. This figure was gener- 

ated by grouping the 53 test cases in 4 bins ( i.e. intervals) of 13, 

13, 13, and 14 cases, respectively. The average DSC was then com- 

puted for each team in each bin. 

4.8. Analysis of false positives 

In this section, we want to evaluate, for a given algorithm, 

whether FPs are generally occurring in the surroundings of the 

ground truth GTVt, or biased towards other regions with high FDG 

Fig. 5. Segmentation performance of PET thresholding-based method at different percentages of maximum SUV. Three results are reported: the automatic PET threshold, the 

semi-automatic PET threshold (indicating the location of the ground truth GTVt), and the semi-automatic PET and CT (for removing the air) threshold. 
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Fig. 6. Scatter plot of DSC vs. tumor volume (voxel count in the VOI) for 10 participants. The corresponding Spearman correlation is 0.43. 

Fig. 7. Average DSC of each team’s algorithm in function of the volume of the tumors. This figure was generated by distributing the 53 test volumes in 4 bins of n = 13, 13, 

13, and 14 each and then computing the average DSC for each bin. 

uptakes such as the lymph nodes or other zones with inflamma- 

tion. To this end, we compute the shortest Euclidean distance of 

each FP voxel to the ground truth GTVt. We then aggregate these 

distances for all test cases and report these values into a histogram 

in Fig. 8 . Similarly, we compute the distance of each FP voxel to 

the ground truth GTVn (lymph nodes) and report the histogram 

on the same figure. We compute this analysis for the best partic- 

ipant ( andrei.iantsen ), as well as for the baseline (3D PET/CT 

U-Net) since it was the approach with the largest recall but low 

precision. Note that we only compute the histogram of the FP vox- 

els to avoid squashing the counts of the non-zero bins due to the 

large number of TPs with a distance to the GTVt of zero (first bin). 
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Fig. 8. Histogram of the Euclidean distance of the FP voxels to the closest ground truth GTVt voxel and GTVn voxel. We evaluate here the prediction of the first ranked 

participant ( andrei.iantsen ) (a) and our baseline 3D PET/CT (b). For comparison, the False Discovery Rate (FDR), i.e. FP/(FP+TP) is 0.15, with 544,343 TPs in (a) and FDR 

= 0.37 with 621,413 TPs in (b). 

Fig. 9. Ranking robustness against changes in test data. The robustness is assessed by ranking 10 0 0 bootstraps of the test set. The size of the circles is proportional to 

the number of times a team obtained the corresponding rank for each bootstrap. The dashed lines represent the confidence intervals at 95% computed from the bootstrap 

analysis. The current ranking, i.e. the one used in this challenge, is obtained by averaging the DSCs across all test cases. The alternative ranking is computed by averaging 

the rankings of each team across the test cases. 

4.9. Ranking robustness 

Ranking robustness against changes in the test set is assessed 

by evaluating the variation of the ranking on 10 0 0 bootstrap rep- 

etitions of the test set. We also compared the current ranking 

against an alternate ranking defined as follows. This alternative 

ranking was computed based on the average ranking across all 

cases. If multiple teams obtain the same rank for one case, the av- 

erage rank is attributed to these teams. For instance, if three par- 

ticipants score 0 on a given case, the average rank of 8+9+10 
10 = 9 is 

attributed to all of them for this case. 

Fig. 9 depicts the results of the bootstrap analysis for the two 

rankings. We also computed the Kendall rank correlation coeffi- 

cient between the ranking of each bootstrap and the ranking on 

the whole test set. We obtained 0.8772 (0.7333 - 1.0 0 0 0) and 

0.7335 (0.4658 - 0.9111) for the current ranking and alternate 

ranking, respectively. The numbers in parenthesis are the confi- 

dence intervals at 95% computed with the bootstrap eanalysis. The 

methodology used in this section to report ranking robustness is 

inspired by the challengeR toolkit ( Wiesenfarth et al., 2021 ). 

5. Discussion 

This section interprets and discusses the results reported in 

Section 4 . We first discuss and report the overall challenge partici- 

pation and main lessons learned. Second, the segmentation perfor- 

mance achieved by all participating methods is interpreted. Finally, 

we report the current limitations and sources of errors of this chal- 

lenge. 

5.1. Participation and main lessons learned 

This challenge allowed us to compare state-of-the-art algo- 

rithms developed by 18 teams across the world on the task of 

primary H&N tumor segmentation in PET/CT images. Excellent re- 

sults were obtained with the first ranked team reaching 0.7591 av- 

erage DSC, 0.8332 precision, and 0.7400 recall. In Table 2 , we at- 

tempted to group the results based on important elements of the 

algorithms. In particular, we identified several elements important 

for addressing the task. All participants used U-Net based archi- 

tectures, mostly 3D. Preprocessing, normalization, data augmenta- 

tion, and ensembling seem to play an important role in the final 

results. Most of these trends (see also algorithms description in 

Section 4.2 ) and results can be found in other medical imaging 

segmentation challenges ( Menze et al., 2014; Ma, 2021 ). An inter- 

esting comparison of several challenges (including HECKTOR 2020) 

and algorithms focusing on automatic segmentation in medical im- 

ages can be found in ( Ma, 2021 ). 

We note, however, that it is a difficult task to characterize al- 

gorithms with only a few descriptions and to assign good perfor- 

mance to specific parts. The methods are highly complex with high 

degrees of freedom and many hyper-parameters that can all have 
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a strong influence on segmentation performance. Simple modifica- 

tions such as the number of training iterations or the learning rate 

can have a large impact on the results and cannot be exhaustively 

listed and compared. For this analysis, we asked the participants to 

specifically report a set of characteristics of their algorithms to be 

able to compare them in Table 2 . More information will be asked 

in the future editions of HECKTOR to enhance comparison. 

The ranking used in this edition was based on the average 

DSC. The results of Section 4.9 show that this approach is more 

robust to changes in the test set. These findings are corrobo- 

rated by Maier-Hein et al. (2018) where they showed that ranking 

based on averaged metrics are more consistent for changes in test 

data. 

5.2. Overall segmentation performance 

As shown in Fig. 4 , some cases were incorrectly segmented by 

most or all participants, e.g. CHUV01 and CHUV36. On the con- 

trary, some cases were correctly segmented by most participants 

( e.g. CHUV22 and CHUV53), and others showed a large variability 

across participants’ algorithms ( e.g. CHUV16 and CHUV41). These 

differences, as confirmed by further evaluations in Sections 4.8 , 4.7 , 

originate from the tumor size, the SUVs within the GTVt, and the 

presence of lymph nodes or other regions with high SUVs. Some 

examples are illustrated in Fig. B.2 . 

The participants’ algorithms obtained better results than the 

inter-observer agreement. This comparison, however, should be put 

into perspective. First, the cases used in the agreement were dif- 

ferent from the test set. Second, one annotator, the one who an- 

notated the entire dataset for the challenge, had extra information 

since he corrected the radiotherapy annotations whereas the oth- 

ers were asked to draw the segmentation from scratch without any 

further information than the raw PET/CT data. Finally, some an- 

notators delineated closer to radiotherapy requirements, i.e. with 

large annotations, resulting in higher disagreement. To alleviate 

this issue, we are currently developing clear guidelines for the next 

iteration of the challenge. 

The results can also be compared with a simple PET threshold- 

ing method (see Section 4.6 ), often used in radiomics studies ( Erdi 

et al., 1997; Castelli et al., 2017 ). The latter obtained an average 

DSC of 0.7409 when used in a semi-automatic manner. This re- 

sult is significantly lower than the performance of the best par- 

ticipants (0.7591, p-value of 0.0237) and must be considered with 

precaution since the segmentation was highly guided toward the 

true tumor location and the threshold was optimized on the test 

set. With a fully automatic threshold of the PET image in the 

oropharynx region, we only obtain 0.2652 due to various regions, 

including lymph nodes, with high SUVs. The best semi-automatic 

threshold method was obtained with a threshold around 30% of 

the maximum SUV, as frequently used to measure the metabolic 

response characteristic of the tumor, e.g. 36–44% for best approxi- 

mation of tumor volume ( Erdi et al., 1997 ), 40 to 68% of SUV max 

for best radiomics results in DFS prediction ( Castelli et al., 2017; 

Creff et al., 2020 ). Overall, this suggests that the segmentation al- 

gorithms can leverage the wealth of both PET and CT images ( i.e. 

metabolic and anatomical/structural tumor properties) to provide 

more advanced segmentation rules when compared to simple PET 

thresholding. This is also corroborated by the consistent superior- 

ity of algorithms using both PET and CT imaging modalities when 

compared to using PET only. 

The ensemble of participants’ methods (see Section 4.5 ) reached 

a good consensus with an average DSC of 0.7574 and a rather high 

recall (0.8438) and low precision (0.7301) as compared to other 

results in the same range. While this is not better than the first 

rank result, it would likely achieve an excellent generalization to 

other data. 

5.3. Detailed performance analysis 

The analysis of tumor sizes in Section 4.7 ( Figs. 6 and 7 ) 

showed that they are correlated with the segmentation perfor- 

mance. These results seem to show that the small tumor sizes 

are more difficult to segment than the large ones. More pre- 

cisely, smaller tumors are less consistently well segmented, result- 

ing in a large variation of performance. This is not surprising since 

small lesions suffer from a higher partial volume effect which in- 

creases the relative difficulty to define the boundary of the tu- 

mor ( Foster et al., 2014 ). Moreover, the volumetric (or 3D) DSC 

is largely dependent on the volume sizes. A contour deviation of 

±1mm around the true tumor boundary, for instance, will affect 

DSC values more for small tumors than the large ones, resulting in 

a negligible chance for the latter. 

In Fig. 8 ( Section 4.8 ), we analyzed the spatial arrangement of 

FPs segmented voxels. We conducted this experiment for the first 

ranked results and our baseline. In both cases, the majority of FP 

voxels are located in the surrounding of the GTVt, as shown in 

Fig. 8 . As illustrated in the same figure, the FPs of the best results 

are not located near the lymph nodes, whereas a lot of FPs of the 

baseline are located in the lymph nodes and their surroundings. 

This suggests that, unlike the baseline, the best algorithm relies on 

true tumoral patterns and not only on FDG uptake. 

5.4. Limitations and sources of errors 

The main limitation of the current challenge is the lack of more 

precise GTVt ground truth. The annotations were made on the 

PET/CT fusion without using other modalities such as contrast- 

enhanced CT or MR which allow delineating the tumor more 

faithfully. This limitation is illustrated by the results of the inter- 

observer agreement mentioned in Section 4.4 , where the aver- 

age DSC of 0.6110 highlighted the difficulty of the task. A source 

of error, therefore, originates from the degree of subjectivity and 

the lack of guidelines in the annotation and correction of the 

expert. 

Another limitation of this challenge is the lack of test data with 

exact ground truth. To obtain such data, phantom and simulation 

can be used. This enables the evaluation of performances of mod- 

els on data where the exact ground truth is known. ( Hatt et al., 

2017 ) claim that for a good benchmark in PET segmentation, one 

must include simulated and phantom test images in addition to 

clinical test data. 

In this challenge, we provided the participants with a bound- 

ing box to decrease the difficulty of the task. This can be seen as 

a limitation since the resulting methods are not fully automatic, 

but these bounding boxes cover a large portion of the original 

image and are easy to detect automatically ( Andrearczyk et al., 

2020a ). 

6. Conclusions 

This paper presents the HECKTOR 2020 challenge on the seg- 

mentation of the primary tumor of oropharyngeal H&N cancer in 

FDG PET/CT. Detailed information was reported on the dataset, par- 

ticipation, and segmentation performance. Good participation with 

18 teams and 10 participants’ publications allowed us to compare 

state-of-the-art segmentation methods on this challenging task. 

The results are very satisfactory with the winning team achieving 

an average DSC of 0.7591, which is superior to the inter-observer 

agreement (average DSC 0.6110). These results were obtained with 

a strict testing scheme as the test cases were all from an unseen 

center. It is reasonable to expect better results if the proposed 

methods are fine-tuned on few examples from this center. All par- 

ticipants used U-Net based deep learning models, most of them 
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with a 3D architecture and standard pre-processing techniques. We 

could identify several key elements that seem to have led to good 

results, including normalization, data augmentation, and ensem- 

bling of multiple models. 

Preliminary experiments show that fully automatic radiomics 

methods are on pair or surpass radiomics models based on feature 

extraction from manual annotations ( Fontaine et al., 2021; Andrea- 

rczyk et al., 2021a ). These preliminary results are very encourag- 

ing and demonstrate that we are one step closer to analyzing very 

large-scale cohorts for radiomics validation. 

While focusing on H&N cancer in HECKTOR, we believe that 

many of the methods developed and lessons learned will general- 

ize to the automatic segmentation of other types of cancer imaged 

in PET/CT images ( e.g. lung, melanoma). 

In future editions, we aim to increase the size of the dataset 

and propose other clinically relevant tasks such as the segmenta- 

tion of lymph nodes and the prediction of patient outcome ( e.g. 

disease-free survival). 
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Appendix A. Participants’ Algorithms Summary 

In ( Iantsen et al., 2021b ), Iantsen et al. proposed a model based 

on a U-Net architecture with residual layers and supplemented 

with ’Squeeze and Excitation’ (SE) normalization, previously devel- 

oped by the same authors for brain tumor segmentation. An un- 

weighted sum of soft Dice loss and Focal Loss was used for train- 

ing. The test results were obtained as an ensemble of eight models 

trained and validated on different splits of the training set. No data 

augmentation was performed. 

In ( Ma and Yang, 2021 ), Ma and Yang used a combination of 

U-Nets and hybrid active contours. First, 3D U-Nets are trained to 

segment the tumor (with a cross-validation on the training set). 

Then, the segmentation uncertainty is estimated by model ensem- 

bles on the test set to select the cases with high uncertainties. 

Finally, the authors used a hybrid active contour model to refine 

the high uncertainty cases. The U-Nets were trained with an un- 

weighted combination of Dice loss and top-K loss. No data aug- 

mentation was used. 

In ( Zhu et al., 2021 ), Zhu et al. used a two steps approach. First, 

a classification network (based on ResNet) selects the axial slices 

which may contain the tumor. These slices are then segmented 

using a 2D U-Net to generate the binary output masks. Data aug- 

mentation was applied by shifting the crop around the provided 

bounding boxes and the U-Net was trained with a soft Dice loss. 

The preprocessing includes clipping the CT and the PET, standard- 

izing the HU within the cropped volume and scaling the range of 

the PET to correspond to the CT range by dividing it by a factor 

of 10. 

In ( Yuan, 2021 ), Yuan proposed to integrate information across 

different scales by using a dynamic Scale Attention Network (SA- 

Net), based on a U-Net architecture. Their network incorporates 

low-level details with high-level semantics from feature maps at 

different scales. The network was trained with standard data aug- 

mentation and with a Jaccard distance loss, previously developed 

by the authors. The results on the test set were obtained as an en- 

semble of ten models. 

In ( Chen et al., 2021 ), Chen et al. proposed a three-step frame- 

work with iterative refinement of the results. In this approach, 

multiple 3D U-Nets are trained one-by-one using a Dice loss with- 

out data augmentation. The predictions and features of previous 

models are captured as additional information for the next one to 

further refine the segmentation. 

In ( Ghimire et al., 2021 ), Ghimire et al. developed a patch-based 

approach to tackle the memory issue associated with 3D images 

and networks. They used an ensemble of conventional convolu- 

tions (with small receptive fields capturing fine details) and dilated 

convolutions (with a larger receptive field of capturing global infor- 

mation). They trained their model with a weighted cross-entropy 

and dice loss and random left-right flips of the patches were ap- 

plied for data augmentation. Finally, an ensemble of the best two 

models selected during cross-validation was used for predicting 

the segmentation of the test data. 

In ( Yousefirizi and Rahmim, 2021 ), Yousefirizi and Rahmim pro- 

posed a deep 3D model based on SegAN, a generative adversar- 

ial network (GAN) for medical image segmentation. An improved 

polyphase V-net (to help preserve boundary details) is used for the 

generator and the discriminator network has a similar structure to 

the encoder part of the former. The networks were trained using 

a combination of Mumford-Shah (MS) and multi-scale Mean Abso- 

lute Error (MAE) losses, without data augmentation. 
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In ( Xie and Peng, 2021 ), Xie and Peng proposed a 3D scSE nnU- 

Net model, improving upon the 3D nnU-Net by integrating the 

spatial and channel ’Squeeze and Excitation’ (scSE) blocks. They 

trained the model with a weighted combination of Dice and cross- 

entropy losses, together with standard data augmentation tech- 

niques (rotation, scaling etc.). To preprocess the CT images an 

automated level-window-like clipping of intensity values is per- 

formed based on the 0.5 and 99.5th percentile of these values. 

The intensity values of the PET are standardized by subtracting 

the mean and then, by dividing by the standard deviation of the 

image. 

In ( Naser et al., 2021 ), Naser et al. used a variant of 2D and 3D 

U-Net (we report the best result, with the 3D model). The models 

were trained with a combination of Dice and cross-entropy losses 

with standard data augmentation. 

In ( Rao et al., 2021 ), Rao et al. proposed an ensemble of two 

methods, namely a 3D U-Net and another 2D U-Net variant with 

3D context. A top-k loss was used to train the models without data 

augmentation. 

Appendix B. Additional plots 

This appendix presents additional plots. In Fig. B.1 the pair- 

wise statistical comparison of the 10 teams is illustrated by 

a significance matrix computed with a corrected one-sided 

Wilcoxon signed-rank test at 5% significance. In Fig. B.2 , ex- 

amples of predictions obtained by the second-ranked team 

( junma ( Ma, Yang, 2021 )) are drawn on the same cases as 

Fig. 2 to illustrate the variability among the two best teams. 

Figs. B.3, B.4 and B.5 show, for each participant, the distribu- 

tions across the 53 test cases of the precision, recall, and SDSC, 

respectively. 

Fig. B.1. The significance matrix represents significant tests for the one-sided 

Wilcoxon signed-rank test at a 5% significance level, adjusted for multiple compar- 

isons with the Holm-Bonferroni method for 45 hypotheses. For each pair, the al- 

ternative hypothesis is that the best team has a greater score. For instance, for the 

andrei.iantsen - junma pair the alternative is that andrei.iantsen has a 

better DSC than junma . The yellow color indicates that the team on the line of the 

matrix has significantly better DSC than the team on the column. Blue color means 

no significant difference. Orange color is used as a visual guide to show pairs of 

identical teams. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. B.2. Examples of results of the second algorithm ( junma ( Ma and Yang, 2021 )). The automatic segmentation results (green) and ground truth annotations (red) are 

displayed on 2D slices of PET (right) and CT (left) images. The reported DSC is computed on the entire image (see Eq. 1 ). (a), (b) Excellent segmentation results, detecting the 

GTVt of the primary oropharyngeal tumor localized at the base of the tongue and discarding the laterocervical lymph nodes despite high FDG uptake on PET. (c) Incorrect 

segmentation of the top volume at the level of the soft palate; (d) Incorrect segmentation of the smaller volume below the level of the hyoid bone. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. B.3. Box plots of the distribution of the precision on the 53 test cases for each 

participant, ordered by decreasing rank. 

Fig. B.4. Box plots of the distribution of the recall on the 53 test cases for each 

participant, ordered by decreasing rank. 

Fig. B.5. Box plots of the distribution of the 53 test SDSCs for each participant, 

ordered by decreasing rank. 

Appendix C. Centers statistics 

In Table C.1 , we report the differences between the five cen- 

ters in terms of image properties such as devices, pixel spacing and 

slice spacing. We also disclose the distribution of GTVt volumes in 

Fig. C.1 and Table C.2 

Table C.2 

Average GTVt volume for the five center used in this challenge. The numbers in 

parenthesis represent the 5th and 95th respectively. 

Center GTVt volume 

HGJ 14.913 (2.263 - 38.879) 

CHUS 14.209 (1.837 - 42.967) 

HMR 23.622 (2.412 - 88.785) 

CHUM 9.866 (1.358 - 24.884) 

CHUV 13.317 (1.725 - 41.212) 

. 

Fig. C.1. Box plots of the distribution of the GTVt volumes per center. 

Table C.1 

Statistics of the different centers. GTVt volumes are computed after isoresampling at 1 × 1 × 1 mm 

3 . The GTVt volumes are reported in 

cm 

3 as average plus the 5th and 95th percentile in parenthesis. All devices are hybrid PET/CT. 

Center Pixel spacing CT Slice spacing CT Pixel spacing PT Slice spacing PT Device 

HGJ 0.98 (0.98 - 0.98) 3.27 (3.27 - 3.27) 3.52 (3.52 - 4.69) 3.27 (3.27 - 3.27) Discovery ST, GE Healthcare 

CHUS 1.17(0.68- 1.17) 3.00 (2.00 - 5.00) 4.00 (4.00 - 4.00) 4.00 (4.00 - 4.00) GeminiGXL 16, Philips 

HMR 0.98 (0.98 1.37) 3.27 (3.27 - 3.27) 3.52 (3.52 - 5.47) 3.27 (3.27 - 3.27) Discovery STE, GE Healthcare 

CHUM 0.98 (0.98 - 1.37) 1.50 (1.50 - 3.27) 4.00 (3.52 - 5.47) 4.00 (3.27 - 4.06) Discovery STE, GE Healthcare 

CHUV 1.37 (0.98 - 1.37) 3.27 (1.00 - 4.25) 2.73 (2.73 - 3.91) 3.27 (3.27 - 4.25) Discovery D690 TOF, GE Healthcare 
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