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Concentration-independent MRI of pH with a
dendrimer-based pH-responsive nanoprobe
Mohammed P. I. Bhuiyana, Madhava P. Aryala, Branislava Janica,
Kishor Karkia, Nadimpalli R. S. Varmaa, James R. Ewinga, Ali S. Arbabb

and Meser M. Alia*

The measurement of extracellular pH (pHe) has significant clinical value for pathological diagnoses and for monitoring
the effects of pH-altering therapies. One of the major problems of measuring pHe with a relaxation-based MRI contrast
agent is that the longitudinal relaxivity depends on both pH and the concentration of the agent, requiring the use of a
second pH-unresponsive agent to measure the concentration. Here we tested the feasibility of measuring pH with a
relaxation-based dendritic MRI contrast agent in a concentration-independent manner at clinically relevant field
strengths. The transverse and longitudinal relaxation times in solutions of the contrast agent (GdDOTA-4AmP)44-G5,
a G5–PAMAM dendrimer-based MRI contrast agent in water, were measured at 3 T and 7 T magnetic field strengths
as a function of pH. At 3 T, longitudinal relaxivity (r1) increased from 7.91 to 9.65 mM�1 s�1 (on a per Gd3+ basis)
on changing pH from 8.84 to 6.35. At 7 T, r1 relaxivity showed pH response, albeit at lower mean values; trans-
verse relaxivity (r2) remained independent of pH and magnetic field strengths. The longitudinal relaxivity of
(GdDOTA-4AmP)44-G5 exhibited a strong and reversible pH dependence. The ratio of relaxation rates R2/R1 also
showed a linear relationship in a pH-responsive manner, and this pH response was independent of the absolute con-
centration of (GdDOTA-4AmP)44-G5 agent. Importantly, the nanoprobe (GdDOTA-4AmP)44-G5 shows pH response in
the range commonly found in the microenvironment of solid tumors. Copyright © 2015 John Wiley & Sons, Ltd.
Additional supporting information may be found in the online version of this article at the publisher’s web site.
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1. INTRODUCTION

The extracellular tumor microenvironment is characterized by an
acidic pH (denoted pHe to identify it as the extracellular pH), and
an intracellular pHi (1–5) that is neutral to alkaline. A similar transcel-
lular pH gradient is not observed in normal tissues. Contributing fac-
tors to an acidic tumor pHe are increased glycolysis, even in the
presence of sufficient oxygen (the Warburg effect) (6). Hydrolysis
of ATP is also a significant contributor to acidosis in tumors during
acute hypoxia. The tumor microenvironment is intrinsically acidic,
mainly due to accumulation of lactic acid as a result of increased
aerobic and anaerobic glycolysis by tumor cells (7,8). Poor tissue per-
fusion and reduced buffering capacity in the extracellular tumor
microenvironment aggravates the decrease in tumor pHe (9,10). A
lower pHe in tumors has been correlated with increased genemuta-
tion (11) and gene rearrangement rates (12,13), and altered gene
expressions (14–21) that can lead to spontaneous transformation
of non-metastatic tumors into metastatic tumors (22–26). A lower
tumor pHe can cause ion trapping and provide resistance to chemo-
therapies that act as weak bases (27–30), such as doxorubicin (31). In
some cases, the lower tumor pHe can enhance the efficacy of che-
motherapies that act as weak acids (32–35). Thus, a method to esti-
mate tissue pH that could both point to potentially resistant cases,
and guide supplementary therapeutic strategies, might significantly
improve clinical outcomes.
Previous work has shown that magnetic resonance imaging

(MRI) can map pHe throughout a tumor volume at high spatial
resolution with good detection sensitivity in clinically reasonable

time frames (36–38). However, the change in T1 relaxation caused
by a pH-responsive MRI contrast agent can also depend on
the concentration of the agent. The tissue concentration of a
pH-responsive agent can be estimated by using a second
pH-unresponsive agent as a surrogate (36). However, this serial
injection substantially prolongs the time of the study, a major dis-
advantage for clinical translation. Although a pH-unresponsive
T2* relaxation contrast agent can be co-injected with a pH-
responsive T1 relaxation contrast agent, and the different T2*
and T1 effects can then be used to selectively detect each agent
within the same tumor tissue, the strong correlations between
T1 relaxation and T2* relaxation create difficulties in quantifying
each agent in the same tissue, making this approach extremely
challenging (39). In brief, a concentration-independent technique
for estimating tissue pH would significantly improve efforts to es-
timate pHe by changes in T1 relaxation rates.

To quantify the agent’s concentration, the positron emission
tomography (PET) isotope F-18 has been incorporated with a
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pH-responsive relaxation agent (GdDOTA-4AmP5�) to measure pH
in vitro (40). PET was used to quantify the concentration of
relaxation-based pH-responsive MRI probe (GdDOTA-4AmP5�). This
approach required a multimodal MR-PET device, and reduced spa-
tial resolution to that of the PET scanner. The 19F/1H ratiometric
method has also been used tomeasure pH (41). 19F MRS also suffers
from coarse resolution and lack of clinically available MRI coils.

Recently, small molecule CEST and PARACEST contrast agents
have been used to estimate in vivo pH by taking the ratio of the
CEST effect from two different chemical shifts originating from
the same molecule. Although these MRI CEST methods appear
promising, they suffer from the low detection sensitivity of CEST
agents in an in vivo application (42,43).

A concentration-independent method for the (GdDOTA)33-
poly-L-ornithine macromolecular MRI contrast agent has been
proposed (44). This method used the ratio of R1 and R2 relaxation
rates, which is independent of concentration, but sensitive to pH
for a macromolecular system. However, (GdDOTA)33-poly-L-orni-
thine is sensitive only to a pH greater than 7, and shows limited
dynamic range and sensitivity in the pH range from pH 6.5 to 8,
the range most relevant in vivo to tumor physiology.

A macromolecule is needed that is pH sensitive in the range
6.5–8, and with an R2/R1 ratio that has a linear relationship to pHe,
independent of Gd3+ concentration. Previously, we succeeded in
synthesizing a nanoscale, pH-responsive MRI contrast agent (Fig. 1)
(45). Conjugation of the small molecule pH-responsive agent
GdDOTA-4AmP5� to the surface amines of a Generation 5 (G5)
PAMAM dendrimer improved T1 relaxivity with pH significantly at
0.5 T, 25 °C. Importantly, the nanoprobe (GdDOTA-4AmP5�)96-G5
showed pH response in the physiological range of 6.0–8.0.

In this report, we present (GdDOTA-4AmP5�)44-G5, a modified
version of the previous G5 PAMAM dendrimer. This new
compound has a reduced negative surface charge, thus higher
biocompatibility, and a higher potential for drug conjugation
than previous compounds, thus improving its theranostic
potential. For a relevant in vivo application in preclinical models,
it is necessary to investigate pH response at the higher field
strengths, where animals are usually scanned. In this report, we
study the longitudinal and the transverse relaxation properties
of this (GdDOTA-4AmP5�)44-G5 conjugate at 3 T and 7 T.

2. RESULTS AND DISCUSSION

A pH-responsive GdDOTA-4AmP5� analogue was conjugated to
the surface amines of a G5-PAMAM dendrimer via an
isothiocyanatobenzyl group using methods previously reported
(45). In that report, we conjugated 96 (GdDOTA-4AmP5�)
chelates on the surface of a G5 PAMAM dendrimer, thus leading
to a highly negative charged paramagnetic nanoparticle. The

present study presents a modification of that synthetic method.
A MALDI-TOF analysis showed an average of 44 (GdDOTA-
4AmP5�) chelates in the nanostructure (Supplementary Fig. 1).
The GdDOTA-4AmP5� complex has four appended phosphonate
groups, with variable pKa values ranging from 6.0 to 8.0 (37,38).
When the protons of the phosphonate group dissociate at their
respective pKa values, the chelate gains a negative charge up
to a value of �5, while it has either neutral or positive charge
below these pKa values (38). That is to say, a phosphonate-based
MRI contrast agent has charge reversal properties.
We observed the pH response of this dendrimeric agent. The

absolute detection sensitivity of the nanoscale MRI contrast
agent showed a robust improvement relative to the monomeric
agent (38) at 3 T. The average r1 relaxivity of Gd44-G5 conjugate
per dendrimer was a sizable 348 mM�1 s�1 at pH 8.84, rising to
425 mM�1 s�1 at pH 6.35 (Fig. 2). At 7 T, the r1 relaxivity of
Gd44-G5 decreased significantly for all pH values (Fig. 2); this is
the typical behavior of the r1 relaxivity of large molecules with
increasing field strength (46). Nevertheless, compared with the
monomer, the r1 relaxivity of Gd44-G5 still showed pH response
at high field strength (38), and the detection sensitivity of the
Gd44-G5 dendrimeric conjugate improved by a factor of two at
3 T for all pH values. Thus, compared with a monomeric agent,
a lower injection dose of Gd44-G5 dendrimeric conjugate will
be required for in vivo applications. GdDOTA-4Amp has been
tested in biological fluid (40). In the presence of Ca(II), Cu(II),
and Zn(II) ions (38) there was no change in pH-dependent
relaxivity profiles. In addition, the agent has been applied in

Figure 1. Schematic view of Gd3+ chelated with 1,4,7,10-tetraazacyclo-
dodecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8�) in a G5 PAMAM
dendrimer.

Figure 2. Longitudinal and transverse relaxivities (r1 and r2, mM�1 s�1)
as a function of pH (6.35–8.84) in liquid phantoms measured at 3 T (trian-
gles) and 7 T (diamonds), with linear regression fits to the data. Trans-
verse relaxivity does not vary significantly with pH, or with field
strength. The slopes of the longitudinal relaxivities do not differ between
the field strengths.

M. P. I. BHUIYAN ET AL.

wileyonlinelibrary.com/journal/cmmi Copyright © 2015 John Wiley & Sons, Ltd. Contrast Media Mol. Imaging 2015, 10 481–486

482



tissues (47), perfused tissues or organs or in vivo (48), with the
result that GdDOTA-4AmP did not interact in biological fluids
or in the presence of ions.
The r1 relaxivity of Gd44-G5 showed pH response at both field

strengths, while r2 relaxivity remained independent of pH and
magnetic field strength (Fig. 2). The R2 values at 3 T were not
significantly larger than those at 7 T, and the r2 profiles (slopes)
at the two field strengths were essentially the same. As for r1
versus pH, the slopes of r1 versus pH at 3 T and 7 T are essentially
the same.
The pH-responsive r1 relaxation properties of GdDOTA-

4AmP5� were first reported by the Sherry group (38). This agent
responds to pH by changes in proton exchange (variable τM). The
compound has four appended phosphonate groups that have

pKa values in the range 6.0–8 (37,38), and as these phosphonate
groups become protonated below pH ≈ 8 the monoprotonated
phosphonate groups hydrogen bond (38) with the single Gd3+-
bound water molecule and catalytically exchange the highly
relaxed bound water protons with protons of bulk water (45).
To understand the origin of pH-sensitive r1 relaxation properties
of dendrimer-based GdDOTA-4AmP conjugate, nuclear
magnetic resonance dispersion (NMRD) profiles were studied in
our previous report (45). NMRD profiles revealed that multiple
factors are involved in pH sensing r1 relaxation properties of this
agent. The pH response was the result of a complex interplay
between the rate of proton exchange between the bulk solvent
and water molecules in the inner and second hydration spheres
(45). In contrast to r1 relaxation properties of (GdDOTA-4AmP)44-
G5 agent, the r2 relaxation properties remain essentially
independent of pH, as shown in Fig. 2. We did not observe a
significant difference in r2 relaxation properties at either 3 T or
7 T, which is consistent with the reported r2 relaxation properties
of manganese complexes (46).

Silvio Aime and co-workers (44) reported a novel method
based on a ratiometric approach that consists of measuring the
ratio between the transverse and the longitudinal paramagnetic
contribution to the water proton relaxation rate, i.e. R2p/R1p of a
macromolecule at magnetic field strength higher than 0.2 T. The
ratio, R2p/R1p, of water protons becomes independent of Gd3+

concentration for a motionally restricted agent, (GdDOTA)33-
poly-L-ornithine (τR > 1 ns), but remains dependent on τM, τR
and other magnetic parameters that normally affect relaxation
in these complexes. We applied this R2/R1 ratiometric approach
to our dendrimer-based (Gd-DOTA-4AmP)44-G5 system.

In order to examine our hypothesis that (Gd-DOTA-4AmP)44-
G5 measures pH as a single agent without knowledge of the
agent’s concentration, we measured the ratio of R2 and R1
relaxation rates of (Gd-DOTA-4AmP)44-G5 at four different Gd3+

concentrations with three different pH values at 7 T (Fig. 3). For
three concentrations, the mean values of R2/R1 are 8.24 ± 0.05,
8.98 ± 0.12, and 10.02 ± 0.05 for pH values of 6.96, 7.40, and
8.84, respectively. The slopes of the three plots of R2/R1 are
0.03 ± 0.06, �0.05 ± 0.15, and 0.08 ± 0.03, respectively. The slope
of R2/R1 is significantly nonzero at the highest pH (pH = 8.84).
However, this pH is outside the range of physiological value in
tumors, and the variation across even the range of
concentrations reported is only about 6%. Thus, we conclude
that the R2/R1 ratio is essentially independent of concentration
for each pH value.

In order to further examine the ratiometric approach, R1, R2,
and R2/R1 (Fig. 4(A)–(C), respectively) maps for six different pH
values at 7 T for a given Gd3+ concentration were generated.
The ratio of R2/R1 maps of the phantoms containing solutions

Figure 3. The calculated ratio of R2/R1 for (Gd-DOTA-4AmP)44-G5 at four
different concentrations and three different pH values at 7 T: top line, pH
= 8.84, middle line, pH = 7.40, bottom line, pH = 6.96. The ratio R2/R1 does
not vary significantly with concentration of contrast agent at the lower
pH values, but there is a small and significant variation at the higher
pH, which lies outside the range of values usually encountered in tumor
tissues.

Figure 4. R1 (A) and R2 (B) maps generated from T1 and T2-weighted images of phantoms containing 0.16 mM Gd44-G5 at six different pH values. Av-
erage R1 and R2 values were calculated from hand-drawn ROIs. R2/R1 ratio maps at six different pH values were also generated (C).

DENDRIMER-BASED PH RESPONSIVE AGENT
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of different pH with added (Gd-DOTA-4AmP)44-G5 were plotted
versus pH for both 7 T and 3 T data, along with the 95%
confidence intervals for their regressions. Figure 5 demonstrates
that the ratio R2/R1 was pH responsive at both field strengths.
The two slopes are 1.18 ± 0.11 and 0.330 ± 0.091 for 7 T and
3 T curves, respectively, and the y-intercepts are �0.36 ± 0.81
and �0.94 ± 0.69, again for 7 T and 3 T. Neither of the intercepts
is significantly different from zero. The ratio R2/R1 increased from
3.23 to 4.05 and from 7.04 to 10 pH units, at 3 T and 7 T
respectively, on changing the solution pH from 6.35 to 8.84. It
is apparent that the accuracy of the 3 T methods is lower than
that of the 7 T methods. We do not believe this to be intrinsic
to the field strengths, but it is clear that a careful calibration of
both T1 and T2 methods, particularly with regard to flip angles,
is required for accuracy in reading out the ratio of R2/R1 as an
estimate of pH.

3. CONCLUSION

In this study, a novel pH-responsive dendrimer-based MRI con-
trast agent (Gd-DOTA-4AmP)44-G5 was evaluated as a potential
pH imaging agent at 3 T and 7 T magnetic field strengths. In
general, the compound exhibited good dynamic range in a
concentration-independent parameter (R2/R1) across physiologi-
cally significant pH values. The improvement of R2/R1 values for
this nanostructure, 1.19 per pH unit, is almost double that of
the previously reported R2/R1 values for a ratiometric
pH-responsive probe (44). These findings support the expecta-
tion that the agent can be used to estimate tumor pH in vivo by

means of estimates of changes in the R2/R1 ratio after administra-
tion of (Gd-DOTA-4AmP)44-G5. The ratiometric approach to mea-
sure pH does not require knowledge of the concentration of the
agent. (Gd-DOTA-4AmP)44-G5 with T1 and T2 effects constitutes a
single MRI contrast agent that can accurately measure pHe in a
concentration-independent manner at clinically relevant
magnetic field strengths.

4. EXPERIMENTAL

4.1. Synthesis

We have synthesized a modified version of the pH-responsive
MRI nanoprobe GdDOTA-4AmP-G5 by following our published
synthetic method (45). The final conjugate was purified by
diafiltration using a Centricon C-30 cell with a 30 kDa molecular
weight cut-off, after which the solvents were removed by
lyophilization to afford a colorless solid (0.19 g). The MW of the
p-SCN-DOTA-4AmPE conjugated G5 dendrimer was estimated
at 79 082 g/mole by MALDI-TOF analysis (Supplementary Fig. 1).
This corresponds to a G5-dendrimer with an average of 44
chelated Gd3+ ions per dendrimer. The number of chelates per
dendrimer unit was also obtained using the same method as in
our previous report (45). To examine our hypothesis, we
prepared phantoms of [(GdDOTA-4AmP)44-G5] at four or five
different concentrations with six different pH values. Gd3+

concentration was determined by ICP analyses.

4.2. MRI methods

MRI experiments were performed on a 3.0 T clinical system (Signa
Excite, GE Health) using 50 mm diameter × 108 mm RF rung
length (Litzcage small animal imaging system, Doty Scientific,
Columbia, SC). Multi-echo T2-weighted (T2W) images and T1-
weighted (T1W) images using three dimensional spoiled gradient
echo (3D SPGR) were acquired. T2W images were obtained using
standard two-dimensional Fourier transformation (2DFT) multi-
slice (15 slices) multi-echo MRI sequences with an echo time
(TE) of 11, 22, 33, and 44 ms and a repetition time (TR) of 2000
ms, field of view (FOV) of 30 mm, 1mm slice thickness, andmatrix
size of 128 × 128. The T1W images were acquired using 3D SPGR
with the following parameters: TR = 9.46ms, TE = 1.732ms, 128 ×
128 matrix size, FOV = 40 × 40 × 40 mm3, effective slice thickness
= 1 mm, and flip angles = 2°, 4°, 8°, 12°, 15°, 20°, 25°, 30°, 35°. The
R2 (1/T2) maps were calculated from the acquired T2W images at
eight different TE values using a log-linear least square fit on a
pixel-by-pixel basis by following the reported method (49). The
T1 maps were calculated from the acquired T1W images at nine
different flip angles using a linear least square fit (on a pixel-by-
pixel basis) (50). The calculated value of T1 was inverted to
generate the R1 map.
For measurements of T1 and T2 relaxation times on a 7 T Varian

system, axial spin echo (SE) sequences were obtained with
multiple TR (50, 100, 200, 300, 500, 750, 1000, 1500, 2000, 3000,
and 5500 ms) and TE (8.4, 16.8, 25.2, and 33.6 ms) values. All
sequences were acquired with FOV = 24 mm2, matrix size =
128 × 64, one slice, thickness = 1 mm, and NEX = 1. MR images
were transferred to an off-line server and reconstructed using
home-written software. T1 and T2 maps of the samples were
calculated by fitting the appropriate relaxation equation to the
image data, assuming monoexponential signal decay (for both
T1 and T2) on a pixel-by-pixel basis. For T1 maps, all echoes were

Figure 5. R2/R1 versus pH plots. Left-hand ordinate, 3 T values; right-
hand ordinate, 7 T values. The pH dependence of the relaxation rate ratio
is shown with regression lines. Upper line (diamonds), 3 T data; bottom
line (triangles), 7 T data. The 95% confidence intervals are plotted for
both linear regressions.
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summed for each TR and then fitted using the equation Mz(t) =
M0[1 � exp(TR/T1)]. T2 maps were generated by summing data
across all TR values, and then fitting the summed values using
the equation Mxy(t) = M0[exp(�TE/T2)]. The longitudinal and
transverse relaxation times of the Gd44-G5 in solution were then
measured in ROIs selected in the calculated sample maps.
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