9-1962

Doctor Severo Ochoa To Give Eleventh Edsel B. Ford Lecture

Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal

Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons

Recommended Citation

This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. For more information, please contact acabrer4@hfhs.org.
DOCTOR SEVERO OCHOA TO GIVE ELEVENTH EDSEL B. FORD LECTURE

“BREAKING THE GENETIC CODE” will be the title of the Eleventh Edsel B. Ford Lecture, to be given at 7:00 p.m., November 15, 1962, in the Henry Ford Hospital Auditorium, by Severo Ochoa, M.D., Professor and Chairman, Department of Biochemistry, New York University School of Medicine.

In a recent address, Dr. John T. Edsall placed the “emerging story of the biochemical mechanism of heredity” among the scientific triumphs which “have a grandeur and sublimity comparable to the greatest works of art”. Widespread interest in this development is symbolized by large scale models of nucleic acids at the Seattle World’s Fair. The topic chosen by Dr. Ochoa is therefore very timely. Chemists, Physicists, Biologists, and Physicians are invited to come and to bring their associates and friends.

THE LECTURER

Dr. Ochoa was born in Spain, in 1905, and became a citizen of the United States in 1956. After postdoctoral work in biochemistry at Berlin, Heidelberg, and London (1930-34), he became Assistant Professor of Biochemistry at University of Madrid Medical School (1935-36), and subsequently held positions at Heidelberg (Kaiser Wilhelm Institut für Medizinische Forschung), Oxford University (Department of Biochemistry), and Washington University, St. Louis (Department of Pharmacology), before assuming his present post. Dr. Ochoa received his medical degree at Madrid, honorary D. Sc. degrees from Washington University, St. Louis; Wesleyan, Salamanca, and Oxford; and an honorary LL. D. from Glasgow. In 1959 Dr. Ochoa was awarded the Nobel Prize in Physiology and Medicine. His greatest contributions are in the fields of enzymology of intermediary metabolism, CO₂ fixation, and nucleic acid and protein biosynthesis.

ABSTRACT OF LECTURE

Synthetic polyribonucleotides of varying composition, prepared with polynucleotide phosphorylase, promote the incorporation of different amino acids into protein-like products by cell-free bacterial system. The polynucleotides act as artificial messengers, i.e. they replace natural messenger RNA which contains genetic information from DNA and specifies the nature of the proteins made in the cell. Correlation between the composition of the synthetic polynucleotides and the amino acids utilized for polypeptide synthesis in their presence, has yielded the nucleotide composition of the code letters corresponding to each of the common amino acids.

487