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The 2021 landscape of FDA-approved artificial intelligence/machine 
learning-enabled medical devices: An analysis of the characteristics and 
intended use 

Simeng Zhu, Marissa Gilbert, Indrin Chetty, Farzan Siddiqui * 

Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, MI, USA   
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A B S T R A C T   

Background: Machine learning (ML), a type of artificial intelligence (AI) technology that uses a data-driven 
approach for pattern recognition, has been shown to be beneficial for many tasks across healthcare. To char
acterize the commercial availability of AI/ML applications in the clinic, we performed a detailed analysis of AI/ 
ML-enabled medical devices approved/cleared by the US Food and Drug Administration (FDA) by June 2021. 
Methods/Materials: The publicly available approval letters by the FDA on 343 AI/ML-enabled medical devices 
compiled by the agency were reviewed. The characteristics of the devices and the patterns of their intended use 
were analyzed, and basic descriptive statistical analysis was performed on the aggregated data. 
Results: Most devices were reviewed by radiology (70.3%) and cardiovascular (12.0%) medical specialty panels. 
The growth of these devices sharply rose since the mid-2010s. Most (95.0%) devices were cleared under the 510 
(k) premarket notification pathway, and 69.4% were software as a medical device (SaMD). Of the 241 radiology- 
related devices, the most common applications were for diagnostic assistance (48.5%) and image reconstruction 
(14.1%). Of the 117 radiology-related devices for diagnostic assistance, 20.5% were developed for breast lesion 
assessment and 14.5% for cardiac function assessment on echocardiogram. Of the 41 cardiology-related devices, 
the most common applications were electrocardiography-based arrhythmia detection (46.3%) and hemody
namics & vital signs monitoring (26.8%). 
Conclusion: In this study, we characterized the patterns and trends of AI/ML-enabled medical devices approved or 
cleared by the FDA. To our knowledge, this is the most up-to-date and comprehensive analysis of the landscape as 
of 2021.   

1. Introduction 

Artificial Intelligence and machine learning (AI/ML) algorithms, 
with their ability to automatically recognize and learn patterns from 
data, have recently emerged as a promising technology that can 
potentially leverage the recent advancement in “big data” to allow more 
efficient and precise delivery of healthcare [1–3]. 

Research studies involving AI/ML algorithms for problems in health 
and medicine grew sharply in the past decade [4], a period in which 
three significant enabling events occurred: the advancement of the field 
of deep learning [5], digitization of healthcare data in massive quanti
ties [6], and the growing availability of advanced hardware equipped 
with computational capabilities powerful enough for developing AI/ML 
algorithms [7]. 

While most studies in this area focused on developing and validating 
AI/ML algorithms for their respective use cases, few have investigated 
the degree to which the growing progress in AI/ML research has been 
translated into commercially available tools for clinics [8–11]. In the 
United States, when a device (including software) is intended to di
agnose, mitigate, treat, cure, or prevent a disease, it is considered a 
medical device and must be approved or cleared in a risk-stratified 
fashion (Table 1) by the Center for Devices and Radiological Health of 
the US Food and Drug Administration (FDA), the regulatory agency 
responsible for certifying the commercial distribution of the devices. 

To characterize the AI/ML medical device landscape as of 2021, we 
performed an in-depth analysis of the recently published list by the FDA 
of 343 AI/ML-enabled medical devices cleared or approved as of June 
2021 [14] (to reduce redundancy, we will refer to both FDA-cleared and 
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-approved devices as “approved” for the rest of the manuscript). 

2. Materials and methods 

2.1. Source of data 

In September 2021, the United States FDA’s Digital Health Center of 
Excellence published a list consisting of 343 AI/ML-enabled medical 
devices approved by the agency as of June 2021 [14]. While the exact 
criteria for creating the list were not specified, the FDA website defined 
artificial intelligence as “a device or product that can imitate intelligent 
behavior or mimic human learning and reasoning” [15]. 

The list contains basic information for each device, including the 
decision date for approval, submission number, name of the device, 
name of the company, product code, and the lead medical specialty 
review panel. To offer additional insights on the details of the devices, 
two research assistants independently reviewed each device’s publicly 
available approval letter and recorded the following information in a 
database: device class (I, II, or III), submission type (510(k) premarket 
notification, De Novo request, or premarket application pathway), 
whether the device is implanted, whether the device is life-sustaining/ 
support, a summary of intended use, whether the device is software 
only, the type of AI algorithm used, whether the device can be used in 
mobile devices, and primary user (clinician, patient, or both). Conflict
ing information was resolved by discussion until a consensus was 
reached. To ensure data consistency, only data from the FDA approval 
letters were used for analysis, and no additional information (e.g. mar
keting materials or publications) was sought. 

2.2. Further analysis for radiology and cardiovascular devices 

An initial inspection of the original list revealed that “radiology” and 
“cardiovascular” represent the two most common medical specialty re
view panels. To further characterize the trends and patterns of functions 
of the devices in these two categories, we performed additional cate
gorization and subcategorization based on the devices’ intended use. For 
radiology devices, we created 11 main categories based on their 

intended use: diagnostic and triage assistance, image reconstruction, 
image segmentation and labeling, imaging device, radiation therapy 
planning, image storage and process software, surgery planning, image 
acquisition assistance, image registration, patient positioning, and 
linear accelerator. In addition, we further classified the radiology de
vices within the “diagnostic and triage assistance” category based on the 
type of abnormality or lesion. For cardiovascular devices, we created 
five categories based on their intended use: electrocardiography (ECG)- 
based arrhythmia detection, hemodynamic & vital signs monitoring, 
stethoscope-based auscultation analysis, coronary artery disease detec
tion, and others. These categories for radiology and cardiovascular de
vices were created by the authors to efficiently classify these devices 
based on their intended uses and product codes with the goal of using as 
few mutually exclusive categories as possible. 

Finally, we performed various basic descriptive statistical analyses 
for the aggregated data. 

2.3. Assessment of medical AI/ML-related research activity 

Since academic research is an important driving factor for in
novations in industry, the trend of research output of medical AI/ML 
was assessed. PubMed was queried for the number of AI/ML-related 
scientific papers published annually, and a scatterplot was generated 
to assess the temporal trend. The following keywords were used during 
the PubMed search query: (“machine learning” OR “artificial intelli
gence”) AND (“medicine” OR “medical” OR “clinical” OR “healthcare”). 

3. Results 

3.1. Overall characteristics of the devices 

A total of 343 medical devices were included for analysis (raw data 
and the database that we created can be found in Appendix A). Seven 
(2.0%) devices were approved before 2010, and the numbers of ap
provals increased in consecutive years since then, except from 2014 to 
2015 (Fig. 1). The numbers of approvals from 2016 to 2021 were 16 
(4.7%), 26 (7.6%), 61 (17.8%), 75 (21.9%), 100 (29.2%), and 38 
(11.1%), respectively (Fig. 1). Of note, the number of approvals for the 
year 2021 is lower than the actual amount since the list of AI/ML- 
enabled devices did not include those approved after June 2021. 

All 343 devices were classified as class II by the FDA, and no device 
was considered implanted or life-sustaining/support device. Three 
hundred and twenty-six (95.0%) devices were approved under the 510 
(k) premarket notification process, followed by De Novo request (n = 16, 
4.7%) and premarket approval (n = 1, 0.3%) (Table 2). Two hundred 
and thirty-eight (69.4%) devices were software as a medical device 
(SaMD). The FDA approval summaries of 152 (44.3%) devices did not 
mention AI or specify any specific AI algorithm. Fifty-four (39.9%) 
mentioned “AI” only, and 137 specified the types of algorithms in more 
detail than “AI” (examples include “machine learning”, “convolutional 
neural network”, “deep learning”). Forty-four (12.8%) devices were 
enabled for use on mobile devices. Clinician, patient, and both were the 
primary users for 322 (93.9%), 10 (2.9%), and 11 (3.2%) devices, 
respectively. 

The most common product codes were LLZ (medical image man
agement and processing system), JAK (computed tomography x-ray 
system), QAS (radiological computer-aided triage and notification 
software), QIH (medical image management and processing system), 
and IYN (ultrasonic pulsed Doppler imaging system), each with 91 
(26.5%), 27 (7.8%), 21 (6.1%), 14 (4.0%), and 13 (3.8%) devices, 
respectively. 

Each device was assigned one lead medical specialty review panel. 
The involved panels (with numbers of approved devices) include radi
ology (n = 241, 70.3%), cardiovascular (n = 41, 12.0%), hematology (n 
= 13, 3.8%), neurology (n = 12, 3.5%), ophthalmic (n = 6, 1.7%), 
general and plastic surgery (n = 5, 1.5%), clinical chemistry (n = 5, 

Table 1 
Summary of the risk-based medical device regulation by the US Food and Drug 
Administration.  

Definition and Regulatory Pathways for Medical Devices of Different Classes  

Definition Possible regulatory 
pathways (if not 
except) 

Class I Low- to moderate-risk medical 
devices under general controls by 
the FDA* 

510(k) premarket 
notification, De Novo 
request 

Class II Moderate- to high-risk medical 
devices under general controls and 
Special Controls 

510(k) premarket 
notification, De Novo 
request 

Class III High-risk medical devices (which 
typically support or sustain human 
life) under general controls and 
Premarket Approval (PMA) 

Premarket approval  

Common Regulatory Pathways for Medical Devices by the FDA 
Premarket 

approval [12] 
The most stringent type of submission application for which all 
nonclinical and clinical studies supporting the safety and 
effectiveness of the medical devices are required. A successful 
application results in “approval” of the new device by the FDA. 

510(k) premarket 
notification [12] 

Submission pathway aiming to demonstrate that a new device 
is as safe and effective as, or substantially equivalent to, a 
legally marketed device (referred to as a predicate device). A 
successful application results in “clearance” of the new device 
by the FDA. 

De Novo request  
[13] 

Submission pathway for novel class I and II medical devices for 
which there are no legally marketed predicate devices. 

*FDA = Food and Drug Administration. 
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1.5%), microbiology (n = 5, 1.5%), gastroenterology-urology (n = 4, 
1.2%), anesthesiology (n = 4, 1.2%), general hospital (n = 3, 0.9%), 
obstetrics and gynecology (n = 1, 0.3%), orthopedic (n = 1, 0.3%), 
dental (n = 1, 0.3%), and pathology (n = 1, 0.3%) (Fig. 2). Out of the 19 
total medical specialty panels for medical device classification at the 
FDA, all but 4 were represented, with the exception of chemistry, 
immunology, physical medicine, and toxicology [16]. 

The 16 devices approved under the De Novo request pathway 
represent 8 unique specialties (details can be found in the Supplemental 
Materials). Of the 16 new product codes created by this mechanism, 8 
were used for 510(k) clearances among the remaining devices in this 
study, with each code used by a median of 2 (range, 1–20) other devices. 
The most notable example is the product code QAS (radiological 
computer-assisted triage and notification software), created in 2018 

with the approval of Viz.AI Inc.’s ContaCT product [17], has been used 
as the primary product code for 20 other devices included in this study. 

3.2. Details of radiology devices 

Among the 241 devices approved by radiology as the lead panel, the 
most common application was for diagnostic and triage assistance, ac
counting for 117 (48.5%) devices, followed by 34 (14.1%) for image 
reconstruction, 27 (11.2%) for image segmentation and labeling, 16 
(6.6%) for imaging devices, and 15 (6.2%) for radiation therapy plan
ning (Table 3). Of the 117 devices intended for diagnostic and triage 
assistance, 24 (20.5%), 17 (14.5%), 13 (11.1%), 11 (9.4%), and 9 (7.7%) 
were developed for the assessment of breast lesions, cardiac function on 
echocardiogram, intracranial hemorrhage, stroke, and pulmonary 
nodule, respectively (Table 3). 

3.3. Details of cardiovascular devices 

Of the 41 devices approved by cardiology as the lead panel, the most 
common applications were ECG-based arrhythmia detection (n = 19, 
46.3%) and hemodynamics & vital signs monitoring (n = 11, 26.8%) 

Fig. 1. The number of FDA-approved AI/ML-enabled medical devices per year.  

Table 2 
General characterizes of the AI/ML-enabled medical devices.  

Class of Device N = 343 % 

I 0 0 
II 343 100 
III 0 0  

Type of Submission   
510(k) premarket notification 326 95.0 
De Novo request 16 4.7 
Premarket approval 1 0.3  

Algorithm description   
Did not specify 152 44.3 
Mentioned “AI” only 54 15.7 
Mentioned specific algorithm beyond “AI” 137 39.9  

Software Only   
Yes 238 69.4 
No 105 30.6  

Mobile Application   
Yes 44 12.8 
No 299 87.2  

Type of User   
Clinician 322 93.9 
Patient 10 2.9 
Combination 11 3.2  

Fig. 2. Lead medical specialty review panels for the AI/ML-enabled devices.  
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(Table 4). 

3.4. Mobile and patient-use devices 

The 44 devices enabled for mobile devices represent 9 medical spe
cialties, with radiology (n = 13, 29.5%), cardiovascular (n = 11, 25.0%), 
neurology (n = 6, 13.6%) and clinical chemistry (n = 4, 9.1%) being the 
most common. The 21 devices intended (whether exclusively or not) for 
patient use represent 7 specialties, with cardiovascular (n = 10, 47.6%), 
general hospital (n = 3, 7.3%), and hematology (n = 3, 7.3%) being the 
most common. Compared with the distribution of medical specialties for 
the entire cohort of devices, the distributions for these two subsets are 
more evenly distributed. 

In addition, there is a high degree of overlap between the 44 mobile- 
enabled and 21 patient use devices, with 12 that fall into both categories 
simultaneously. Of these 12 devices, the most common intended uses 
were diabetes care-related (n = 5), ECG-based arrythmia detection (n =
2), and stethoscope-based cardiac auscultation (n = 2). 

3.5. Medical AI/ML-related research activity 

The numbers of annually published AI/ML-related scientific papers 
for years 2010 to 2021 were shown in Fig. 3, which demonstrated an 

accelerated growth beginning in the mid-2010 s. 

4. Discussion 

AI/ML technologies experienced significant growth in the past 
decade and are starting to impact multiple industries, including 
healthcare. To describe the characteristics of AI/ML-enabled medical 
devices currently approved for marketing in the US, we performed a 
thorough analysis of such devices approved by the FDA up to mid-2021.” 

4.1. Comparison to prior studies 

The scope of the devices included for analysis in this study is broader 
than those used in similar efforts in the past – we included devices 
considered to be “AL/ML-enabled” by the FDA’s Digital Health Center of 
Excellence, whereas the ones in prior studies were “AI/ML-based”, 
generally limited to those with wordings such as “machine learning”, 
“neural network”, and “artificial intelligence” in public FDA documents 
[8–11]. As shown by results in Section 3.1, the reports for 152 (44.3%) 
AI/ML-enabled devices in our study did not mention any AI/ML-related 
keywords, suggesting that AI/ML might not be the principal focus for 
these devices. The expanded timeline and broader inclusion criteria 
make the current study the most comprehensive thus far (Table 5). In 
addition, compared to previous studies, we performed a more in-depth 
categorization of the intended uses for devices reviewed by radiology 
and cardiovascular panels at the FDA. 

4.2. Comparison to research output 

Our results showed that the number of approved AI/ML-enabled 
devices has been consistently increasing since the mid-2010 s, concor
dant with prior findings [8–11], and a similar pattern was observed in 
the growth of AI/ML-related medical research (Fig. 3). The similarity of 
growth patterns suggests the responsiveness of industry and regulatory 
bodies to translate AI/ML medical research into commercially available 
products. The rapid growth of AI/ML research and medical device 
development since the mid-2010 s can be likely attributed to the pub
lication of two landmark papers: Krizhevsky et al.’s pioneering work on 
AlexNet in 2012 [19], which popularized the use of convolutional neural 
networks for image processing tasks, and Ronneberger et al.’s impactful 
work on U-Net in 2015, which was specifically designed for medical 
image segmentation, an important task in medical image processing 
[20]. 

Another interesting observation from our results was that, of the FDA 
documents that mentioned specific types of AI/ML algorithms in use, 
they were predominantly deep convolutional neural networks, the most 
common type of algorithms used for image-based tasks [5]. This is 
consistent with the fact most intended uses for the devices were image- 
based tasks, such as image classification and segmentation. Other pop
ular machine learning algorithms, such as transformers [21] and long 
short-term memory (LSTM) [22], have not been commonly incorporated 
in the FDA approved devices. 

4.3. Medical specialties 

Not surprisingly, 82% of the approved devices were related to radi
ology and cardiology. The concentration of AI/ML-enabled devices in 
these two medical specialties can be likely explained by the heavy use of 
digital medical data (such as digital medical imaging data and electro
cardiogram) and the significant role played by pattern recognition in 
making diagnoses. A similar trend was observed in a recent bibliometric 
study which showed that, in 83,979 scientific articles on AI/ML in the 
field of medicine, the four most common medical specialties were 
radiology, oncology, neuroimaging, and ophthalmology (in descending 
order) [23]. 

One of the possible key driving factors making radiology the leader 

Table 3 
Intended use for radiology-related AI/ML-enabled medical devices.  

Categories for 
intended use 

Subcategory (if 
available) 

Number and percentage 
of devices 

Diagnostic and triage 
assistance  

117 (48.5%)  

Breast lesion detection 24 (20.5%)  
Echocardiogram analysis 17 (14.5%)  
Intracranial hemorrhage 
detection 

13 (11.1%)  

Stroke detection 11 (9,4%)  
Pulmonary nodule 
detection 

9 (7.7%)  

Fracture detection 7 (6.0%)  
Pneumothorax detection 4 (3.4%)  
Pulmonary embolism 
detection 

2 (1.7%)  

Others 30 (25.6%) 
Image reconstruction  34 (14.1%) 
Image segmentation and 

labeling  
27 (11.2%) 

Imaging device  16 (6.6%) 
Radiation therapy 

planning  
15 (6.2%) 

Image storage and 
processing  

12 (5.0%) 

Surgery planning  8 (3.3%) 
Image acquisition 

assistance  
4 (1.7%) 

Image registration  4 (1.7%) 
Patient positioning  3 (1.2%) 
Linear accelerator  1 (0.4%) 

Note: The percentages (in italics) reported for subcategories of diagnostic and 
triage assistance were calculated with respect to 117, the total number of devices 
within this main category. 

Table 4 
Intended use for cardiovascular AI/ML-enabled medical devices.  

Categories for intended use Number and percentage of devices 

ECG-based arrythmia detection 19 (46.3%) 
Hemodynamics & vital signs monitoring 11 (26.8%) 
Stethoscope-based auscultation analysis 4 (9.8%) 
Coronary artery disease detection 3 (7.3%) 
Others 4 (9.8%) 

Abbreviations: ECG = electrocardiogram. 
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in the development of AI/ML-enabled devices is that many pioneering 
experts recognized at a very early phase of the recent “AI revolution” the 
opportunity to apply the advancement made in the realm of AI/ML al
gorithms to the workflow of radiology [24,25]. The computer vision 
tasks in which modern AI/ML algorithms excel (e.g. image classification, 
image segmentation, object detection) bear a strong resemblance to 
many daily tasks of a diagnostic radiologist. In addition, efforts like the 
2018 National Institute of Health/Radiological Society of North 

America/American College of Radiology/National Academy of Medi
cine workshop on the roadmap for research on AI/ML in medical im
aging are critical for setting priorities and building collaborative efforts 
among various stakeholders of radiology [26]. 

In the analysis of the distribution of represented medical specialties, 
it is interesting to note that pathology, another specialty that was ex
pected to be impacted by the development of AI/ML algorithms along 
with radiology [27], only has one approved device. (We are aware of the 
recent approval of the second device in this category, Paige Prostate by 
Paige.AI, in September 2021; however, to keep our discussion consis
tent, we are excluding it from our analysis.) Although lacking value 
determination and reimbursement structures have been proposed as 
potential reasons for the slow adoption of digital pathology [3,28], it is 
beyond the scope of the current work to investigate the scientific or 
regulatory factors that contributed to the low number of pathology- 
related AI/ML devices. We hope future work will shed light on this 
curious area. 

Lindsell et al. proposed that AI/ML algorithm development should be 
“about matching the algorithm to the problem, and not the other way” 
[29]. While our data is not suited to assess this criterion on the AI/ML- 
enabled devices, we performed a detailed analysis of the intended uses 
for radiology and cardiovascular devices. We showed that, of the 241 
radiology-related devices, they were well balanced between those 
assisting diagnosis/triage (48%) and those for image processing and 
manipulation (52%). Of the 117 radiology devices approved for assisting 
diagnosis/triage, the most common indication was for breast lesion 
detection (21%), one of the most common anatomic sites for diagnostic 
imaging. Of the 41 cardiovascular devices, almost half (46%) were 
developed for arrhythmia detection on ECG, the most performed diag
nostic procedure in cardiovascular medicine. Although rule-based al
gorithms to automatically interpret ECGs have existed for decades, the 
clinical adoption has been low due to poor accuracy; however, the 
application of deep learning for this purpose has significantly improved 
the accuracy [30]. 

4.4. Regulatory considerations 

Due to the relative lenient regulatory process, 510(k) clearance is the 
most common pathway for medical devices in the US, with about 96% 
devices cleared under this mechanism [31]. Our cohort had a similar 

Fig. 3. The temporal growth of published medical AI/ML scientific papers.  

Table 5 
Comparison between the current study and prior investigations.  

Study Inclusion criteria for devices Time frame of 
FDA approval 

Number of 
devices 

Benjamens et al. 
[8] 

Official FDA announcement 
contains any of the following 
expressions: “machine 
learning”, “deep learning”, 
“deep neural networks”, 
“artificial intelligence”, “AI” 

January 2010 - 
March 2020 

29 

Muehlematter 
et al.[9] 

FDA documents contain any 
of the following expressions: 
“artificial intelligen*”, 
“machine learning”, “deep 
learning”, “neural network”, 
“convolutional neural, 
algorithm” 

January 2015 - 
March 2020 

222 (US), 
240 
(Europe) 

Lyell et al.[10] Internet web pages contain: 
(“artificial intelligence” OR 
“ai” OR “machine learning” 
OR “deep learning”) AND 
(“FDA approved” OR “FDA 
approves” OR “FDA 
approval”) 

Up until 
February 2020 

49 

Wu et al.[11] FDA documents containing 
“AI keywords”, devices 
included in Benjamens et al.’s 
work [8], and an online 
database maintained by the 
American College of 
Radiology [18] 

January 2015 - 
December 
2020 

130 

Our study “AI/ML-Enabled” as 
determined by the FDA’s 
Digital Health Center of 
Excellence 

Up until June 
2021 

343  
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proportion of 95%. However, when vendors try to market novel devices 
with no available predicate device for the 510(k) pathway, they would 
have to undergo the De Novo request process (Table 1). As shown in 
Section 3.1, of the newly created product codes from the 16 De Novo 
devices in this study, QAS gets used the most frequently by later 510(k) 
clearances, and most of these devices are designed for detecting intra
cranial hemorrhages (ICH). The underlying reason for the high number 
of devices under this product code is likely multifactorial: (1) with a high 
fatality rate if undetected, ICH is an emergent condition where a timely 
interpretation of the radiologic image is critical, hence there is a clinical 
need for rapid triage of scans, (2) deep learning has been shown to be an 
effective method for detecting ICHs, with reported area under the ROC 
curves ranging from 0.85 to 0.99 [32,33]. 

While this study is focused entirely on FDA-approved AI/ML devices, 
Muehlematter et al. compared the 222 FDA-approved devices in the US 
and 240 CE-marked devices in Europe [9]. One observation of interest 
was that, of the 124 devices commonly approved in both continents, the 
majority (80) were first approved in Europe, suggesting potentially 
relatively less rigorous evaluation in Europe. This could be a topic of 
interest for future investigations. 

4.5. Strengths, limitations, and future directions 

This study analyzed the characteristics and intended use of 343 AI/ 
ML-enabled medical devices approved by the FDA as of June 2021. 
Compared to prior published studies on this topic so far [8–11], the list 
of devices included in this study is the most exhaustive and up-to-date, 
and our categorization on the intended use is the most detailed as we 
further investigated the categories and subcategories within the two 
most common medical specialties (radiology and cardiovascular) that 
constitute 82.3% of the approved devices. In addition, our data source is 
homogeneous because the list of the devices was compiled by the FDA 
and the analysis was based solely on the documents from the agency. 

Our study has several limitations. First, our analysis was based 
entirely on the publicly available FDA approval letters for medical de
vices which were considered “AI/ML-enabled” by the agency. While the 
intent of this practice to ensure data consistency, many additional 
insightful information (such as details of the algorithms and their per
formance results) and devices approved after June 2021 could not be 
considered. Second, although FDA approval status allows commercial 
distribution, we cannot determine the actual levels of availability and 
clinical deployment in healthcare facilities, making it difficult to assess 
the real-world impact of AI/ML devices. Third, our analysis was limited 
to devices approved by the FDA, thereby reducing the generalizability of 
our conclusions. 

To provide the general medical community and patients with 
fundamental information on the current landscape of this the approved 
AI/ML devices, we limited the scope of this study to an overall charac
terization of such devices without delving into details beyond the FDA 
documents. We hope this study could aid future investigations on more 
in-depth topics of interest. Potential future directions may include 
assessment of the clinical impacts made by AI/ML devices, optimal 
workflow integration for these devices, comparison of the AI/ML algo
rithms deployed in the devices, experience of the users (healthcare 
providers and/or patients) of these devices, etc. 

5. Conclusion 

Our results showed a rapid increase of FDA-approved AI/ML-enabled 
medical devices since the mid-2010s, most of which were class II devices 
cleared under the 510(k) pathway. Radiology and cardiovascular med
icine are the two most represented medical specialties, and we provided 
an overview of the patterns of the devices’ intended use. We hope future 
specialty-specific efforts will provide additional insight into the clinical 
impact AI/ML algorithms have made in the clinic. 

6. Summary table 

6.1. What was already known on this topic  

• The development of AI/ML algorithms for healthcare applications 
has significantly grown in the past decade.  

• Approval or clearance by the FDA is required for a medical device to 
be commercialized in the US. 

6.2. What this study added to our knowledge  

• Most of the AI/ML-enabled medical devices approved or cleared by 
the FDA are in the field of radiology and cardiovascular medicine.  

• The number of AI/ML-enabled medical devices approved or cleared 
per year largely reflects the increase in research output.  

• The indications for these devices generally reflect areas of clinical 
need. 
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