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The Biological Process of Aging and the
Impact of Ionizing Radiation
Mohammed Al-Jumayli, MD,* Stephen L. Brown, MD,y Indrin J Chetty, PhD,y

Martine Extermann, MD, PhD,* and Benjamin Movsas, MDy

Ionizing radiation is used to create models of accelerated aging because the processes of
aging and radiation injury share common elements. In this chapter we review the biologi-
cal processes of aging and the similarities and impact of ionizing radiation on those
processes. The information draws on data from laboratory studies and from epidemiology
studies of radiation exposure victims. The chapter reviews the effects of radiation on
DNA, cells, and organs systems on aged adults. The science of aging and the effect of
radiation on the aging process are areas of active research and our understanding is
evolving.
Semin Radiat Oncol 32:172−178 � 2021 Elsevier Inc. All rights reserved.

Introduction

Radiation is given to patients of all ages. Cancer is an age-
related disease, and the majority of cancer patients

receiving radiation therapy are older than 65. With age
comes diversity in health. Senescence may occur at different
rates in different organs. It can be influenced by comorbid-
ities, medications, and external factors. Radiation itself has
been implicated in inducing accelerated aging.1,2 Older ani-
mal models show greater sensitivity to the mutagenic effect
of radiation.3 Furthermore, nowadays, radiation is frequently
given with cytotoxic chemotherapies which have their own
toxicities and can highten the toxicities and aging effects of
radiotherapy.

Aging has been defined as the time-related deterioration
of physiological functions necessary for survival.4 In simple
terms, ionizing radiation through molecular and cellular
events affects aging in 3 ways. Cell damage causes carcino-
genesis. Cell death results in tissue injury. Molecular events
lead to nonspecific life-shortening. The molecular and cellu-
lar processes affecting the aging of cells, tissue, and individu-
als are an evolving science.

In the late 1940s, through to the 1960s, the effect of ion-
izing radiation (IR) on longevity was vigorously pursued and
formulated.5,6 At that time, Upton et al.7 studied the acceler-
ated aging and shortened life span in mice by a single large,
nonlethal dose of gamma-rays from an atomic bomb explo-
sion. The fundamental questions regarding the biological
basis governing the effects of radiation on longevity remained
virtually unanswered due to uncertainty concerning radia-
tion's ability to accelerate the normal aging process. At the
time, the connection between radiation and aging was con-
sidered weak because radiation's effects, unlike aging,
appeared to mostly cause genetic damage and affect dividing
cells (as opposed to postmitotic cells) and radiation's detri-
mental effects were thought to almost always be confined to
causing neoplasms.8,9

In general, radiation-mediated aging appears to be more
associated with free-radical damage, Double Stranded Breaks
(DSBs), apoptosis, and inflammation rather than dysfunc-
tional metabolic processes. The biological mechanisms of
aging - including oxidation stress, chromosomal damage,
apoptosis, senescence cells, inflammation, telomere shorten-
ing, and stem cell exhaustion - are now much better under-
stood and continue to converge with radiation's biological
effects. Ironically, radiation hormesis is best demonstrated in
its ability to reduce inflammation. Some animal studies sug-
gest radiation, at chronic low levels, increases longevity.
However, there is virtually no support for a life span extend-
ing hypothesis for A-bomb survivors and other exposed
groups10; this is well documented for radiation-induced
aging at high doses.11
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Recent advances in technology and computing power
have opened new avenues of understanding of the relation-
ship between radiation exposure and aging. In addition, epi-
demiology studies, driven especially by A-bomb survivors,
have matured. In the following text, the impact of radiation
exposure on the molecular and cellular factors affecting the
biological process of aging are reviewed along with a discus-
sion of lifestyle factors (exercise, diet, etc.) that can influence
response to radiation and common medications that reduce
those effects.

Epidemiology
The historical reasons for rejecting any relationship between
radiation and aging have diminished with contemporary epi-
demiological studies that find radiation health effects are
now not limited to an excess risk of cancer. Epidemiological
data, especially from A-bomb survivors on cancer and non-
cancer diseases, associates radiation exposure with much of
the aging health effect spectrum, maybe more than for any
other contaminant or progeroid syndrome.11 Radiation risks
now extend to excess heart disease, stroke, digestive diseases,
and respiratory diseases. Some of these medical disorders
linked to metabolic syndrome (also known as the insulin
resistance syndrome) such as diabetes, atherosclerotic dis-
eases, and dementia, appear to be more strongly related to
obesity and an overactive TOR nutrient pathway than with
radiation-mediated reactive oxygen species (ROS).12,13

Cancer and Non-cancer Health
Effects
There is a significant rise in the incidence and mortality rates
of cancer and non-cancer diseases with age. Epidemiological
studies showed an association between ionizing radiation
and most forms of cancer and some non-cancer diseases.
Cancer, cardiovascular disease, dementia, and type 2 diabe-
tes are elevated in older A bomb survivors (Table 1). The
excess incidence rates of most solid cancers induced in A-
bomb survivors are mainly dependent on the attained age of
the individual, rather than the age at exposure or age since

exposure14 Furthermore, there was strong evidence of a
graded dose-response for doses exceeding 500 mSv.

Positive associations between ionizing radiation and car-
diovascular disease have been reported for radiotherapy
patients and radiation workers, but not at population radia-
tion background levels.15 Furthermore, radiation-induced
cataracts were found to happen with a low or absent dose
threshold among Atomic bomb survivors. Evidence is
emerging that the immune systems of Atomic bomb survi-
vors were damaged in proportion to the dose of radiation
that they were exposed to in 1945.16 Radiation can enhance
the progression of liver disease and liver cancer when hepati-
tis C is present.17

There is a significant evidence of higher incidence of com-
mon age-related diseases, such as type 2 diabetes, and cogni-
tive impairment. This result is unexpected especially due to
the latter 2 diseases being associated with oxidative stress
and inflammation, both characteristics of radiation exposure.
Hayashi et al. found that atomic-bomb survivors with spe-
cific HLA haplotypes may have an increased risk of diabetes
with increased-dose categories.18 Similarly, intracranial
radiotherapy leads to permanent and significant cognitive
disability in 50%-90% of patients.19

Loss of skin elasticity is another physiological aging factor
but also precedes erythema during high dose radiotherapy.20

Analysis of early A-bomb data by Hollingsworth et al.21

showed no dose-response for physiological markers of aging
such as greying hair and skin elasticity, although these nega-
tive associations were contradicted by a later study.22,23 As
some atomic bomb survivors are still living, our understand-
ing of the relationship that radiation exposure has on the
aging-associated spectrum of degenerative conditions will
evolve.

Oxidative Stress, Antioxidants, and
Inflammation
Reactive oxygen species (ROS) can promote many aspects of
tumor development and progression at different levels,
including cellular proliferation, evasion of apoptosis, tissue
metastasis and invasion, as well as angiogenesis.24 As ROS
constitute a persistent source of DNA damage, they are

Table 1 Supporting Evidence of Ionizing Radiation-Induced Pathological Changes and Accelerated Aging Effects

Biological Effect of Aging Radiation Effects Reference

Apoptosis dose response cell death was seen in Atomic bomb survivors 83

Cancers Excess leukemia and solid cancer in Atomic bomb survivors 84

Cardiovascular disease Excess heart disease and stroke in Atomic bomb survivors
Cataracts More common in Atomic bomb survivors 85

Chronic inflammation Increase in Atomic bomb survivors 86

Infectious disease Low prevalence of anti-hepatitis C virus antibody and chronic
liver disease among atomic bomb survivors (low prevalence)

17

Cognitive impairment
and Dementia

Radiotherapy of the head can cause Dementia
or Cognitive Impairment

19

Skin changes skin elasticity, hair greying 22

Type 2 diabetes Positive association of type -2 DM of A-bomb survivors 18

Shortened life span Life spans shortened for Atomic bomb survivors 23
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assumed to contribute to the age-related deterioration of
functions in the organism. This imbalance may lead to age-
dependent oxidative stress that compromises both cellular
structures and homeostasis.25

Ionizing radiation worsens an already unbalanced oxidant-
antioxidant status in aging cells. Radiation results in the high
local production of ROS attributable to chemical interactions
between high-energy electrons, photons, and the molecular
targets of oxygen and water within cells. Radiation can also
produce ROS through signaling processes that evolve in their
release from mitochondria. Radiotherapy promotes further
oxidative shift, which in turn potentiates the already existing
chronic oxidative stress linked to breast cancer and aging,
resulting in a further increase of mutagenic potential.26

Similarly, antioxidant protection against curative and pallia-
tive doses of ionizing radiation in human blood was reported
to decrease with aging.26 Adding antioxidant supplements to
the diet can minimize the effects of ionizing radiation later
on.27 The opposite approaches were achieved with knocked-
down cytoglobin (a vertebrate globin that scavenges ROS),
which made glioma cells more sensitive to radiation.28

In summary, irradiating aging cells that already display an
unbalanced oxidant-antioxidant status would unequivocally
contribute to overload the antioxidant systems. In aging
cells, when ROS production exceeds the antioxidant defense
capacity of the cell, excess oxidative stress occurs and indu-
ces damage to the DNA, proteins, and membrane lipids.
Radiation further contributes to ROS generation, increasing
the possibilities of oncogenic transformation.

Telomere Attrition and Genomic
Instability
The length of telomeres in somatic cells shortens over time
due to increasing age or pathogenic factors, and a shortening
telomere is a trigger for cellular senescence. Both chemother-
apy and radiation therapy significantly impair telomere
maintenance and function in normal human cells, which
may lead to cellular senescence) and ultimately result in tis-
sue/organ damage and secondary malignancies in long-term
survivors of cancer.29

Cell proliferation beyond replicative senescence leads to
uncapped chromosomes that can fuse with each other or
with their sister chromatids after DNA replication.30 Such
unstable chromosome configurations can set up fusion
−bridge−breakage cycles, which are prone to produce rapid
and important changes in gene dosage, thus linking telomere
dysfunction and chromosome instability. Carcinogenesis is
particularly induced when the cellular response to telomere
attrition is reduced due to cell cycle checkpoint defects, as
demonstrated by studies carried out in mice with impaired
p53 function.31

Telomere dysfunction is an important component of the
genomic instability observed in human cancer measured
using a PCR-based assay designed to detect telomere
fusions.32 Age-dependent telomere attrition in a cell environ-
ment with impaired cell cycle checkpoints contributes to

human carcinogenesis in older adults. There is limited and
equivocal information available on the change in the telo-
mere. Cells with short telomeres are more radiosensitive
than their long telomere counterparts.33 Shortened telomeres
provide radiation-induced double-strand breaks (DSBs) with
a new joining possibility. Dysfunctional telomeres, DNA
damage, and the persistent response to these events eventu-
ally trigger cellular senescence, a state of irreversible cell
cycle arrest. Cells bearing senescent markers increase with
age in a variety of tissues in mice34 and primates.35,36

DNA Damage and Repair, and the
Effect of Aging
Mechanisms designed to detect DNA damage and mediate its
repair arrest cell’s in their replicative cycle to avoid DNA rep-
lication or segregation.37 When DNA damage persists unre-
paired, DNA damage response can trigger cell death by
apoptosis or halt a cell’s proliferation through induction of
senescence. Double strand breaks (DSB) can arise from ioniz-
ing radiation, oxidative stress, or replication stress, but can
also be formed during genetically programmed processes
such as meiotic recombination in germ cells and V(D)J
recombination in developing lymphocytes.38 The 2 main
pathways responsible for DSB repair are nonhomologous
end-joining,39 an error-prone repair pathway, and homolo-
gous recombination.40

When analyzing age-related radiosensitivity, DSB repair
pathways impairment must be considered. The exact nature
of age-related misrepair remains unknown, emerging evi-
dence points to DNA repair proteins recruitment to the dam-
aged DNA at the nucleus. It had been previously suggested
that recruitment rates of DNA repair proteins at DSB sites
after irradiation might be inversely correlated with donor
age.41 Similarly, it has been reported that age may diminish
the effectiveness of the 2 main DSB repair pathways (nonho-
mologous end-joining and homologous recombination).

Cells respond to foreign DNA introduced in the cyto-
plasm by triggering innate immune responses, which are not
specific to a particular pathogen in the way adaptive immune
responses are. Some studies reveal a direct link between
innate immune signaling and the response of cells to induced
DNA damage; aging could radically affect this process. Dys-
functional telomeres, DNA damage, and the persistent
response to these events eventually can trigger cellular senes-
cence. Senescence is a cellular response that has evolved in
response to old, stressed and damaged cells. The production
of the so-called senescence-associated secretory phenotype
(SASP),41 includes a host of proinflammatory cytokines IL
(interleukin)-6 and IL-8 thought to be an evolutionary
attempt to elicit an immune response to facilitate the removal
of old damaged cells.42 The system works well in young,
healthy individuals promoting wound healing and reducing
fibrosis. An accumulation of senescent cells that occurs as an
individual ages has been implicated in many age-related
deteriorations, dysfunctions and diseases.42
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As cancers are among the pathologies that are fueled by
inflammation,43 the cytokines that comprise the SASP in
aging organisms, together with the innate immune responses
triggered by DNA damage, can synergistically contribute to
age-related cancers by stimulating inflammation. Although
there is evidence that the SASP suppresses tumor formation
by reinforcing cellular senescence, it also promotes cancer
progression by stimulating the growth of nearby precancer-
ous cells. The most convincing evidence for this activity
comes from xenograft studies. Co-injection of senescent
fibroblasts significantly stimulated the proliferation of mouse
and human epithelial tumor cells, while co-injection of non-
senescent fibroblasts did not.44

Cellular Senescence, Stem Cells and
the Induction of Neoplasms
Senescent cells (SC) represent a relatively stable state of prolif-
erative arrest accompanied by a failure to re-enter the cell divi-
sion cycle. It is worth noting that ionizing radiation is more
damaging to proliferating cells, particularly those in the late
G2/M phase of the cell cycle and that the non-proliferating
senescent cells are less sensitive to a radiation exposure.

In the early 1960s, investigators noted that normal
human fetal cell culture underwent a finite number of divi-
sions before becoming senescent.45 Although senescence
was initially understood as a protective mechanism to sup-
press the development of cancer and promote tissue repair,
this cellular mechanism is now seen as a double-edged
sword.46 SC are characterized by a senescence-associated
secretory phenotype (SASP) which includes short-lived
chemical moieties such as cytokines, chemokines, and reac-
tive oxygen species (ROS) which cause a number of effects
including activating an immune response, aging, and damag-
ing the SC and its neighboring healthy cells.

Ionizing radiation’s effect on SC has a dual role in cancer
radiotherapy (RT). On the one hand, radiation induces
tumor cells into a senescent state, inhibiting their prolifera-
tion and activating cancer immune surveillance. Some radio-
sensitizers under development are aimed at increasing SC
when combined with ionizing radiation.47,48 Although ioniz-
ing radiation is more damaging to proliferating cells, ionizing
radiation can induce senescence in surrounding and normal
cells as well as in cancer cells, which leads to normal tissue
fibrosis and organ dysfunction.49 Moreover, ionizing radia-
tion-induced senescence may emerge as a method for help-
ing cancer cells overcome the damaging effects of radiation
and worsen the biological behavior of tumor cells following
radiation treatment by multiple mechanisms including
impeding both innate and adaptive immune responses.50,51

Influence of Radiation on the
Senescence Mechanisms
Radiation has pluripotent effects that contribute to SC,
including its effect on DNA repair, cell cycle arrest, and

SASPs. The accuracy of DNA damage repair by related down-
stream signaling pathways determines cell fate, including
senescence and apoptosis.52 DNA double-stranded breaks
are a potent stimulus for inducing senescence.53 Ionizing
radiation-induced senescence is also a form of the more gen-
eral stress-induced premature senescence.54

Radiation has a direct effect on cellular senescence in the
tumor microenvironment. Senescence-like growth arrest
(SLGA) in response to radiation may reflect a key mechanism
of residual-cell survival, ultimately resulting in radio-resis-
tance, tumor regrowth, and dormant tumor recurrence.55

Recently, the phenomenon that SC can regrow after expo-
sure to radiation has attracted increasing attention, which
reflects that SC plays ‘opposing roles’ in RT and other geno-
toxic therapies.56-58 SC appearing in the context of neoadju-
vant chemoradiotherapy for rectal cancer can promote
epithelial-mesenchymal transition (EMT) and further affect
the residual tumor microenvironment.59

Finally, the radiation dose plays a crucial role in inducing
senescence or apoptosis upon cell exposure; a low dose (0.5
−10 Gy) of radiation induces senescence, while a high dose
(>10 Gy) typically induces apoptosis.60

Normal cells that undergo radiation-induced senescence
leads to tissue fibrosis and organ dysfunction and increases
the risk of secondary neoplasms in almost all bodily
systems.61,62 As a result, decreasing these side effects
induced by senescence has been a direction for improving
the therapeutic radiation ratio (see parallel article:Predictors
of Toxicity Among Older Adults with Cancer, section
Mitigators of radiation injury among older patients, sub-sec-
tion: Anti-senolytics).

Cell Division Cycle Arrest
The first step in a senescence phenotype following a radiation
exposure sufficient to produce consequential DNA damage, is
that cell progression is arrested at the G2/M boundary. This is
accompanied by mitotic bypass into the G1 phase.63 Ataxia
telangiectasia-mutated protein (ATM), p53, p21, p16-Rb,
p38-mitogen-activated protein kinase (p38-MAPK), NF-kB
signaling pathway factors, reactive oxygen species (ROS),
senescence-associated secretory phenotype (SASP) factors, and
cyclin-CDK complexes are all involved in this process.49,63,64

p53 and Other Proteins/Factors
Related to p53
The function of the tumor suppressor protein p53 is related
to cell cycle control, DNA repair, and apoptosis.65 p53 and
phosphorylated retinoblastoma protein (pRB) are the main
proteins involved in establishing and maintaining the state of
irreversible growth arrest in replicative senescence in normal
human cells; p53 inactivation could reverse SC phenotype in
cells with a low level of p16.66

There is increasing evidence supporting that insulin-like
growth factor-binding protein 5 (IGFBP-5) plays a crucial
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role in SC phenotype via a p53-dependent pathway. IGFBP-
5 especially functions in the coagulation factor Xa- or inter-
leukin-6 (IL-6)-induced premature senescence of endothelial
cells, smooth muscle cells, and fibroblasts.66-68

Long noncoding RNAs (lncRNA) and microRNAs
(miRNA) also contribute to SC induced by radiation.56,69

Ionizing radiation-induced senescence is modulated by
miR-155 via the p53 and p38-MAPK pathways and par-
tially regulates tumor protein 53-induced nuclear protein
1 (TP53INP1) expression in human WI-38 lung
fibroblasts.56

Cancer Stem Cells and
Radiosensitivity
Surviving nontumorigenic cells were shown to have a
tendency to exhibit senescence, while breast cancer-initi-
ating cells (CICs) could be mobilized from the quiescent/
G0 phase of the cell cycle to actively cycling cells after
sublethal doses of radiation.70 Ionizing radiation-induced
senescence is the result of the inaccurate repair of dam-
aged DNA after radiation. Targeting accelerated and
increased ionizing radiation-induced senescence has been
an important method for increasing the effectiveness of
RT [129].

Mitochondrial Dysfunction
Mitochondria play an important role in radiation-induced
cellular damage, a major contributor to the aging process,
and different qualities of radiation affect the changes in mito-
chondrial dynamics.71 Cells exposed to low-dose X-rays and
replicative senescent cells exhibit a residual capacity to use
fatty acids and glutamine as alternative fuels, respectively.72

Several mitochondrial signaling pathways have been revealed
to induce cellular senescence73; cellular senescence, as men-
tioned, is a process that contributes to cellular dysfunction
associated with aging.

Ferritinophagy
Ferroptosis is a form of regulated necrotic cell death controlled
by glutathione peroxidase 4. Ferritinophagy is a lysosomal
process that promotes ferritin degradation and ferroptosis.
Increased dysfunctional iron metabolism is thought to lead to
increased levels of iron and ferroptosis, which in turn leads to
cell death; inhibition of ferroptosis may be a means to extend
health span. Ferroptosis has been implicated in the pathogen-
esis of various diseases associated with aging adults including
cardiovascular disease, neurological disorders and cancer.74

Recent studies suggest that radiotherapy induces ferroptosis
and that it may play an important role in RT mediated cancer
death, especially when combined with cytotoxic or immuno-
modulating systemic therapies.75

Myelosuppression
Hematopoietic stem cell (HSC) injury is the major cause of
mortality after accidental or intentional exposure to a moder-
ate or high dose of ionizing radiation (IR). Bone marrow
(BM) suppression is also the important dose-limiting side
effect of chemotherapy and radiotherapy for cancer. It has
been well established that acute myelosuppression induced
by IR and/or chemotherapy is the result of induction of apo-
ptosis in the rapidly proliferating hematopoietic progenitor
cells (HPCs) and to a lesser degree in the relatively quiescent
hematopoietic stem cells (HSCs).76,77 Management of acute
myelosuppression has been significantly improved in recent
years by the use of various hematopoietic growth factors
(HGFs) such as granulocyte-colony stimulating factor, gran-
ulocyte/macrophage-colony stimulating factor, or
erythropoietin.78

However, many patients receiving chemotherapy and/or
ionizing radiation (IR) also exhibit long-term residual dam-
age to BM hematopoietic function manifested by a defect in
(HSC) self-renewal and a decrease in HSC reserves.79,80

Unlike acute myelosuppression, residual BM injury is latent
and long lasting and shows little tendency for recovery.
Unfortunately, the mechanisms of this residual BM injury
have not been clearly defined. It has been hypothesized that
ionizing radiation (IR)induce latent bone marrow injury
mainly through the induction of HSC senescence which
impairs HSC replication and self-renewal leading to the
reduction in HSC reserves81,82

Conclusions
In this article, our current understanding of the biology of
aging and the impact of ionizing radiation was reviewed. An
appreciation of the biological processes involved in aging
make it apparent that ionizing radiation accelerates many of
the normal processes of aging.
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