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Abstract
Objective.To establish an open framework for developing plan optimizationmodels for knowledge-
based planning (KBP).Approach.Our framework includes radiotherapy treatment data (i.e. reference
plans) for 100 patients with head-and-neck cancer whowere treatedwith intensity-modulated
radiotherapy. That data also includes high-quality dose predictions from19KBPmodels that were
developed by different research groups using out-of-sample data during theOpenKBPGrand
Challenge. The dose predictions were input to fourfluence-based dosemimickingmodels to form76
uniqueKBP pipelines that generated 7600 plans (76 pipelines× 100 patients). The predictions and
KBP-generated plans were compared to the reference plans via: the dose score, which is the average
mean absolute voxel-by-voxel difference in dose; the deviation in dose-volume histogram (DVH)
points; and the frequency of clinical planning criteria satisfaction.We also performed a theoretical
investigation to justify our dosemimickingmodels.Main results.The range in rank order correlation
of the dose score between predictions and their KBP pipelines was 0.50–0.62, which indicates that the
quality of the predictionswas generally positively correlatedwith the quality of the plans. Additionally,
compared to the input predictions, the KBP-generated plans performed significantly better
(P< 0.05; one-sidedWilcoxon test) on 18 of 23DVHpoints. Similarly, each optimizationmodel
generated plans that satisfied a higher percentage of criteria than the reference plans, which satisfied
3.5%more criteria than the set of all dose predictions. Lastly, our theoretical investigation
demonstrated that the dosemimickingmodels generated plans that are also optimal for an inverse
planningmodel. Significance.This was the largest international effort to date for evaluating the
combination of KBP prediction and optimizationmodels.We found that the best performingmodels
significantly outperformed the reference dose and dose predictions. In the interest of reproducibility,
our data and code is freely available.

1. Introduction

Automated radiotherapy planning is transforming clinical practice and personalized cancer treatment
(Moore 2019). Themost common type of automated planning is knowledge-based planning (KBP), which
leverages knowledge derived fromhistorical clinical treatment plans to generate new treatment planswithout
human intervention (Cornell et al 2020, Kaderka et al 2021,McIntosh et al 2021).Most commonKBPmethods
are formulated as a two-stage pipeline (see figure 1) thatfirst predicts the dose that should be delivered to a
patient (Kearney et al 2018,Nguyen et al 2019) and then converts that prediction into a treatment plan via
optimization (Babier et al 2021a, Eriksson andZhang 2022). Both stages of this pipeline, which are active areas of
research, can significantly affect the quality of generated treatment plans (Babier et al 2020). The contributions of
this paper are twofold: (1) to provide data that supports KBP optimization research at scale and (2) to establish a
connection between dosemimicking (a type of KBP optimization) and conventional planningmethods.We
expand on the impact of these contributions throughout this paper.

Comparing the quality of competing KBPmodels from the research community is difficult because the vast
majority of research is conductedwith large private datasets, as noted in several reviews (Hussein et al 2018, Ge
andWu2019,Wang et al 2020,Momin et al 2021). To help address this issue, theOpenKnowledge-Based
Planning (OpenKBP)GrandChallengewas organized to facilitate the largest international effort to date for
developing and comparing dose predictionmodels on a single open dataset (Babier et al 2021b). TheOpenKBP
dataset, which includes data for 340 patients with head-and-neck cancer whowere treatedwith intensity
modulated radiotherapy (IMRT), is limited to dose prediction research (i.e. it is incompatible withKBP
optimization research). Although there are still no open datasets for KBP optimization research, there are two
open datasets that support research in other areas of plan optimization (Craft et al 2014, Breedveld and
Heijmen 2017). However, it is challenging to use these datasets inKBPplan optimization research for two
reasons. First, neither dataset includes dose predictions, which are the input toKBPplan optimizationmodels.
Second, they are small datasets (123 patients total) that spanmultiple sites (prostate, liver, and head-and-neck)
andmultiplemodalities (CyberKnife, volumetricmodulated arc therapy, proton therapy, and IMRT).While
such a diversity in cases is important to demonstrate the robustness and generalizability of optimization
algorithms across sites andmodalities, this same diversity is a disadvantagewhen it comes to training dose
predictionmodels, since there is insufficient data for any one site-modality pair (Boutilier et al 2016).
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There are several types of KBP optimizationmodels that translate dose predictions into treatment plans. One
major type of KBP optimizationmodel is dosemimicking, which generally generates a plan that is similar to an
input prediction based on linear (Kierkels et al 2019) or quadratic (McIntosh et al 2017)differences. Another
type of KBP optimizationmodel is inverse planningweight estimation, which optimizes patient-specific
parameters thatmake an input dose prediction optimal in a conventional planningmodel (Chan et al 2014).
However, both types ofmodels can also use information beyond a single dose prediction. For example, dose
mimickingmodels can incorporate parameters that reflect the uncertainties in a predicted dose distribution
(Zhang et al 2021). Similarly, inverse planningweight estimationmodels can incorporate an ensemble of dose
predictions to leverage the combinedwisdomofmultiple predictions (Babier et al 2021a). Note that these
optimziationmodelsmake dose predictions an intermediate step in aKBPpipeline.

Most KBP pipelines are developed as fully-automated pipelines that can replace human treatment planners
in the planning process (McIntosh et al 2017, Fan et al 2019, Bai et al 2020,Wortel et al 2021). These approaches
have demonstrated promising results in prospective research studies where a sizeable portion of KBP-generated
planswere considered inferior to human-generated plans, which suggests that there is an opportunity for
improvement (Cornell et al 2020,McIntosh et al 2021). In those cases,makingmanual adjustments to theKBP-
generated plan is non-trivial because they are generated by fully-automated pipelines that rely on the quality of
the data. In contrast to fully automated pipelines, semi-automated pipelines rely on both the quality of data and
human expertise, which puts less reliance on the data. For example, a semi-automatedKBPpipeline could
enable human planners to improve upon aKBP-generated plan via an intuitive process (e.g. inverse planning)
and thereby provide a pipeline that leverages both data and human expertise.. In theKBP literature, however,
there are relatively few papers that describe tools that humans can intuitively interact with in semi-automated
KBPpipeline (Babier et al 2018, Bohara et al 2020, Kaderka et al 2021, Zhang et al 2022).

In this paper, we extend the results from theOpenKBPGrandChallengewith an international validation of
76KBPpipelines.Wemade this extension, whichwe call OpenKBP-Opt, open to provide a benchmark for
futureKBP optimization research and to lower the barriers for contributing to this research area.We also
demonstrate howKBPplan optimizationmodels can be used to initialize a conventional inverse planning
process with good patient-specific parameters (i.e. objective weights). This relationship provides amechanism
for transforming some existingKBP optimizationmodels, which are fully-automated pipelines that impede
manual intervention, into semi-automated pipelines that promote human planners to improve upon aKBP-
generated plan via inverse planning (i.e. a familiar and intuitive process). The data and code to reproduce this
paper is publicly available at https://github.com/ababier/open-kbp-opt.

2.Materials andmethods

Figure 2 separates ourmethods into five components. Thefirst three components (processing patient data,
developing dose predictionmodels, and generatingKBPdose predictions) are based on the results from the
OpenKBPGrandChallenge. Thefinal two components (developing plan optimizationmodels and generating
KBP treatment plans) are an extension of theOpenKBPGrandChallenge and the focus of this paper. Below, we
describe allfive components and our analysis.

Figure 1.Anoverview of a complete knowledge-based planning pipeline.

Figure 2.Anoverview of ourmethods. A full description of each component is provided in its corresponding subsection.
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2.1. Processing patient data
Weobtained data for 340 patients (n= 340)with head-and-neck cancer from theOpenKBPGrandChallenge.
The data consisted of a training set (n= 200), a validation set (n= 40), and a testing set (n= 100). The plans
were delivered via 6MV step-and-shoot IMRT fromnine equidistant coplanar beams at angles 0◦, 40◦,K, 320◦.
Those beamswere divided into a set of beamlets  , whichmake up afluencemap. The relationship between the
intensitywb of beamlet b and dose dv deposited to voxel vwas determined using the influencematrixDv,b

generated by the IMRTP library from theComputational Environment for Radiotherapy Research (Deasy et al
2003)usingMATLAB, and it is given by d D w .v b v b b,= å Î

2.2.Developing dose predictionmodels
All dose predictionmodels used in this paperwere developed in theOpenKBPGrandChallenge (Babier et al
2021b). During the challenge, teams developed dose predictionmodels using identical training and validation
datasets with access only to ground truth data (i.e. reference dose) for the training set. Every dose prediction
model used a neural network architecture thatwas based on either aU-Net (Ronneberger et al 2015), V-Net
(Milletari et al 2016), or Pix2Pix (Isola et al 2017) architecture.Many of the best performingmodels also used
other generalizable techniques like ensembles (Nguyen et al 2021), one-cycle learning (Zimmermann et al 2021),
radiotherapy-specific loss functions (Gronberg et al 2021), and deep supervision (Liu et al 2021).

All teams competed to developmodels thatminimize one of two pre-defined errormetrics that quantified
the difference between the reference dose and aKBP-generated dose (i.e. their KBP dose predictions). The
metrics were: (1) dose error, whichwas themean absolute voxel-by-voxel difference between two dose
distributions, and (2) dose-volume histogram (DVH) error, whichwas the absolute difference between aDVH
point from two dose distributions. TheDVHerror was evaluated on two and threeDVHpoints for each organ-
at-risk (OAR) and target, respectively. TheOARDVHpoints were theDmean andD0.1cc, whichwas themean
dose delivered to theOAR and themaximumdose delivered to 0.1 cc of theOAR, respectively. The target DVH
points were theD1,D95, andD99, whichwas the dose delivered to 1% (99th percentile), 95% (5th percentile), and
99% (1st percentile) of voxels in the target, respectively. Themodels were ranked according to: (1) dose score,
whichwas the average dose error of amodel, and (2)DVH score, whichwas the averageDVHerror of amodel.

2.3. GeneratingKBPdose predictions
In this paper, theOpenKBPorganizers collaboratedwith teams that competed in theOpenKBPGrand
Challenge. The 28 teams that completed the final phase of theOpenKBPGrandChallenge were invited to
participate in theOpenKBP-Opt project, and 21 of those teams agreed to participate.We obtained dose
predictions from the participating teams for each patient in the test set to create a dataset with 2100 dose
predictions (21 different predictions for each of the 100 patients).We observed that twomodels had dose scores
thatwere over two standard deviations (6.3Gy) above themean (4.0Gy), whereas the rest werewithin half a
standard deviation (1.6Gy) of themean. Thus, we omitted those two outliermodels and proceededwith only 19
KBPmodels (n= 1900 dose predictions).

2.4.Developing plan optimizationmodels
Next, we formulated four dosemimickingmodels, which are a type of KBP optimizationmodel. Eachmodel
used the same set of structures and objective functions that are described in sections 2.4.1 and 2.4.2, respectively.
However, they differ in how theymimic (i.e. penalize differences) a specific dose distribution. In particular, they
each have a different cost function, outlined in section 2.4.3. Note that in this paper the terms objective function
and cost function refer to distinct concepts, and the cost functions in this paper are functions of objective
functions.

2.4.1. Structures
All of our optimizationmodels used the same set of regions-of-interest (ROIs) p for each patient p Î in our
test set. The set p containedOARs, targets, and optimization structures. TheOARswere the brainstem, spinal
cord, right parotid, left parotid, larynx, esophagus, andmandible. Each target t was a planning target volume
(PTV)with a dose level θt, and those targets were the PTV56, PTV63, andPTV70. The optimization structures
were the limPostNeck, whichwas used to limit dose to the posterior neck, and six PTV ring structures (a 3 mm
ring and a 6 mmring for each target). These were the same structures used to generate the plans in the original
OpenKBP dataset (Babier et al 2021b). Every ROI r pÎ was also divided into a set of voxels r .

2.4.2. Objective functions
Ourmodels used the objective functions in table 1. Each objective function quantified a differentmeasure of the
dose delivered to a single ROI r pÎ in a patient p Î , whichwe call an objective value. Specifically, the
average andmaximumdose objective function quantified the average dose andmaximumdose delivered to an
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ROI r, respectively. The average dose over and under threshold objective functions quantified the average dose
delivered to anROI r that was over and under a dose threshold f, respectively. Our average dose over and under
threshold objective functions are similar to tail mean dose (Romeijn et al 2006) and conditional value-at-risk
(Rockafellar andUryasev 2000), which are both defined on the percentiles of a distribution.

In total, we considered 107 objectives functions: seven perOAR, three per target, and seven per optimization
structure. The objective functions for eachOARwere themean dose;maximumdose; and average dose over
thresholds of f equal to 0.25, 0.50, 0.75, 0.90, and 0.975 of themaximumpredicted dose to that structure. The
objective functions for each target were themaximumdose, the average dose under a threshold f equal to the
dose level of the target (i.e. f= θt), and the average dose over a threshold f equal tofive percentmore than the
dose level of the target (i.e. f= 1.05θt). The objective functions for each optimization structure were the same as
theOARobjective functions. Not all patients had all ROIs, so themodels associatedwith those patients had
fewer than 107 objective functions.

2.4.3.Model formulations
OurKBPoptimizationmodels performed dosemimicking to generate planswith optimized objective values
that closelymatched the input objective values from a dose prediction. To streamline ourmodel formulation, let
each m pÎ index one of the 107 objective functions (as outlined in section 2.4.2), and let the elements in the
vectorw represent beamlet intensities w b,b " Î . Let gm(w) and ĝm be objective values of their corresponding
objective functions evaluated over the optimized plan and predicted dose, respectively. In allmodels, the cost
functionswere formulated such that lower values of gm(w)were favored over higher values. Table 2 presents the
cost functions of our dosemimickingmodels. Eachmodelminimized either themean ormax difference
between all corresponding pairs ( ( ) ˆ )g gw ,m m of the objective values, whichwere quantified via an absolute
( ( ) ˆg gwm m- ) or relative (( ( ) ˆ ) ˆg g gwm m m- ) differencemeasure, resulting in four dosemimickingmodels. In
themean differencemodels, we chose to prioritize the positive differences (i.e. where the optimized plan
objective value was higher than the predicted dose objective value)more than the negative differences, whichwe
assigned a small positive weight ò (ò= 0.0001 in our experiments). This was done to incentivize themodel to do
at least as well as the dose prediction before striving to outperform the dose prediction on other objective
functions. In contrast, themax differencemodels used only a single termbecause themax difference naturally
incentivizes themodel to outperform the prediction only once the plan outperforms the prediction across all
objective values (i.e. when ( ) ˆg g mw ,m m p " Î ).

Themain constraint in all fourmodels was a constraint to limit plan complexity. In particular, the sum-of-
positive gradients (SPG) (Craft et al 2007) of all plans generated by themodels was constrained to be less than or
equal to 65, whichwas a constraint in the reference plans (Babier et al 2021b). The remaining constraints were
simply auxiliary constraints (including auxiliary variables) used to linearize both the objective and cost functions

Table 1.The formulations for our objective functions.

Objective function

Average dose ( )dmean
v

v
rÎ

Maximumdose ( )dmax
v

v
rÎ

Average dose over threshold ( )d fmean
v

v
r

-
Î

+

Average dose under threshold ( )f dmean
v

v
r

-
Î

+

Table 2.The cost functions for each dosemimickingmodel that
minimizemean absolute (MeanAbs), max absolute (MaxAbs),
mean relative (MeanRel), andmax relative (MaxRel) differences
between all pairs of the optimized and predicted objective
values ( ( ) ˆ )g gw ,m m .

Dosemimickingmodel cost function
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(i.e. the formulations in table 1 and table 2). The optimizationmodels were all formulated inPython3.7 using
OR-Tools 9.1 and solved usingGurobi 9.1 on a single computer with an Intel i7-8700K (6-Core 3.7GHz)CPU
and 16GBof random accessmemory. Default parameters were usedwith theGurobi solver except forCrossover
set to 0,Method set to 2, andBarConvTol set to 0.0001, whichwere selected based on past experience to improve
solve timewithout compromising solution quality.

2.5. GeneratingKBP treatment plans
Next, we assembled 76KBPpipelines by combining the 19 dose predictionmodels with each of the four dose
mimickingmodels. Each pipelinewas applied to the 100 patients in the testing set, resulting in 7600KBPplans
(see figure 3).We used these plans in our analysis tomeasure the quality of the respective KBPmodels.We refer
to the plans generated by each dosemimickingmodel asMeanAbs,MaxAbs,MeanRel, andMaxRel plans.

Altogether, after completing the process infigure 3, we had dose distributions for a set of reference plans
(n= 100), predictions (n= 1900), andKBPplans generated by four dosemimickingmodels (n= 4× 1900).
The reference plans are the plans thatwere released as part of theOpenKBPGrandChallenge, and the
predictions are dose distributions that were submitted by 19 teams in thefinal testing phase of the challenge. In
general, therewill be differences between the reference plan, prediction, andKBPplan dose distributions.
Differences between a dose prediction and its correspondingKBPplan are due tomultiple factors including
noisy and undeliverable predictions. Differences between aKBPplan and its corresponding reference plan
reflect different trade-offs in the cost function used to generate these plans.

2.6. Analysis
Weconducted three analyses tomeasuremodel performance in terms of dose error, DVHpoint differences, and
clinical criteria satisfaction.We also investigated the theoretical connection between our dosemimicking
models and inverse planning. Finally, we summarized empirical optimizationmetadata.

2.6.1. Dose score and error
Weevaluated theKBPmodels using the dose score and dose error as defined in section 2.2.We calculated the
Spearman rank order correlation of the dose score rank between the predictionmodels and correspondingKBP
pipelines. The distribution of dose error was also visualized using a box plot. A one-sidedWilcoxon signed-rank
test was used to evaluate whether the dose error of the optimizationmodels was the same (null hypothesis) or
lower (alternative hypothesis) than the dose predictionmodels. For all hypothesis tests in this paper,P< 0.05
was considered significant.

2.6.2. DVHpoint differences
Tomeasure the relative quality of dose distributions from a clinical perspective, we examined the distribution of
DVHpoint differences between the reference andKBP-generated dose. The differences were evaluated over the
DVHpoints listed in section 2.2 and visualized using boxplots.We used the one-sidedWilcoxon signed-rank
test to evaluate whether the dose generated by all optimizationmodels performed the same (null hypothesis) or
better (alternative hypothesis) than the dose predictions. This test was chosen to evaluate the aggregate
performance of all optimizationmodels relative to the predictions. Lower values were better forDmean, D0.1cc,
andD1; higher valueswere better forD95 andD99.

2.6.3. Expected clinical criteria satisfaction
As anothermeasure of plan quality, we examined the proportion of clinical criteria that were satisfied by the
reference plans andKBP-generated dose. One criterionwas evaluated for eachROI (see table 3). The target

Figure 3.Anoverview of our process. First, dose predictionmodels were developedwith training and validation data. Second, those
models predicted dose for testing data that was used by the dosemimickingmodels to generate KBP plans.
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criteria were evaluated after overlap between targets, whichwas removedwhen processing patient data for the
OpenKBP dataset, was reinstated.We tabulated the proportion of clinical criteria that were satisfied by the
reference plans, dose predictions,MeanAbs plans,MaxAbs plans,MeanRel plans,MaxRel plans, and the plans
from theKBPpipeline that satisfied themost clinical criteria overall.We also plotted the proportion ofOAR,
target, and all ROI clinical criteria that each of the 76KBPpipelines achieved.

2.6.4. Theoretical analysis of dosemimickingmodels
To justify our choice of dosemimickingmodels, we conducted a theoretical analysis into their structure using
linear programming duality theory (Bertsimas andTsitsiklis 1997, Chapter 4). This analysis was based on
previous literature that showed a connection between Bensonʼsmethod (Benson 1978), which identifies
efficient solutions tomulti-objective optimizationmodels, and estimating theweights for inverse planning
(Chan et al 2014).Weweremotivated to conduct a similar analysis as inChan et al (2014) because our dose
mimickingmodels are similar to the formulations in Benson (1978). In particular, we linearized the dose
mimickingmodels, took their duals, and related the dual variables to objective weights ˆ ma in a conventional
multi-objective inverse planning problemdepicted inmodel (1):

( )

( )

wgminimize ,

subject to SPG 65,

Auxiliary constraints to linearize functions in Table 1 and 2. 1

m
m m

w
p

^




å a
Î

2.6.5. Optimizationmetadata
Lastly, we summarized themetadata that each optimizationmodel generated. In particular, we evaluated the
average proportion of objective weight that eachmodel assigned toOAR, target, and optimization structure
objective functions.We also recorded the average, first quartile, and third quartile solve times.

3. Results

In this section, we summarize the performance of the 19 dose predictionsmodels, four dosemimickingmodels,
and 76KBPpipelines.We also complete our theoretical analysis of dosemimickingmodels and summarize the
metadata generated by our experiments.

3.1.Dose score and error
Table 4 summarizes the rank order correlation between the dose predictionmodels and their corresponding
KBPpipelines.We found that the rank of a predictionmodel was positively correlatedwith its corresponding
KBPpipeline rank.However, therewas awide range in correlation from0.50 to 0.62. This demonstrates that
high quality predictions are correlatedwith high quality plans, but this result also indicates that a dose prediction
model that outperforms a competitor will not always generate better planswhen it is used as input to a dose
mimickingmodel. Additionally, the KBPplans generated by an optimizationmodel that evaluated relative
differences (i.e.MeanRel andMaxRel) achieved higher rank order correlations than their counterparts that
evaluated absolute differences (i.e.MeanAbs andMaxAbs).

Table 3.The clinical criteria that we used to
evaluate dose distributions.

Structures Clinical criteria

OARs

Brainstem D0.1cc � 50.0 Gy

Spinal cord D0.1cc � 45.0 Gy

Right parotid Dmean � 26.0 Gy

Left parotid Dmean � 26.0 Gy

Esophagus Dmean � 45.0 Gy

Larynx Dmean � 45.0 Gy

Mandible D0.1cc � 73.5 Gy

Targets

PTV56 D99 � 53.2 Gy

PTV63 D99 � 59.9 Gy

PTV70 D99 � 66.5 Gy
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The dose errors of predictions andKBPplans are shown infigure 4. Two of the four sets of KBP plans (those
generated byMaxAbs andMaxRel)had amedian dose error that was lower than themedian dose error of the
predictions (2.79Gy), implying that it is possible for optimizationmodels to generate dose distributions that
more closely resemble the reference plan dose, compared to dose predictions. These twomodels also achieved a
significantly lower error (P< 0.001) than predictions. TheMaxAbsmodel achieved the lowestmedian dose
error (2.34Gy).

3.2.DVHpoint differences
Figure 5 shows theDVHpoint differences between the reference dose andKBP-generated dose. In general, dose
mimicking tends to produce a plan dose that is significantly better than the dose it received as input from a dose
predictionmodel. In particular, the KBPplan dose is significantly better on 18 of the 23DVHpoints than the
predicted dose (all OARpoints and four target points). ThefiveDVHpoints where the planswere not
significantly better are the threeD95 points and twoD99 points.

3.3. Expected clinical criteria satisfaction
In table 5, we compare the percentage of criteria that were satisfied by the reference plans (n= 100), predictions
(n= 1900), plans generated by each of the four dosemimickingmodels (n= 4× 1900), and plans generated by
the top performingKBPpipeline (n= 100).We use the term baselines to refer to the reference dose and dose
predictions collectively. The top performing KBPpipeline (denoted ‘Best’ in table 5)was defined as the single
pipeline (i.e. the combination of one dose predictionmodel and one dosemimickingmodel)whose plans
satisfied themost clinical criteria. Of all dosemimickingmodels, theMaxRel andMeanAbsmodels generated
plans that satisfied the fewest (69.8%) andmost (72.9%)ROI clinical criteria, respectively. For comparison,
predictions only satisfied 66.2%of all clinical criteria, whichwas 3.5 percentage points lower than the reference
plans (69.7%). The best KBP pipeline, which used theMeanAbsmodel and one of the 19 predictionmodels
(discussed later), satisfied 77.0%of all ROI clinical criteria.

In general, clinical criteria satisfaction varied across eachROI criterion. The brainstem, spinal cord,
esophagus, andmandible criteria were each satisfiedmore than 85%of the time across all the baselines and our
dosemimickingmodels in table 5. The right parotid, left parotid, and larynxwere satisfied less than 40%of the
time by the the two baselines. In contrast, each of our four dosemimickingmodels generated a higher average
criteria satisfaction for these ROIs compared to the baselines. In fact, somewere substantially higher. For
example, the average criteria satisfaction of theMeanAbsmodel on the larynxwas 71.5%, compared to an
average of 36.2% for the baselines. In aggregate over all 19 predictionmodels, the performance of the four dose
mimickingmodel was comparable or slightly worse than the reference dose in terms of criteria satisfaction in the
targets. However, the best KBP pipeline outperformed the baselines on all criteria.

Figure 4.The distribution of dose error over all KBP-generated dose (n = 1900 points in each box). Boxes indicatemedian and
interquartile range (IQR).Whiskers extend to theminimumof 1.5 times the IQR and themost extreme outlier.

Table 4.Each dosemimickingmodel is compared to the predictions in terms
of Spearman rank order correlation.

MeanAbs MaxAbs MeanRel MaxRel

Rank order correlation 0.53 0.50 0.62 0.59

Rank order P-value 0.019 0.030 0.005 0.008
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Figure 5.The distribution ofDVHpoint differences between the reference dose and each set of KBP-generated dose. Negative
differences indicate cases where theKBP-generated dose had a lowerDVHpoint than the reference dose, and arrows indicate the
directionwhere KBP-generated dose is considered better than reference dose for eachDVHpoint. Boxes indicatemedian and IQR.
Whiskers extend to theminimumof 1.5 times the IQR and themost extreme outlier.

Table 5.The percentage of clinical criteria satisfied in each set of KBP-generated dose.Note that ‘Best’ is defined as the
top performingKBPpipeline that generated plans that satisfied themost ROI clinical criteria. The highest percentage of
satisfied criteria is bolded in each row.

Baselines Dosemimickingmodels

Reference Prediction MeanAbs MaxAbs MeanRel MaxRel Best

OARs

Brainstem 96.6 97.3 100.0 99.5 100.0 98.5 100.0

Spinal cord 95.5 92.7 99.7 97.3 100.0 95.6 100.0

Right parotid 32.3 32.7 46.1 38.9 45.0 38.0 41.4

Left parotid 30.6 30.1 43.7 35.0 41.9 35.0 40.8

Esophagus 93.0 92.7 100.0 95.2 100.0 97.3 100.0

Larynx 37.7 34.7 71.5 44.9 58.8 44.6 67.9

Mandible 87.5 89.4 99.6 98.7 99.2 99.0 93.1

Targets

PTV56 91.2 85.8 83.3 91.8 84.1 84.6 96.7

PTV63 90.5 86.2 82.2 89.6 84.8 84.8 92.9

PTV70 64.0 45.7 37.2 51.6 40.1 47.7 66.0

All

OARs 65.5 65.1 77.1 70.6 75.3 70.2 74.5

Targets 79.4 68.7 63.3 74.2 65.3 68.8 82.8

ROIs 69.7 66.2 72.9 71.7 72.3 69.8 77.0
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Figure 6 summarizes the clinical criteria that were satisfied by each of the 76KBPpipelines thatwe evaluated.
The spread inOAR criteria satisfaction across all 19models (55.4%–82.1%)was lower than that of target criteria
satisfaction (24.5%–89.7%), see figures 6(a) and (b), respectively. Overall, theMeanAbsmodel generated plans
that satisfiedmore criteria than the other three dosemimickingmodels for 16 of the 19 dose predictionmodels
(see figure 6(c)). Additionally, the pipelines that used better predictionmodels (i.e. lower dose score ranks)
generally produced planswith higher criteria satisfaction. Interestingly, however, the best performing KBP
pipeline (from the last columnof table 5) used the dose predictionmodel that ranked 16th in terms of dose score.
Note that the poor performing KBPpipelines used the 12th, 13th, 17th, 18th, and 19th ranked dose prediction
models. Since the dosemimicking columns in table 5 included all KBP pipelines, these poor performingmodels
contributed to lowperformance thatwasmost pronounced on the target criteria. In contrast,many of theKBP
pipelines that used the top rankedmodels predictionmodels clearly performedmuch better on target criteria.

3.4. Theoretical analysis of dosemimickingmodels
Weuse theoretical results fromChan et al (2014) to demonstrate the connection between our dosemimicking
formulations and inverse planning. The inverse planning problempresented previously asmodel (1), is
presented again in vector andmatrix notation to followChan et al (2014). The objective functions are
represented as the rows of thematrixC and the objectiveweights are represented by the vector â. The decision
variables, which include the fluence variables (w b,b " Î ) and auxiliary variables, are represented by vector x.
The SPG and auxiliary constraints are encoded in thematrixA and vector b.With this vector andmatrix
notation, we canwrite the inverse planning problem asmodel (2):

( )

Cx

Ax b

x 0

minimize ,

subject to ,

. 2

x
^



a

=

¢

Table 6 presents the formulations of the four dosemimickingmodels and their respective dualmodels in
vector andmatrix notation. The positive and negative differences between optimized objective valuesCx and
predicted objective values ˆCx are represented by vectorsσ and δ, respectively. Themax difference between the
optimized and predicted objective values is expressed as a scalar ζ. The dual variables of the dosemimicking
models are denoted byα andp. The vectors of all 0 and 1 are denoted by 0 and e, respectively. The symbole
denotes element-wisemultiplication of two vectors and prime denotes the transpose operator.

Next, we complete our theoretical analysis.Wefirst observe that theweight estimation technique developed
inChan et al (2014) is identical to our dual formulations (see table 6) except for the constraints related to the
objectiveweightsα, which prevent trivial solutions to theweight estimation technique. In the context of our
models, proposition 5 fromChan et al (2014) establishes that an optimal decision vector x* from each dose
mimickingmodel is also optimal for the inverse planningmodel with objective weights equal to the optimal dual
vectorα*, which is a byproduct of solving the corresponding dosemimickingmodel. This resultmeans that the
solution to each dosemimickingmodel is also optimal to an inverse planningmodel with a particular set of
objectiveweights (i.e. x* is an optimal solution formodel (2)when ˆ *a a= ). Additionally, by complementary
slackness, a plan generated by theMeanAbs orMeanRelmodel will achieve the same objective values (i.e.Cx*) as
a plan that is optimal for its corresponding inverse planningmodel. These theoretical results were validated
computationally but omitted for brevity.

3.5.Optimizationmetadata
In table 7, we presentmetadata that was generated by each optimizationmodel, which assigned a different
proportion of weight to the objectives for each group of ROIs. Themodels that evaluate relative differences (i.e.
MeanRel andMaxRel) spread the proportion of weight relatively evenly between theOAR and target objectives,
but the other twomodels assigned themajority of theweight to target objectives with nomore than 0.018weight
toOARs. Additionally, the optimization structures generally received the smallest proportion of weight with the
exception of theMaxAbsmodel, which assignedmoreweight to optimization structure objectives (0.170) than
OARobjectives (0.011). Therewas also awide range in average solve time between themodels (222–393 s). On
average, theMaxAbsmodel was the fastest.

4.Discussion

KBP research isflourishing.However, optimizationmodels for KBP (e.g. dosemimicking) have receivedmuch
less attention in the literature than dose predictionmodels. In this paper, we developed four dosemimicking
models and evaluated their performancewith 19 different dose predictionmodels, whichwere inputs to the
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Figure 6.The percentage of all (a)OAR, (b) target, and (c)ROI clinical criteria that were satisfied by eachKBP pipeline, which are
labeled by their prediction dose score rank. The points indicate the percentage of satisfied criteria for n = 100 patients. A dashed line
indicates the percentage of criteria satisfied by reference plans.
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optimizationmodels.We showed that both the dose predictionmodel and optimizationmodel contributed to
considerable variation in the quality of plans generated by the correspondingKBPpipeline. Additionally, we
conducted a theoretical analysis to show that our KBPoptimizationmodels generate plans that are optimal for a
multi-objective inverse planningmodel with particular weights.

Our data and code is published at https://github.com/ababier/open-kbp-opt to enable others to reproduce
our results, whichmeets the gold standard in reproducibility (Heil et al 2021). Our data includes the first open
dataset with reference plans and predictions.We hope that this effort produces a common resource and lowers
the barriers for futureKBP optimization research, given that researchersmust currently acquire their own
private datasets and develop in-house predictionmodels before they can start testing newKBPoptimization
models.

Our open dataset contains the data for 100 patients whowere treatedwith IMRT and a sample of high quality
dose predictions for those same patients. The dataset was curated for the purpose of developing newfluence-
basedKBP optimizationmodels that use ROImasks, dose influencematrices, and dose predictions. The dose
predictionswere generated by 21 dose predictionmodels that were developed by an international group of
researchers, which provided a diverse sample of realistic inputs for aKBP optimizationmodel. Two of those
predictionmodels (the 20th and 21st rankedmodels)were removed fromour analysis because their dose scores

Table 6.The dosemimickingmodels presented in vector andmatrix notationwith their dual
models. Terms that follow colons indicate the dual variables for that constraint.
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Table 7.A summary of the average proportion of objective weight that was
assigned to each group of ROI objectives and the solve time statistics of each
dosemimickingmodel (n = 1900 plans in each column).

MeanAbs MaxAbs MeanRel MaxRel

Objective weight

OARs 0.018 0.011 0.554 0.417

Targets 0.976 0.819 0.418 0.569

Optimization structures 0.006 0.170 0.028 0.014

Solve time (s)
Average 389 222 367 393

First quartile 192 107 183 188

Third quartile 502 261 481 507
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were poor, whichwe elaborated on in section 2.3. For completeness, however, those 200 predictions are also
available as part of our dataset.

We also performed a theoretical analysis to justify our dosemimickingmodels. Our key theoretical finding
was that dosemimicking and conventional inverse planning are equivalent under certain specifications of the
objectiveweights. This allows us to interpret previousweight estimation techniques (Chan et al 2014) through
themore intuitive lens of dosemimickingmodels. Finally, by connecting dosemimicking to inverse planning,
there is the potential to convert fully-automatedKBPpipelines into semi-automated pipelines. Specifically, we
use dosemimicking to generate a high-quality planwith its corresponding objective weights, which reflect the
priorities of the input dose prediction, and those objectiveweights can be used in an inverse planningmodel (i.e.
model (3)). This is advantageous because it enables human planners to improve the quality of plans generated by
KBP via a conventional inverse planning process. By enabling this intuitive human interaction, we can create a
semi-automatedKBPpipeline that is alignedwith a common belief that AI will augment, rather than replace, the
duties of healthcare practitioners (Ahuja 2019).

Evaluating the performance of optimizationmodels usingmany different dose predictions helps to identify
interaction effects between these two stages of a KBPpipeline (Babier et al 2020). For example, the 16th ranked
dose predictionmodel generated lower quality predictions (in terms of dose error) thanmost of its competitors.
However, when used in aKBPpipelinewith the right optimizationmodel, in this case theMeanAbsmodel, it
generated high quality plans that achievedmore clinical criteria than any other KBPpipeline. In other words, the
errorsmade by the 16th rankedmodel that contribute to its lowprediction quality were corrected by theKBP
optimizationmodel. Note that the 16th ranked predictionmodel achieved the fewestOAR criteria (55.4%) and
the third highest target criteria (81.5%), which suggests that theMeanAbsmodel was adept at correcting
prediction errors related to under and over predictingOAR and target criteria satisfaction, respectively. Since
these interaction effects contribute to considerable variation in quality, it is important to evaluate KBP
optimizationmodels across a diverse set of dose predictionmodels. Additionally, if we can understandwhat
types of prediction error aremost highly correlatedwithKBPplan quality we could propose better evaluation
metrics to drive KBPprediction research towardsmaking predictions that consistently translate into higher
quality plans.

As in the originalOpenKBPGrandChallenge, a limitation of this work is that we use synthetic dose
distributions (i.e. the reference dose) as a substitute for real clinical dose. Although these dose distributions were
subject to less quality assurance than clinical plans, theywere previously shown to be of similar quality (Babier
et al 2021b). A second limitation of this work is that the dose predictionmodels were developedwith the goal of
optimizing the dose andDVH scores. Theremay be other scoringmetrics that are better suited for developing a
dose predictionmodel that excels in aKBPpipeline. This is a possible direction for future research. Lastly, this
work only covers a single site and treatmentmodality. There is no guarantee that KBP optimizationmodels that
are developedwith this dataset can generalize to other sites or treatmentmodalities.

5. Conclusion

In this paper, we combined the dose predictions contributed by a large international teamwith several KBP
optimizationmodels, resulting in 76KBPpipelines. This was the largest international effort to date onKBP
pipeline evaluation.We found that the best performing pipeline significantly outperformed the baselines. In the
interest of reproducibility, our data and code is freely available.
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