Concentration-independent MRI of pH with a dendrimer-based pH-responsive nanoprobe.

Mohammed P.I. Bhuiyan
Henry Ford Health System

Madhava P Aryal
Henry Ford Health System

Branislava Janic
Henry Ford Health System, bjanic1@hfhs.org

Kishor Karki
Henry Ford Health System

Nadimpalli R S Varma
Henry Ford Health System

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/neurology_articles

Recommended Citation

This Article is brought to you for free and open access by the Neurology at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Neurology Articles by an authorized administrator of Henry Ford Health System Scholarly Commons.
Authors
Concentration-independent MRI of pH with a dendrimer-based pH-responsive nanoprobe

Mohammed P. I. Bhuiyana, Madhava P. Aryala, Branislava Janca, Kishor Karkia, Nadimpalli R. S. Varmaa, James R. Ewinga, Ali S. Arbabb and Meser M. Alia,*

The measurement of extracellular pH (pHe) has significant clinical value for pathological diagnoses and for monitoring the effects of pH-altering therapies. One of the major problems of measuring pHe with a relaxation-based MRI contrast agent is that the longitudinal relaxivity depends on both pH and the concentration of the agent, requiring the use of a second pH-unresponsive agent to measure the concentration. Here we tested the feasibility of measuring pH with a relaxation-based dendritic MRI contrast agent in a concentration-independent manner at clinically relevant field strengths. The transverse and longitudinal relaxation times in solutions of the contrast agent (GdDOTA-4AmP)\textsubscript{44}-GS, a GS-PAMAM dendrimer-based MRI contrast agent in water, were measured at 3 T and 7 T magnetic field strengths as a function of pH. At 3 T, longitudinal relaxivity (r\textsubscript{1}) increased from 7.91 to 9.65 mM–1 s–1 (on a per Gd3+ basis) on changing pH from 8.84 to 6.35. At 7 T, r\textsubscript{1} relaxivity showed pH response, albeit at lower mean values; transverse relaxivity (r\textsubscript{2}) remained independent of pH and magnetic field strengths. The longitudinal relaxivity of (GdDOTA-4AmP)\textsubscript{44}-GS exhibited a strong and reversible pH dependence. The ratio of relaxation rates R\textsubscript{2}/R\textsubscript{1} also showed a linear relationship in a pH-responsive manner, and this pH response was independent of the absolute concentration of (GdDOTA-4AmP)\textsubscript{44}-GS agent. Importantly, the nanoprobe (GdDOTA-4AmP)\textsubscript{44}-GS shows pH response in the range commonly found in the microenvironment of solid tumors. Copyright © 2015 John Wiley & Sons, Ltd.

Additional supporting information may be found in the online version of this article at the publisher’s web site.

Keywords: responsive agent; noninvasive pH measurement; magnetic resonance imaging; dendritic agent

1. INTRODUCTION

The extracellular tumor microenvironment is characterized by an acidic pH (denoted pHe to identify it as the extracellular pH), and an intracellular pH (1–5) that is neutral to alkaline. A similar transcellular pH gradient is not observed in normal tissues. Contributing factors to an acidic tumor pHe are increased glycolysis, even in the presence of sufficient oxygen (the Warburg effect) (6). Hydrolysis of ATP is also a significant contributor to acidosis in tumors during acute hypoxia. The tumor microenvironment is intrinsically acidic, mainly due to accumulation of lactic acid as a result of increased aerobic and anaerobic glycolysis by tumor cells (7,8). Poor tissue perfusion and reduced buffering capacity in the extracellular tumor microenvironment aggravates the decrease in tumor pHe (9,10). A lower pHe in tumors has been correlated with increased gene mutation (11) and gene rearrangement rates (12,13), and altered gene expressions (14–21) that can lead to spontaneous transformation of non-metastatic tumors into metastatic tumors (22–26). A lower tumor pHe can cause ion trapping and provide resistance to chemotherapy that act as weak bases (27–30), such as doxorubicin (31). In some cases, the lower tumor pHe can enhance the efficacy of chemotherapies that act as weak acids (32–35). Thus, a method to estimate tissue pH could both point to potentially resistant cases, and guide supplementary therapeutic strategies, might significantly improve clinical outcomes.

Previous work has shown that magnetic resonance imaging (MRI) can map pHe throughout a tumor volume at high spatial resolution with good detection sensitivity in clinically reasonable time frames (36–38). However, the change in T\textsubscript{1} relaxation caused by a pH-responsive MRI contrast agent can also depend on the concentration of the agent. The tissue concentration of a pH-responsive agent can be estimated by using a second pH-unresponsive agent as a surrogate (36). However, this serial injection substantially prolongs the time of the study, a major disadvantage for clinical translation. Although a pH-unresponsive T\textsubscript{1}* relaxation contrast agent can be co-injected with a pH-responsive T\textsubscript{1} relaxation contrast agent, and the different T\textsubscript{1}* and T\textsubscript{1} effects can then be used to selectively detect each agent within the same tumor tissue, the strong correlations between T\textsubscript{1} relaxation and T\textsubscript{2}* relaxation create difficulties in quantifying each agent in the same tissue, making this approach extremely challenging (39). In brief, a concentration-independent technique for estimating tissue pH would significantly improve efforts to estimate pHe by changes in T\textsubscript{1} relaxation rates.

To quantify the agent’s concentration, the positron emission tomography (PET) isotope F-18 has been incorporated with a...
it is necessary to investigate pH response at the higher
field strengths, where animals are usually scanned. In this report, we
recently, small molecule CEST and PARACEST contrast agents
have been used to estimate in vivo pH by taking the ratio of the
CEST effect from two different chemical shifts originating from
the same molecule. Although these MRI CEST methods appear
promising, they suffer from the low detection sensitivity of CEST
agents in an in vivo application (42, 43).
A concentration-independent method for the (GdDOTA)33-
poly-L-ornithine macromolecular MRI contrast agent has been
proposed (44). This method used the ratio of R_1 and R_2 relaxation
rates, which is independent of concentration, but sensitive to pH
for a macromolecular system. However, (GdDOTA)33-poly-L-orni-
thine is sensitive only to a pH greater than 7, and shows limited
dynamic range and sensitivity in the pH range from pH 6.5 to 8,
the range most relevant in vivo to tumor physiology.
A macromolecule is needed that is pH sensitive in the range
6.5–8, and with an R_2/R_1 ratio that has a linear relationship to pH_w
independent of Gd$^{3+}$ concentration. Previously, we succeeded in
synthesizing a nanoscale, pH-responsive MRI contrast agent (Fig. 1)
(45). Conjugation of the small molecule pH-responsive agent
GdDOTA-4AmP5$^2^-$ to the surface amines of a Generation 5 (G5)
PAMAM dendrimer improved T_1 relaxivity with pH significantly
at 0.5 T, 25 °C. Importantly, the nanoprobe (GdDOTA-4AmP5$^2^-$)96-G5
showed pH response in the physiological range of 6.0–8.0.
In this report, we present (GdDOTA-4AmP5$^2^-$)44-G5, a modified
version of the previous G5 PAMAM dendrimer. This new
compound has a reduced negative surface charge, thus higher
biocompatibility, and a higher potential for drug conjugation
than previous compounds, thus improving its theranostic
potential. For a relevant in vivo application in preclinical models,
it is necessary to investigate pH response at the higher field
strengths, where animals are usually scanned. In this report, we
study the longitudinal and the transverse relaxation properties
of this (GdDOTA-4AmP5$^2^-$)44-G5 conjugate at 3 T and 7 T.

2. RESULTS AND DISCUSSION
A pH-responsive GdDOTA-4AmP5$^2^-$ analogue was conjugated to
the surface amines of a G5-PAMAM dendrimer via an
isothiocyanatobenzyl group using methods previously reported
(45). In that report, we conjugated 96 (GdDOTA-4AmP5$^2^-$)
chelates on the surface of a G5 PAMAM dendrimer, thus leading to
a highly negative charged paramagnetic nanoparticle. The

![Figure 1. Schematic view of Gd$^{3+}$ chelated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP5$^2^-$) in a G5 PAMAM dendrimer.](image)

present study presents a modification of that synthetic method. A MALDI-TOF analysis showed an average of 44 (GdDOTA-
4AmP5$^2^-$) chelates in the nanostructure (Supplementary Fig. 1).
The GdDOTA-4AmP5$^2^-$ complex has four appended phosphonate
groups, with variable pK_a values ranging from 6.0 to 8.0 (37, 38).
When the protons of the phosphonate group dissociate at their
respective pK_a values, the chelate gains a negative charge up
to a value of ~5, while it has either neutral or positive charge
below these pK_a values (38). That is to say, a phosphate-based
MRI contrast agent has charge reversal properties.
We observed the pH response of this dendrimeric agent. The
absolute detection sensitivity of the nanoscale MRI contrast
agent showed a robust improvement relative to the monomeric
agent (38) at 3 T. The average r_1 relaxivity of Gd$_{44}$-G5 conjugate
per dendrimer was a sizable 348 mM$^{-1}$ s$^{-1}$ at pH 8.84, rising to
425 mM$^{-1}$ s$^{-1}$ at pH 6.35 (Fig. 2). At 7 T, the r_1 relaxivity of
Gd$_{44}$-G5 decreased significantly for all pH values (Fig. 2); this
is the typical behavior of the r_1 relaxivity of large molecules
with increasing field strength (46). Nevertheless, compared with
the monomer, the r_1 relaxivity of Gd$_{44}$-G5 still showed pH response
at high field strength (38), and the detection sensitivity of the
Gd$_{44}$-G5 dendrimeric conjugate improved by a factor of two at
3 T for all pH values. Thus, compared with a monomeric agent,
a lower injection dose of Gd$_{44}$-G5 dendrimeric conjugate
will be required for in vivo applications. GdDOTA-4AmP5$^2^-$ has
been tested in biological fluid (40). In the presence of Ca(II), Cu(II),
and Zn(II) ions (38) there was no change in pH-dependent
relaxivity profiles. In addition, the agent has been applied in

![Figure 2. Longitudinal and transverse relaxivities (r_1 and r_2, mM$^{-1}$ s$^{-1}$) as a function of pH (6.35–8.84) in liquid phantoms measured at 3 T (triangles) and 7 T (diamonds), with linear regression fits to the data. Transverse relaxivity does not vary significantly with pH, or with field strength. The slopes of the longitudinal relaxivities do not differ between the field strengths.](image)
tissues (47), perfused tissues or organs or in vivo (48), with the result that GdDOTA-4AmP did not interact in biological fluids or in the presence of ions.

The r_1 relaxivity of Gd$_{44}$-G5 showed pH response at both field strengths, while r_2 relaxivity remained independent of pH and magnetic field strength (Fig. 2). The R_2 values at 3 T were not significantly larger than those at 7 T, and the r_2 profiles (slopes) at the two field strengths were essentially the same. As for r_1 versus pH, the slopes of r_1 versus pH at 3 T and 7 T are essentially the same.

The pH-responsive r_1 relaxation properties of GdDOTA-4AmP5 were first reported by the Sherry group (38). This agent responds to pH by changes in proton exchange (variable τ_{sl}). The compound has four appended phosphonate groups that have pK_a values in the range 6.0–8 (37,38), and as these phosphonate groups become protonated below pH = 8 the monoprotonated phosphonate groups hydrogen bond (38) with the single Gd$^{3+}$-bound water molecule and catalytically exchange the highly relaxed bound water protons with protons of bulk water (45).

To understand the origin of pH-sensitive r_1 relaxation properties of dendrimer-based GdDOTA-4AmP conjugate, nuclear magnetic resonance dispersion (NMRD) profiles were studied in our previous report (45). NMRD profiles revealed that multiple factors are involved in pH sensing r_1 relaxation properties of this agent. The pH response was the result of a complex interplay between the rate of proton exchange between the bulk solvent and water molecules in the inner and second hydration spheres (45). In contrast to r_1 relaxation properties of (GdDOTA-4AmP)$_{44}$-G5 agent, the r_2 relaxation properties remain essentially independent of pH, as shown in Fig. 2. We did not observe a significant difference in r_2 relaxation properties at either 3 T or 7 T, which is consistent with the reported r_2 relaxation properties of manganese complexes (46).

Silvio Aime and co-workers (44) reported a novel method based on a ratiometric approach that consists of measuring the ratio between the transverse and the longitudinal paramagnetic contribution to the water proton relaxation rate, i.e. R_{2p}/R_{1p} of a macromolecule at magnetic field strength higher than 0.2 T. The ratio, R_{2p}/R_{1p} of water protons becomes independent of Gd$^{3+}$ concentration for a motionally restricted agent, (GdDOTA)33-poly-L-ornithine ($\tau_R > 1$ ns), but remains dependent on τ_M, τ_R and other magnetic parameters that normally affect relaxation in these complexes. We applied this R_2/R_1 ratiometric approach to our dendrimer-based (Gd-DOTA-4AmP)$_{44}$-G5 system.

In order to examine our hypothesis that (Gd-DOTA-4AmP)$_{44}$-G5 measures pH as a single agent without knowledge of the agent’s concentration, we measured the ratio of R_2 and R_1 relaxation rates of (Gd-DOTA-4AmP)$_{44}$-G5 at four different Gd$^{3+}$ concentrations with three different pH values at 7 T (Fig. 3). For three concentrations, the mean values of R_2/R_1 are 8.24 ± 0.05, 8.98 ± 0.12, and 10.02 ± 0.05 for pH values of 6.96, 7.40, and 8.84, respectively. The slopes of the three plots of R_2/R_1 are 0.03 ± 0.06, –0.05 ± 0.15, and 0.08 ± 0.03, respectively. The slope of R_2/R_1 is significantly nonzero at the highest pH (pH = 8.84). However, this pH is outside the range of physiological value in tumors, and the variation across even the range of concentrations reported is only about 6%. Thus, we conclude that the R_2/R_1 ratio is essentially independent of concentration for each pH value.

In order to further examine the ratiometric approach, R_1, R_2, and R_2/R_1 (Fig. 4(A)–(C), respectively) maps for six different pH values at 7 T for a given Gd$^{3+}$ concentration were generated. The ratio of R_2/R_1 maps of the phantoms containing solutions
of different pH with added (Gd-DOTA-4AmP)44-G5 were plotted versus pH for both 7 T and 3 T data, along with the 95% confidence intervals for their regressions. Figure 5 demonstrates that the ratio \(R_2/R_1 \) was pH responsive at both field strengths. The two slopes are 1.18 ± 0.11 and 0.33 ± 0.09 for 7 T and 3 T curves, respectively, and the y-intercepts are −0.36 ± 0.81 and −0.94 ± 0.69, again for 7 T and 3 T. Neither of the intercepts is significantly different from zero. The ratio \(R_2/R_1 \) increased from 3.23 to 4.05 and from 7.04 to 10 pH units, at 3 T and 7 T respectively, on changing the solution pH from 6.35 to 8.84. It is apparent that the accuracy of the 3 T methods is lower than that of the 7 T methods. We do not believe this to be intrinsic to the field strengths, but it is clear that a careful calibration of both T1 and T2 methods, particularly with regard to flip angles, is required for accuracy in reading out the ratio of \(R_2/R_1 \) as an estimate of pH.

3. CONCLUSION

In this study, a novel pH-responsive dendrimer-based MRI contrast agent (Gd-DOTA-4AmP)44-G5 was evaluated as a potential pH imaging agent at 3 T and 7 T magnetic field strengths. In general, the compound exhibited good dynamic range in a concentration-independent parameter \(R_2/R_1 \) across physiologically significant pH values. The improvement of \(R_2/R_1 \) values for this nanostructure, 1.19 per pH unit, is almost double that of the previously reported \(R_2/R_1 \) values for a ratiometric pH-responsive probe (44). These findings support the expectation that the agent can be used to estimate tumor pH \textit{in vivo} by means of estimates of changes in the \(R_2/R_1 \) ratio after administration of (Gd-DOTA-4AmP)44-G5. The ratiometric approach to measure pH does not require knowledge of the concentration of the agent. (Gd-DOTA-4AmP)44-G5 with \(T_1 \) and \(T_2 \) effects constitutes a single MRI contrast agent that can accurately measure pH in a concentration-independent manner at clinically relevant magnetic field strengths.

4. EXPERIMENTAL

4.1. Synthesis

We have synthesized a modified version of the pH-responsive MRI nanoprobe GdDOTA-4AmP-G5 by following our published synthetic method (45). The final conjugate was purified by dialfiltration using a Centricon C-30 cell with a 30 kDa molecular weight cut-off, after which the solvents were removed by lyophilization to afford a colorless solid (0.19 g). The MW of the p-SCN-DOTA-4AmPE conjugated G5 dendrimer was estimated at 79 082 g/mole by MALDI-TOF analysis (Supplementary Fig. 1). This corresponds to a G5-dendrimer with an average of 44 chelated Gd\(^{3+}\) ions per dendrimer. The number of chelates per dendrimer unit was also obtained using the same method as in our previous report (45). To examine our hypothesis, we prepared phantoms of [(GdDOTA-4AmP)44-G5] at four or five different concentrations with six different pH values. Gd\(^{3+}\) concentration was determined by ICP analyses.

4.2. MRI methods

MRI experiments were performed on a 3.0 T clinical system (Signa Excite, GE Health) using 50 mm diameter × 108 mm RF rung length (Litzcage small animal imaging system, Doty Scientific, Columbia, SC). Multi-echo \(T_2 \)-weighted (\(T_2W \)) images and \(T_1 \)-weighted (\(T_1W \)) images using three-dimensional spoiled gradient echo (3D SPGR) were acquired. \(T_2W \) images were obtained using standard two-dimensional Fourier transformation (2DFT) multi-slice (15 slices) multi-echo (TE) = 11, 22, 33, and 44 ms and a repetition time (TR) = 2000 ms, field of view (FOV) of 30 mm, 1 mm slice thickness, and matrix size of 128 × 128. The \(T_1W \) images were acquired using 3D SPGR with the following parameters: TR = 9.46ms, TE = 1.732ms, 128 × 128 matrix size, FOV = 40 × 40 × 40 mm\(^3\), effective slice thickness = 1 mm, and flip angles = 2°, 4°, 8°, 12°, 15°, 20°, 25°, 30°, 35°. The \(R_2 \) (1/\(T_2 \)) maps were calculated from the acquired \(T_2W \) images at eight different TE values using a log-linear least square fit on a pixel-by-pixel basis by following the reported method (49). The \(T_1 \) maps were calculated from the acquired \(T_1W \) images at nine different flip angles using a linear least square fit on a pixel-by-pixel basis (50). The calculated value of \(T_1 \) was inverted to generate the \(R_1 \) map.

For measurements of \(T_1 \) and \(T_2 \) relaxation times on a 7 T Varian system, axial spin echo (SE) sequences were obtained with multiple TR (50, 100, 200, 300, 500, 750, 1000, 1500, 2000, 3000, and 5500 ms) and TE (8.4, 16.8, 25.2, and 33.6 ms) values. All sequences were acquired with FOV = 24 mm\(^2\), matrix size = 128 × 64, one slice, thickness = 1 mm, and \(N_{\text{EX}} = 1 \). MR images were transferred to an off-line server and reconstructed using home-written software. \(T_1 \) and \(T_2 \) maps of the samples were calculated by fitting the appropriate relaxation equation to the image data, assuming monoeponential signal decay (for both \(T_1 \) and \(T_2 \)) on a pixel-by-pixel basis. For \(T_1 \) maps, all echoes were fitted using the same method as for the 3 T data.
The authors acknowledge research support from the National Institutes of Health (NIH) grants K25CA129713 (to MMA) and 1R01CA160216 (to ASA). We thank Professor Mark D. Pagel for helpful discussion.

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found in the online version at the publisher’s web site.