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Predictors of Toxicity Among Older Adults
with Cancer
Martine Extermann, MD, PhD,* Indrin J. Chetty, PhD,y Stephen L. Brown, MD,y

Mohammed Al-Jumayli, MD,* and Benjamin Movsas, MDy

An increasing number of cancer patients are of advanced age as the incidence of cancer
increases with age. In this article, the clinical predictors of toxicity that may help in treat-
ment selection are addressed, as well as mitigators of toxicity. The potential of artificial
intelligence to enable further progress in the understanding of the interaction of age and
tolerance to radiation is reviewed. The final section reviews the literature on patient-
related outcomes for older patients.
Semin Radiat Oncol 32:179−185 � 2021 Elsevier Inc. All rights reserved.

KEYWORDS: Radiation oncology; aging and cancer; geriatric oncology; radiation toxicity; CRASH score; radiomics;
artificial intelligence; patient reported outcomes

The focus of this article is on radiation toxicities experienced
by older patients. Despite radiation oncology advances in

conformal targeting, normal tissue is always in the radiation
exposure field and normal tissue complications remain a con-
cern. With a focus on aging, the clinical predictors of tolerance
are reviewed along with the literature suggesting radiation
injury can be reduced pharmacologically. Artificial intelligence
using large datasets provides a window into the understanding
of the interaction of age and tolerance to radiation and a review
is provided. Finally, a summary of the current state-of-the-art
regarding patient-related outcomes in older patients is summa-
rized. In summary, a unique perspective of radiation toxicities
among older adults with cancer is provided.

Clinical Predictors of Tolerance to
Radiation
While an extensive literature exists on predicting side
effects of chemotherapy in older patients, much less has

been written on radiation therapy. The grading of adverse
events from radiation was somewhat late being standard-
ized in the National Cancer Institutes’ Common Terminol-
ogy Criteria for Adverse Events (NCI CTCAE) system. It is
only with version 3.0 that it became fully integrated.1

Beyond the general predictors of radiation toxicity, such as
volume, fractionation, and technique, which we will not
review here, models are few and not age-specific. Machtay
et al analyzed the predictors of late toxicity after Concur-
rent Chemo-Radiation Therapy (CCRT) in locally
advanced head and neck cancers and identified older age,
advanced T-stage, and larynx and/or hypopharynx primary
site as strong independent risk factors.2 Ward et al. devel-
oped a nomogram to predict late toxicity after reirradiation
for head and neck cancers in the context of competing can-
cer events.3 They identified 6 predictors of late toxicity:
dose of radiation during the first course of treatment,
tumor site (oropharynx, hypopharynx, larynx vs others),
organ dysfunction, prior surgery, age (with an inverse cor-
relation of 0.997/year), and recurrence vs second primary.
Similar nomograms have been developed to predict acute
lower gastrointestinal toxicity,4 late urinary toxicity,5 and
rectal toxicity6 after prostate cancer radiotherapy.

Some efforts have been made to address the impact of geriat-
ric impairments on toxicity from radiation therapy. One small
study assessed whether the G8 screening score was correlated
with toxicity of stereotactic radiation for early-stage non-small
cell lung cancer. A G8 score ≤14 was correlated with late, but
not early, toxicity.7 Another study assessed whether the
Edmonton Frail Scale correlated with toxicity from radiation at
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various sites. No correlation was found.8 In a larger study, the
Vulnerable Elders Survey (VES)-13 score was associated with
the inability to complete radiation. Patients with a score > 3
were 2.14 times less likely to complete treatment, and with a
score >7, 3.34 times less likely.9

Radiation is frequently part of a multimodality treatment
plan, sequentially or concomitantly with chemotherapy.
Two predictive scores have been developed and validated to
predict toxicity from chemotherapy: the Chemotherapy Risk
Assessment Scale for High-age patients (CRASH score),10

and the Cancer and Aging Research Group (CARG) score.11

These scores combined components of a geriatric assessment
and classic oncology predictors. While neither of these scores
has been validated for chemoradiation, the CRASH score has
a feature that permits its adaptation to such regimens. The
CRASH score adapts for the toxicity of the treatment regimen
using the MAX2 score.12 This score is the average of the inci-
dence of the most frequent grade 4 hematologic toxicity and
the most frequent grade 3-4 non-hematologic toxicity pub-
lished about a given regimen. If a chemotherapy regimen has
for example 35% of G4 neutropenia and 23% of grade 3-4
diarrhea, the MAX2 score will be 0.29. For a chemoradiation
regimen, such as cisplatin and/or etoposide and thoracic 3D/
IMRT radiation, the MAX2 score would be 0.235 using a
similar approach. If that person had a blood pressure of, 140
on 80, an ECOG PS of 1, a Mini Mental Status of, 28 of 30, a
Mini-Nutritional Assessment score of 25, a low normal LDH,
and were independent in all IADLs, that person would have
a medium low risk of grade 4 hematologic toxicity and a
high risk of grade 3-4 non-hematologic toxicity, overall a
medium high risk of severe toxicity compared to an average
study patient (medium risk) (https://moffitt.org/eforms/
crashscoreform/).

To our knowledge, no similar score has been created for
older patients undergoing radiation therapy alone. Such scores
may have to be modulated according to site of radiation, given
the local nature of radiation therapy. However, approaches
such as radiomics analyzing tolerance to radiation of healthy
tissue might be an avenue along which to progress.

Automation and Modeling for
Clinical Decision Support
The significant advances in computational technology over
the past 15 years including the availability of ultra-fast
computational systems, parallel processing on fast graphics
processor units (GPU’s) and other architectures, and cloud-
based server models have facilitated the automation of work-
flow processes in radiation oncology. Automation has been
shown to be clinically applicable to virtually all elements of
the radiotherapy chain, including contouring and/or seg-
mentation of targets and normal tissues on planning images,
image registration, treatment planning and dose calculation,
treatment plan QA, image-guided delivery, and patient fol-
low-up.13,14 Benefits of automation encompass facets such as
better consistency, increased efficiency and reliability,
enhanced quality, higher performance and potential for cost

reduction.13,14 While the automation backbone is powered
by high-efficiency computational hardware, the individual
clinical workflow processes are implemented by software
often driven by machine learning algorithms. Machine learn-
ing (ML) refers to the class of computational, data-driven
algorithms trained on human behavior from prior experien-
tial data. ML is considered a subset of Artificial Intelligence
(AI), the latter which generally encompasses all approaches
to emulate human intelligence through the use of machines.
Here we will use the AI and ML terms interchangeably. Sev-
eral researchers have reviewed the role of ML algorithms for
automation of the various steps of the clinical workflow, and
it is clear that the application of AI in radiation oncology rep-
resents a paradigm changing technology.15-20 Considering
that cancer often preferentially afflicts the aging population,
the benefits of automation are bound to positively impact
clinical workflows and outcomes for older adult patients.

Over the past 5 years or so there has been a significant
increase in the application of radiomics-based approaches as
imaging biomarkers in cancer treatment,21 in part because
patient imaging is often acquired as a component of mini-
mally-invasive clinical workup. Radiomics is a field that
encompasses the extraction of data or features from medical
images (CT, MRI, PET, etc.) to define a set of quantifiable
imaging patterns that potentially serve as imaging biomarkers
of a given endpoint, such as a phenotype or a specific out-
come.22-25 Radiomics-based signatures can be both predictive
and prognostic with regard to clinical outcomes and treatment
pathways.26 As such radiomics-based models can be used to
provide clinical decision support.23 Radiomics can be com-
bined with genomics (radiogenomics 23), clinical factors, and
even biological information (eg, assessment of tumor-infiltrat-
ing CD8 cells in response to immunotherapies 27) to enhance
the value of decision support models.15,28 The significant
interest in the field of radiomics has indeed been recognized
by the National Clinical Trials Network (NCTN).29

In the context of non-cancerous illness affecting older
adults, radiomics research has centered on applications
related to prognostic and predictive modeling of neurocogni-
tive impairment and degeneration in the aging brain tissue
related to Alzheimer’s disease,30-32 characterization of stroke
from neuroimaging,33 and age-associated changes in lung tis-
sue.34 CT-evaluated sarcopenia has been linked to worse
outcomes from chemoradiation of head and neck cancer
patients.35 Presently there is limited data on the application
of radiomics biomarkers for tumor and normal tissue
response specific to older adults with cancer. However, there
is significant potential to incorporate imaging signatures rele-
vant to the aging population to build decision support mod-
els for personalized treatment.

The utility of radiomics is not without drawbacks. There are
several confounding factors related to the impact of image
acquisition parameters and image processing on the radiomics
features 36,37; reproducibility of features extracted based on the
algorithmic implementation24; interpretability of the features
associated with clinical outcomes,24 among others. The Interna-
tional Biomarkers Standards Initiative (IBSI)24 was formed to
standardize the implementation and application of radiomics
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algorithms with the goal of enabling consistent results across
institutions,38-41 ultimately to facilitate reliable associations
between radiomics signatures and outcomes.

AI algorithms can be used in conjunction with radiomics
and other biomarkers to optimize the associations between
the radiomics biomarkers and pertinent outcomes.42 AI algo-
rithms are trained by prior human experience, often in the
form of ‘ground truth’ image data. The accuracy of the AI
model is entirely dependent on the number of datasets (sam-
ple size) and the availability of properly validated and
curated datasets.16 The lack of big datasets for the training of
algorithms can lead to overfitting of the model in situations
that are significantly different (varied) from the training data-
sets.18 The lack of validated and curated datasets can lead to
inaccurate data being used in the training phase; if the data
inputs are unreliable then the model will be subsequently
trained on inaccurate prior data, thereby limiting the clinical
utility of the model.18 Similarly, imaging biomarkers, such as
radiomics rely on large samples of high quality ‘big data’ in
order to build accurate and robust models for clinical deci-
sion support. It is likely that the utilization of effective tools
such as AI, radiomics, and other imaging biomarkers will
become integral instruments for clinical decision support
toward improving cancer outcomes in the aging population.

Mitigators of Radiation Injury
Among Older Patients
Many older patients take medications that are known mitiga-
tors of radiation injury. Medicinal interventions to reduce the
harmful effects of ionizing radiation can be classified as phar-
macological and non-pharmacological, including exercise,
diet, and microbiome. These are areas of intense research
because it is generally believed they significantly impact aging,
reduce disease, and improve both quality and longevity of life.

Anti-Inflammatory Agents
FDA-approved agents for a host of ailments are under off-
label use evaluation in pre-clinical models for their ability to
reduce normal tissue injury. The majority of these exhibit
anti-inflammatory properties; statins have protected against
and mitigated radiation lung injury,43 angiotensin-convert-
ing enzyme (ACE) inhibitors and angiotensin-receptor
blockers (ARBs) have protected against and mitigated radia-
tion lung, kidney, skin, brain, and other organ injury,44 and
metformin has protected against and mitigated radiation
injury to the hematopoietic system, GI, and skin.45,46 It is of
note that many older adults with cancer are taking these
agents at the time of radiation. The NCI provides guidance
for the clinical development of agents that decrease the
adverse effects of radiation.47

Senolytics
A host of agents known to reduce cellular senescence, so
called senolytics, are being developed for their anti-cancer
properties have potential to reduce the effects of aging and

limit normal tissue damage from chemotherapies and radia-
tion therapies.48 These include anti-cancer agents that target
various molecular pathways such as Bcl-2, PI3K, AKT, HSP-
90, p53, mTOR, to name a few. Consider radiation-induced
pulmonary fibrosis (PF), for example, a severe late side effect
of thoracic RT. Irradiated mice administered an inhibitor of
B-cell lymphoma-2 (Bcl-2)/B-cell lymphoma-extra large
(BCL-xL) after persistent PF developed reduced type II pneu-
mocyte senescence, and PF was reversed.49 Promising seno-
lytic approaches with activity in models of older adults
include combined Dasatinib and Quercetin, ABT253/Navito-
clax and Fisetin pioneered by James Kirkland at Mayo
Clinic,50 Daohong Zhou at The University of Florida at
Gainsville,51 and Johnny Huard at Steadman Philippon
Research Institute in Vail, Colorado,52 to name a few.

Lifestyle Interventions for Radiation-Related
Injuries - Exercise
Older individuals who participate in moderate physical activ-
ity have increased life expectancy 53,54; in older subjects, in
particular, physical exercise has been found to be beneficial.54

A review of 13 published studies describing eight different
cohorts estimates the benefit of regular physical activity on life
expectancy to be between 0.4 to 6.9 years. The UK Biobank
longitudinal study of over 490,000 people found an inverse
dose-response association between physical activity and mor-
tality.55 Furthermore, moderate exercise was associated with a
longer life expectance in individuals with multimorbidity.55

Although causality has not been established, individuals who
participate in moderate physical activity have longer telomeres
56; adults with high activity were estimated to have a biologic
aging advantage of 9 years over sedentary adults,56 and exer-
cise favorably lowers senescence markers.57

Exercise benefits patients receiving radiotherapy as well,
in particular by reducing treatment-related side effects for
patients with breast, prostate, rectal, lung, and head and
neck cancers.58 As with exercise and aging, the amount of
physical exercise correlates with the benefit.59

Lifestyle Interventions for Radiation-Related
Injuries - Diet
Nutrition is a key component affecting health of patients
receiving radiotherapy,60,61 although data is lacking for geri-
atric or specifically for older adult patients. Consumption of
red meat, especially processed positively correlates with all-
cause mortality whereas that of whole grains, vegetables,
fruits, and nuts is beneficial.62 In animal models, calorie
restriction without malnutrition and especially lower protein
intake are life-extending factors.62

Each of the 5 R’s of radiobiology, reoxygenation, DNA
repair, radiosensitivity, redistribution in the cell cycle, and
repopulation are influenced by metabolism that is affected by
diet,63 hence it is not surprising that diet is an active area of
research designed to improve both tumor radiation damage
64,65 and normal tissue response radiation protection.66,67
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Perhaps not surprisingly, a recent study by Crowder
et al.68 demonstrated that long-term post-radiation head and
neck cancer survivors who had symptoms consistent with
poor nutrition were associated with decreased functional sta-
tus and quality of life.

Microbiome
The microbes including bacteria, bacteriophage, fungi, pro-
tozoa, and viruses that live inside and on the human body
have a profound influence on carcinogenesis and response to
therapy.69 For example, the probiotic Lactobacillus rhamno-
sus GG (LLG) is being tested to reduce GI injury following
irradiation [NCT01839721, NCT03420443].70 The results
of the human studies are consistent with the observation that
mice housed in micro-isolators with HEPA-filtered air, acidi-
fied water, and autoclaved food and bedding are radiation-
resistant compared to the radiation response of mice main-
tained in a room without such precautions.

Patient Reported Outcomes (PROs)
Patient reported outcomes (PROs) are fundamental to under-
standing the clinical experiences and symptoms of cancer
patients, many of whom are older. PROs have been defined
by the US Food and Drug Administration as “any report of
the status of a patient’s health condition that comes directly
from the patient, without interpretation of the patient’s
response by a clinician or anyone else”.71 Examples of vali-
dated PRO instruments that include both generic and site-
specific cancer modules include the Functional Assessment
of Cancer Therapy (FACT) and the European Organization
for Research and Treatment of Cancer (EORTC) quality of
life (QOL) instruments, among many others.71 There are
many compelling reasons to incorporate PROs into both
research and clinical settings. First, PROs have been found to
be independent predictors of outcome for cancer patients,
including for survival.72 For example, Movsas et al. found
that baseline QOL independently predicted overall survival
5 years later in patients with locally advanced non-small cell
lung cancer 73 (3). Similarly, in another lung trial (RTOG
0617), every 10 points higher on the QOL instrument at
baseline corresponded to a 10% decreased risk of death.74

Importantly, geriatric cancer patients have high rates of anxi-
ety and depression, which also correlated with lower survival
outcomes.75 Secondly, PROs can help identify differences in
treatment strategies that are clinically meaningful. For exam-
ple, while RTOG 0617 was not randomized by radiation
technology, significantly fewer patients who received inten-
sity modulated RT (vs 3D conformal RT) had a clinically
meaningful decline in QOL a full year after treatment.73 Fur-
thermore, a clinical trial demonstrated that including PROs
into the clinical setting can improve the communication
between patients and providers.76

Perhaps most importantly, randomized data indicates that
adding electronic symptom monitoring (to usual care) led to
improved QOL, reduced ER visits, and even improved
survival.77,78 In one of these studies,77 >700 patients with

advanced-stage cancer were randomized to reporting 12
common symptoms via tablet or computers versus usual
clinical follow-up. Patients in the interventional arm had
improved QOL (the primary endpoint), fewer emergency
room (ER) visits, and longer median survival (31 vs 26
months, P = 0.03). Importantly, they found that these bene-
fits were actually greater for a pre-planned cohort of partici-
pants lacking prior computer experience, who overall were
significantly older in age (median age 67 vs 60 years in the
computer experienced group).79 Yet, in a subsequent sec-
ondary analysis, older patients (>70 years, median age 75)
in the electronic symptom management arm still had the pri-
mary outcome benefit regarding improved QOL, but not the
other benefits (re: ER visits and survival) observed in youn-
ger patients.80 This analysis suggests that there could be dif-
ferential effects of electronic symptom monitoring based on
patient age, though, importantly, the primary endpoint of
QOL was not impacted. Indeed, prior studies suggest that
older versus younger patients have different supportive care
needs.81 A related key issue with using PROs relates to miss-
ing data, which can be even more challenging in older adult
patients. By using a HIPAA-compliant web-based electronic
reporting system, Movsas et al. demonstrated a significant
reduction in missing PRO data compared to using paper
forms.82 The median age in this study was 64 years, suggest-
ing that older patients can also benefit from this approach.
More research is needed to develop strategies to further
improve and tailor symptom monitoring interventions to
better address the personalized symptom care needs of older
patients with cancer.

In order to achieve this goal, more studies need to address
PROs in the geriatric oncology population. In a recent sys-
tematic review of PROs in older patients with breast cancer,
van der Plas-Krijgsman et al. found that geriatric parameters
(eg, a geriatric assessment or GA) were among key predictors
for toxicity and PROs, beyond age and comorbidity.83

Indeed, PROs were predicted by geriatric measures in >80%
of the studies. Yet, only 15% of all studies in this geriatric
cancer population addressed PROs.84 Indeed, the Interna-
tional Society for Geriatric Oncology (SIOG) recommends
that PROs be integrated into clinical studies for older cancer
patients.85. The randomized studies above 77,78 suggest this
approach should now be extended to the standard clinical
oncology care setting as well. Ultimately, this will lead to bet-
ter and more individualized treatment decisions and out-
comes for older adult patients with cancer.

Fortunately, cancer interventions over time have become
more tolerable, convenient, and accessible, which is particu-
larly helpful for older adults with cancer. Radiation has long
been a consideration in this regard as it offers a non-invasive
treatment option. Mohile et al.86 reported previously that
patient-reported symptoms were similar for older (median
age 74) and younger (median age 52) patients receiving radi-
ation. While younger patients reported significantly more
pain, nausea, and sleep disturbance, older patients reported
more symptom interference with walking. More recently,
shorter (hypofractionated) treatment courses have been
developed, which provide more convenience. Modern RT
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techniques, including MR-guided adaptive RT, provide
newer options for older adults with cancer that may have
less impact on QOL.87 Similarly, newer targeted systemic
agents and minimally invasive surgical procedures offer
more tolerable treatment options for older adults with can-
cer. Recently, intriguing data is emerging that links PROs to
molecular genetic findings.88 As oncology moves more into
the era of personalized medicine using each individual
patient's molecular fingerprint, we must still always keep at
the forefront the "whole person" (including PROs) when
considering "person"-alized treatment options.

Conclusions
Aging affects tolerance to radiation in many ways.
Although some efforts have been made to identify clinical
predictors of toxicity in older patients, notably the impact
of co-morbidities and geriatric syndromes, much work
remains to be done to develop integrated prognostic
scores comparable to those developed for chemotherapy.
Radiomics and artificial intelligence analysis of big datasets
may help advance the field. Patient-reported outcomes
may bring a key understanding of how radiation toxicities
impact the function and the aspects of life that matter
most to older patients with cancer.
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