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Abstract
Evans Blue (EB) is often used to evaluate Blood-Brain Barrier Damage (BBB) in cerebral ischemia, frequently by dye extraction. Herein we present a method 
that allows assessing regional brain microvasculature, distribution of EB and Fluorescent Isothiocyanate-Labeled Red Blood Cells (FITC-RBCs) in a rat model 
of acute cerebral Ischemia-Reperfusion (I-R). Wistar rats were subjected to 3 h of middle cerebral artery occlusion and then reperfused. At ~2.5 h of reperfusion, 
BBB opening was assessed by contrast enhanced magnetic resonance imaging. It was followed by injections of EB and FITC-RBCs that circulated for either 5 or 
20 min. Regional microvasculature and tracer distributions were assessed by laser scanning confocal microscopy. Microvascular networks in stroke-affected regions 
networks were partially damaged with apparent EB extravasation. Brain regions were affected in the following order: preoptic area (PoA)>striatum (Str)>cortex 
(Ctx). EB leakage increased with circulation time in Str. Cells around the leakage sites sequestered EB. An inverse correlation was observed between low CBF rates 
recorded during MCA occlusion and post-reperfusion EB extravasation patterns. Accordingly, this approach provided data on brain regional microvascular status, 
extravascular tracer distribution and its cellular uptake. It may be useful to evaluate model-dependent variations in vascular injury and efficacy of putative vascular 
protective drugs in stroke.

Introduction
Ischemia-Reperfusion (I-R)-induced BBB opening is known to 

worsen neuronal injury in its vicinity and the degree and location of 
such opening is believed to portend the development of hemorrhagic 
transformation [1]. Therefore, evaluation of acute BBB damage is 
important in determining the course of thrombolytic therapy and 
for treatment of the neurovascular unit (NVU) to achieve a favorable 
outcome after cerebral ischemia. Thus, vascular protection as a means 
of augmenting neuroprotection is now considered a valid strategy in 
stroke treatment [2].

Both non-invasive and terminal techniques are available for the 
evaluation of BBB damage. Contrast enhanced magnetic resonance 
imaging (CE-MRI) is a frequently used technique for non-invasive 
evaluation of acute BBB opening after stroke in both experimental 
studies and humans [3-5]. Experimental stroke studies may also 
involve intravenous injection of a tracer dye such as Evans blue (EB) 
for evaluation of microvascular damage, often by extraction and 
spectrophotometric estimation of dye content of the tissue [6-14]. 
Increased tissue tracer concentration in comparison to controls would 
then indicate elevated vascular permeability to the tracer. However, 
dye extraction leads to loss of all data at the microcirculatory level 
about the relative status of the vasculature among the affected regions, 
regional variations in the magnitude of tracer distribution and on 
possible cellular uptake of the dye. EB binds to plasma albumin after 
injection and is presumed to represent plasma flow. Imaging-based 

quantification of EB distribution has been reported, but few studies 
have reported the effects of acute BBB permeability changes in stroke 
on parenchymal and cellular distribution of EB and of red blood cells 
(RBCs) among different brain regions [15].

This study employed a laser scanning confocal microscopy (LSCM)-
based method for evaluating brain regional EB extravasation after 
increased cerebrovascular permeability following unilateral transient 
cerebral ischemia. The rats were injected with EB and fluorescent 
isothiocyanate (FITC) labeled RBCs after MRI and brain slices were 
examined for corresponding tracer distribution patterns. Increased 
BBB permeability in the hemisphere ipsilateral to stroke injury was 
confirmed by CE-MRI that preceded tracer injection and microscopy. 
It was hypothesized and tested that the extent of BBB opening will vary 
in its magnitude among different brain regions exhibiting stroke injury 
and that LSCM-imaging technique will underscore such variations.
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T1-weighted images (T1WI). The pre-contrast baseline images were 
subtracted from the post-contrast images to identify regions of Gd-
DTPA enhancement (T1-subtraction images). Quantitative maps 
of CBF, ADC and T2 were also generated from the raw data using 
previously published methods and their values were expressed as ipsi/
contralateral (I/C) ratios [22].

Tissue preparation for LSCM

After completion of the CE-MRI series, the rats were removed 
from the magnet and were injected with Evans blue (0.2 ml/100g body 
weight of a 2% solution in normal saline) and 1.0 ml of FITC-RBCs in 
normal saline. The two tracers were allowed to circulate for a period of 
either 5 (n = 4) or 20 min (n = 4), respectively, and the rats were then 
killed by decapitation under deep halothane anesthesia. A blood smear 
preparation was done to ensure the presence of FITC-RBCs.

Brains were removed immediately after sacrifice and immersed 
in 10% buffered formalin (VWR Intl., West Chester, PA, USA) for 48 
hours and then block-cut into serially labeled, coronal, 2 mm thick 
slices using a rat brain matrix (ASI Instruments, Inc., Warren, MI, 
USA). The slices showing blue coloration indicating EB leakage were 
photographed for visual comparison with the central MR slice showing 
Gd-DTPA enhancement. The slices were then placed into separate 
tissue cassettes and fixed in 4% paraformaldehyde overnight. From 
these slices 100 µm thick coronal sections were cut using a vibratome 
(Technical Products Intl. Inc., St. Louis, MO, USA). The slices were 
mounted on individual slides and coverslipped with Glycergel (Dako, 
Carpenteria, CA, USA).

Image acquisition

The vibratome sections were analyzed using a Bio-Rad MRC 1024 
(argon and krypton) laser-scanning confocal imaging system mounted 
onto a Zeiss microscope (Bio-Rad, Cambridge, MA, USA). Microscopic 
data were acquired using a 10x objective (numerical aperture = 0.3) 
and a 40X oil immersion objective lens (numerical aperture = 1.3). 
FITC-RBCs (green fluorochrome) and EB-labeled microvessels 
(red fluorochrome) were excited by a laser beam at 488 and 568 nm, 
respectively, and emissions were detected with a photomultiplier tube 
through 522 and 585 nm emission filters, respectively. Laser intensity 
was set at 10% of laser power and offset/black level at zero for all data 
acquisition. Electronic gain was set at 1000 for the two photomultiplier 
tubes and the iris/confocal aperture adjusted from 4.3-4.5 for FITC 
and from 2.5-3.0 for EB. Because the size of the fluorescent beam in a 
xy-dimensional image depends on laser power, iris, gain, and duration 
of sampling time, these parameters were kept constant during data 
acquisition.

Based on MR maps, three regions of interest (ROIs) including 
areas within i) the preoptic area (PoA), ii) the striatum (Str) and iii) 
cortex (Ctx; mainly parietal and/or insular cortices adjacent to Str) 
were selected and examined in both contralateral hemisphere and 
corresponding ischemic hemisphere of each animal. Images from 
the contralateral hemisphere were considered as the control in each 
experiment for comparison. For both hemispheres, high resolution 
images (using a 40x objective) from five areas in each of the ROI were 
obtained in 512 x 512 pixel format in the x-y direction using a 4x 
frame-scan average. 30 thin optical sections were acquired along the 
z-axis with a 1-um step size using a 40x objective lens.

Image analysis

An imaging system (Micro Computer Imaging Device; Imaging 

Materials and methods
Animal preparation and surgery

All experimental protocols were approved by the Institutional 
Animal Care and Use Committee. Eight male Wistar rats weighing 
~300 g were randomly assigned to one of two experimental groups. The 
rats were anesthetized with 3.0% halothane, and then maintained with 
0.75-1% halothane in a 2:1 N2O:O2 mixture using a facemask. Body 
temperature was maintained at 37°C using a water-heated recirculating 
rubber mat and monitored via an intrarectal thermocouple (Kent 
Scientific, Torrington, CT, USA). The right femoral artery and vein 
were cannulated using polyethylene–50 tubing (Becton Dickinson 
& Co., Sparks, MD, USA) for measuring arterial blood gases and 
blood pressure during the occlusion and reperfusion periods and for 
intravenous injection of MRI contrast agent and fluorescent tracers, 
respectively. 

The right middle cerebral artery (MCA) was occluded by an 
intraluminal filament for 3 h after which reperfusion was begun by 
suture withdrawal using methods described previously [16-18]. Prior 
to MCA occlusion, 1.0 ml of arterial blood was collected to isolate and 
prepare FITC-RBCs for injection later. The lost blood volume was 
immediately replaced with normal saline. During the period of MR 
imaging, RBCs were labeled with FITC using a kit (Molecular Probes, 
Eugene, OR, USA) following published procedures [19]. 

Magnetic resonance imaging

All studies were performed using a 7 Tesla, 20 cm bore 
superconducting Magnex magnet (Magnex Scientific Inc., Abingdon, 
UK) interfaced to a Bruker console (Bruker Biospin MRI, Inc. Billerica, 
MA, USA) and equipped with a 12 cm self-shielded gradient set 
capable of producing 25 gauss/cm gradients with 100 μs rise times. 
Estimates of cerebral blood flow (CBF), apparent diffusion coefficient 
of water (ADC, using data from diffusion-weighted imaging) and T2 
were acquired from 45 to 120 min after MCA occlusion as described 
previously [17,20-22].

After 3 hrs of occlusion, the animal was removed from the magnet, 
and the suture occluding the MCA was withdrawn to begin reperfusion. 
The rat was then quickly placed back in the magnet for post-reperfusion 
CBF and T2-weighted imaging (T2WI) that were acquired from 30-
120 min thereafter. About 20 min later, CE-MRI, with an intravenous 
injection of gadolinium diethylene triaminepentaacetic acid (Gd-
DTPA), was performed. 

Gd-DTPA administration and T1 Look-Locker (L-L) imaging

Gd-DTPA was prepared in-house following published methods at 
a stock solution concentration of 400 mmol [23]. Baseline T1-weighted 
spin-echo (TR/TE = 1000 ms/20 ms) and L-L scans were collected 
prior to contrast administration. After obtaining one or two baseline 
estimates, Gd-DTPA was injected as a bolus through the femoral vein at 
a dose of 80 µmol/kg body weight. Estimates of T1 were acquired using 
the L-L T1 procedure to generate maps of the longitudinal relaxation 
rate R1 (R1=1/T1) at approximately 3 minute intervals for the next 21 
min. Temporal data was obtained for five interleaved 2 mm thick slices. 
At the conclusion of the L-L series, a final post-contrast T1-weighted 
multislice spin-echo image set was obtained. 

MR data analysis 

The MR images were processed using a SUN workstation (Sun 
Microsystems, Santa Clara, CA) to generate pre and post contrast 
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Research, St. Catherines, ON, Canada) was used to process images 
from the laser scanning confocal microscope to measure FITC-labeled 
RBCs and Evans blue-albumin perfused vessels and leakage. 

Linear distance was calibrated vertically and horizontally at the 
beginning of each session using a 300 mesh square electron microscopy 
grid. Each of the 30–40x magnification z-series images from an area was 
imported into the system on separate channels, and a fixed 256-gray-
scale display cutoff was applied to ensure that an accurate rendering 
of the original vessel staining pattern was obtained. A threshold was 
set for each of the three contralateral ROIs to match published values 
for radiolabeled albumin distribution according Bereczki, et al. [24]. 
Following this convention, the contralateral EB space was set to 0.45% 
of the target area for preoptic area, 0.58% for lateral caudate-putamen, 
and 0.80% for the neocortex. Corresponding ROI images from the 
ipsilateral hemisphere areas were collected at identical settings so that 
their values represented variations from normal due to prevailing I-R 
conditions. 

The images imported into the system allowed for a single projected 
composite image to be reconstructed from the single images of both 
EB and FITC-labeled RBCs obtained separately earlier. Since the 
z-step position was kept intact, the resulting reconstructions covered 
identical tissue volumes and could be overlaid to produce composite 
images. The ensuing data were expressed as ratios of contralateral 
values and are represented as the following parameters: i) Leakage, 
percentage of fields with disrupted vasculature and a hazy background; 
ii) Fields, percentage of fields with extravascular accumulation of 
EB with no evident cellular uptake; and iii) Uptake, percentage of 
fields with cellular uptake of EB. Each ROI was evaluated in 5 brain 
slices from each rat independently by three investigators for these 
three parameters, the values were averaged and the mean value was 
considered as representative of that ROI. All data are shown as mean ± 
standard error of mean. They were analyzed using t-tests and Pearson’s 
correlation coefficients with significance inferred at p<0.05.

In separate experiments, timed arterial blood samples were 
collected after an intravenous bolus injection of EB. Plasma EB 
concentrations in these samples were measured using a curve of EB 
standards versus their optical density in a microplate reader (ELx800, 
Bio-Tek Instruments, Inc., Winooski, Vermont, USA) at 630 nm. An 
arterial time-concentration curve of EB was produced using these data.

Results
General observations

Apart from a slight hypercapnia after MRI, measured physiological 
parameters in all the animals were within the normal range (Table 
1). Ischemia was confirmed by the reduction of CBF during MCA 
occlusion; magnitude of reperfusion was recorded by the extent of 
restitution of CBF in such regions after suture withdrawal (Figures 1A 
and 1B). Brain areas usually affected in this stroke model are PoA, Str 
and Ctx, and they constituted the three ROIs for further examinations. 
CBF reductions during MCA occlusion were about 75%, 70% and 
40% in PoA, Str and Ctx, respectively, compared to the CBF values 
from their corresponding contralateral regions. CBF restitution after 
reperfusion varied among these regions, with estimated deficits after 
reperfusion being approximately 50%, 40% and 5% in PoA, Str and 
Ctx, respectively. Differences between CBF during occlusion and 
reperfusion were significant for all three ROIs (Table 2). I/C ratios of 
T2 were elevated and those of ADC were decreased in accordance with 
the prevailing ischemic conditions in these ROIs, but of them only 

differences in ADC in PoA and Str were significant (Table 2). More 
rats showed damage in PoA than in Str and Ctx (Table 3).

 Time
Parameter During MRI After MRI

pH 7.4 ± 0.03 7.3 ± 0.11
pCO2

a 30.3 ± 1.53 44.6 ± 1.50
pO2

b 116.1 ± 6.54 101.9 ± 8.18
Tempc 37.1 ± 0.07 37.0 ± 0.25
MAPd 94.7 ± 2.53 104.2 ± 4.18

Glucosee ----- 163.0 ± 6.00
Osmolalityf ----- 304.1 ± 0.93
Hematocrit ----- 0.4 ± 0.10

Values are given as mean ± standard error of mean.  a, bpartial pressures in mm Hg; crectal 
temperature in °C; dmean arterial pressure in mm Hg; emg/100 ml plasma; fmOsm/kg H2O; 
-----not measured.

Table 1. Physiological status of the rats (n=8) during and after magnetic resonance 
imaging.

Parameter ROIa Time
Occlusion Reperfusion

CBF PoAb 0.23 ± 0.06 0.48 ± 0.10e

Strc 0.32 ± 0.07 0.63 ± 0.11e

Ctxd 0.60 ± 0.10 0.95 ± 0.08f

T2 PoA 1.31 ± 0.06 1.53 ± 0.11
Str 1.19 ± 0.06 1.42 ± 0.09
Ctx 1.21 ± 0.04 1.26 ± 0.05

ADC PoA 0.71 ± 0.07 1.1 ± 0.08g

Str 0.80 ± 0.11 1.02 ± 0.07h

Ctx 1.05 ± 0.03 0.94 ± 0.04

All values are given as mean ± standard error of mean of ipsilateral-to-contralateral 
ratios.  CBF, cerebral blood flow; T2, transverse relaxation time; ADC, apparent diffusion 
coefficient of water; aregion of interest; bpreoptic area; cstriatum; dcortex; ep = 0.02; fp = 
0.03; gp = 0.001; hp = 0.05 (Paired t-tests) 

Table 2. Summary of the measured magnetic resonance imaging parameters during 
ischemia and reperfusion (n=8).

 

Figure 1. A typical set of MR images and the corresponding Evans blue stained brain 
section from an experiment. From left to right, the first two are the coronal CBF images 
of the brain during occlusion (A) and reperfusion (B) and the third is a T1 subtraction 
image showing the region of contrast enhancement (C).The dark region outlined in the 
right hemisphere in A is ischemic. It is seen that following reperfusion cerebral blood flow 
is restored in the center of this lesion flanked by two separate regions with sustained low 
blood flow (bright pixels in the middle of the two ovals in B). In the T1 subtraction image, 
two distinct regions of contrast enhancement (two ovals in C) indicating ischemia-induced 
acute blood-brain barrier opening are visible. These two ovals spatially correspond with the 
two regions with low blood flow shown in the reperfused brain in the middle panel. The 2 
mm brain vibratome slice corresponding to the MR images is also shown (D) wherein blue 
regions of EBA leakage are visible on the ipsilateral side (oval outlines in D that spatially 
correspond to the 2 ovals in C).
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Microvascular status

Extravascular enhancement of Gd-DTPA was observed in at 
least one ROI in all experiments, confirming localized BBB opening 
after reperfusion (Figure 1C). Macroscopic examination of the 
corresponding 2 mm thick brain slices showed blue coloration 
indicating subsequent EB leakage as well in these regions (Figure 1D). 
An examination of images from contralateral hemisphere showed 
intricately interconnected vascular networks (Figures 2A1-C1). 
Microvessels were filled with plasma labeled by EB that fluoresced red 
and FITC-RBCs were seen as green circles or ovals within the plasma 
(Figures 2A1-2C1). The cortex seemed to display relatively denser 
and more complex vascular organization per visual evaluation, but 

this needs to be confirmed by future quantitation. The blood smear 
preparation showed a population of intact, FITC-labeled RBCs (Figure 
2D). The adaptive deforming capacity of RBCs during their transit 
could be discerned by a comparison of the circular cells seen in 2D 
with the intravascular FITC-RBCs shown magnified in Figures 2A-2, 
2B-2 and 2C-2 that appear either oval, oblong or otherwise squeezed, 
very likely to conform to the microvascular lumen. Unlabeled RBCs 
were perceived as dark gaps in the red EB fluorescence.

In comparison to their corresponding contralateral vasculature 
(Figure 3: A-1, B-1, C-1), ipsilateral vasculature displayed damaged 
microvessels with EB leakage (Figure 3: A-2, B-2, C-2 and A-3, B-3, C-3). 
The extravascular EB was visible as a hazy background and/or dispersed 
red patches among the capillary network. These patches varied in size 
and shape among the ROIs, with no given ROI showing any particular 
pattern of distribution. A notable feature in several leakage regions 
was the cellular uptake of EB. Such cells were discernible amongst the 

ROI Time Leakage* Fields* Uptake*

PoA 5 min 4/4 4/4 3/4

20 min 4/4 4/4 4/4

Str 5 min 2/4 1/4 1/4

20 min 3/4 2/4 3/4

Ctx 5 min  2/4 1/4 0/4 

20 min 1/4  1/4 1/4

*Leakage indicates extravasation of EB including a hazy background; *Fields indicates 
visible extracellular presence of EB; *Uptake indicates cellular uptake of EB.  

Table 3. Fraction of rats showing vascular injury at the two tracer circulation time points 
for the three ROIs in terms of the three chosen parameters.

 

A-1 B-1 C-1

A-2 B-2 C-2

D

Figure 2. Contralateral microvasculature from the three ROIs examined using a 40X 
objective: PoA (A-1), Str(B-1), Ctx (C-1); an example of a blood smear preparation 
examined with a 10X objective (D); and enlarged images of boxes in A-1, B-1 and C-1 (A-
2, B-2 and C-2,respectively). Intact, interconnected vascular networks are visible in A-1, 
B-1 and C-1 with a dark background suggesting the absence of any tracer extravasation. 
The vessels are filled with plasma labeled red by EB with FITC-RBCs traversing it and 
seen as distinct, intravascular green spots in all three ROIs. Abrupt endings of vascular 
segments indicate their extension perpendicularly beyond the foci of imaging plane. The 
smear preparation in D shows bright green, intact, circular RBCs. Their low density reflects 
the partial population of RBCs labeled with FITC; the red speckles are EB-stained plasma 
components in blood. The enlarged images in A-2, B-2 and C-2 show some examples of 
the adaptive deformations of RBCs (58) to facilitate their flow within the microvasculature.

 

Figure 3. Laser scanning confocal microscopic images of microvascular structures after 5 
or 20 min of EB and FITC-RBCs circulation examined using a 40X objective. Images in 
the top row (A-1, B-1, C-1) are from the contralateral hemisphere after 20 min circulation 
and serve as references for the two sets of panels below, that are from the ischemic 
hemisphere after 5 (A-2, B-2, C-2; middle row) or 20 min (A-3, B-3, C-3; bottom row) 
of tracer circulation. From left to right, the three columns of images are from PoA (A-
1, A-2, A-3), Str (B-1, B-2, B-3) and Ctx (C-1, C-2, C-3). Vasculature is labeled by red 
Evans blue fluorescence within which circular or oval green spots of FITC-labeled RBCs 
are visible. Intricate and intact vascular networks with a dark background indicating no 
vascular leakage can be seen in the top panel images from the contralateral hemisphere. In 
the 5 min circulation image from PoA in the middle panel (A-2), the network is damaged 
and a large number of cells have taken up EB. Fewer such cells are visible in Str at this 
time along with a red haze suggesting sizeable interstitial EB distribution (B-2). The 
cortical network, however, seems to be the least damaged with no apparent extravascular 
presence of EB (C-2). Note the FITC-RBCs in all images are intravascular.In the image 
after 20 min of tracer circulation from PoA (A-3) shown in the bottom panel, the network 
is damaged further and a larger number of cells are labeled by leaked EBA along with the 
interstitium also appearing hazy with a reddish tint, presumably due to the longer period 
of EB extravasation. The red haze in Str (B-3) is also stronger compared to that in B-2, 
probably due to the same reason.The cortical network, however, seems still intact albeit 
with a relatively hazier background (C-3; please note that although one rat showed cortical 
vascular damage, a more representative example of less extensive cortical injury was 
chosen for illustration). Note the FITC-RBCs in all images from the bottom panel are also 
still intravascular.
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extravascular EB patches as brighter, localized spots of fluorescence 
either widely distributed or in small clusters (Figure 3: A-2, A-3, 
B-2, B-3). Neither EB leakage nor cellular uptake was observed in the 
contralateral regions. Further examination of EB distribution showed 
several unique features in its distribution depending on the ROI and 
the circulations times. Figure 4 depicts them for each of the three ROIs. 
Briefly, PoA was more susceptible to microvascular damage than Str, 
Ctx being the least damaged. Leakage and Fields expanded in Str and 
Ctx during the increase in tracer circulation duration from 5-20 min.

Using Pearson correlation coefficients, relationships between MRI 
signatures of stroke damage and fluorescence microscopic parameters 
were examined to test whether any imaging biomarker could be 
predictive of impending tissue injury (Figure 5: A-1, A-2, B-1, B-2). 
From the combinations tested, an inverse correlation was found 
between CBF during occlusion and the magnitude of EB leakage in 
PoA (Figure 5: A-1) and Str (Figure 5: B-1); this relationship persisted 
post-reperfusion in the PoA (Figure 5: A-2), but was not observed in 
Str (Figure 5: B-2).

In the EB time-concentrations curves, blood levels of EB held 
relatively steady for the duration of observation. After an initial peak 
and exponential decline to about 70% of peak value in the first few 
minutes, they declined very slowly toward 50% peak value over a 
period of 3 hrs (Figure 6).

Discussion
These data present the varied microvascular patterns that 

characterize cortical and subcortical brain regions and the effects of 
transient, 3 h MCA occlusion on their gross morphology in normal 

 

Figure 4. A bar graph depicting the percent values of leakage, fields with EB accumulation 
and EB cellular uptake. The different experimental cohorts are shown along the abscissa and 
the magnitude of measured index of injury along the ordinate. Five slices were evaluated 
in each rat giving a total sample of 20 per time group.A majority of such brain slices were 
damaged in PoA and parameter value numbers did not significantly change between the two 
circulation durations. However, in Str, although all three parameters showed increases, only 
changes in leakage and fields were statistically significant for the 20 min group compared 
to its 5 min cohort.No evidence of vascular damage was seen in Ctx in the 5 min cohort and 
just one rat showed cortical vascular disruption in the 20 min circulation group. All 5 slices 
(25% of the total) examined in it demonstrated EB extravasation and the increases between 
5 min and 20 min groups were statistically significant for two of the three parameters 
evaluated. *p<0.05 (Student’s t-test).

 

Figure 5. Scatter plots showing the correlations between CBF and EB leakage in PoA (A-
1, A-2) and Str (B-1, B-2). Ipsi-to-contralateral CBF ratios are shown along the abscissa 
and the percent slices with EB extravasation along the ordinate.An inverse relationship 
was observed between CBF and injury during occlusion in PoA (A-1; R2=0.5; Pearson 
coefficient = -0.7; p<0.05) and Str (B-1; R2=0.5; Pearson coefficient = -0.7; p<0.05). A 
similar relationship was observed in PoA after reperfusion (A-2; R2=0.7; Pearson coefficient 
= -0.8; p<0.05), but not in Str (B-2; R2=0.07; Pearson coefficient -0.2; p<0.50).

Figure 6. Plots showing Evans blue measurements. A typical standard curve obtained with 
known EB concentrations plotted against their optical density is shown in A. A plot of blood 
levels of EB for 3 h after an intravenous injection is shown in B. It can be seen that EB, 
owing to its binding to plasma albumin, maintains a steady level for an extended duration 
after the initial peak immediately following injection.
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rats. Evans blue, a dye frequently used in BBB investigations was 
employed as the tracer of choice to illustrate the patterns. Autologous, 
FITC-labeled RBCs were concurrently injected to demonstrate the 
relative tightness of the breached barrier to blood-borne cellular 
elements at this time of acute reperfusion. The resultant data suggest 
that a quantitative analysis of EB leakage that preserves microvascular 
status can be performed in experimental stroke studies. Fluorescent 
tracers such as EB are frequently employed to evaluate BBB damage 
in cerebral ischemia, most often by dye extraction and its colorimetric 
quantification. This approach gives accurate dye content of tissue, but 
leads to the loss of very important data on brain regional microvascular 
status and, in addition, any differences in dye distribution among 
stroke-affected brain regions and possible cellular uptake of the dye 
therein are also lost. Therefore, an imaging-based technique that 
generates several parameters of interest such as its region-specificity, 
microvascular status, tracer extravasation patterns and cellular uptake 
can be more advantageous in evaluating stroke injury. Uptake of 
extravasated EB has been previously reported following cold injury 
and transient ischemia [25-27]. Although the subtypes of such cells 
were not further explored in our study, EB uptake by both neuronal 
and non-neuronal cells is known [25-27]. The FITC-RBCs seemed to 
be confined to intravascular space in all regions, supporting previous 
observations that hemorrhagic transformation was not part of the 
pathology at this time [1]. 

Some studies have employed a somewhat similar approach to 
estimate EB extravasation to measure vascular dysfunction. After an 
intravenous injection of EB, its extravasation from dural vessels due to 
unilateral trigeminal ganglion stimulation was measured by confocal 
laser scanning microscopy of the fixed dura mater [28]. EB intensity 
from several ROIs on the ipsilateral side was compared to that from 
the contralateral side to generate a ratio of fluorescence increase that 
reflected plasma protein extravasation. The values obtained were 
comparable to previously reported values from experiments that used 
radioactive albumin as the tracer [28]. Klohs and co-workers used 
near-infrared fluorescence (NIRF) imaging of bovine serum albumin 
to visualize BBB opening in a mouse model of MCA occlusion. The 
NIRF imaging strongly correlated with the amount and temporal 
patterns of extravasated EB. However, evaluation of microvasculature 
was not possible with this method and the detection capability may 
also be limited to thinner skulls in mouse models. An optical imaging 
method to measure EB leakage in a rat thromboembolic stroke model 
has also been reported [15]. This method seems to provide information 
on regional variations in leakage, but without microvascular status and 
interstitial tracer distribution directionality. Intravital imaging with 
LSCM has been used by some authors to measure flow changes in the 
cortex using a cranial window technique or skin preparations [29]. 
Several fluorescent dyes, including EB, have been used to measure flow 
variations as a result of an injury or drug treatment in live, anesthetized 
animals. While very informative, such techniques may be limited 
to about 200 µM of tissue depth that the laser beam can access. It is 
also known that increments in laser intensity can themselves cause 
endothelial damage [30]. In contrast, although terminal, the present 
techniques provided relevant data on microvascular network patterns, 
plasma and RBC regional distributions and extravascular cellular 
uptake of plasma-borne tracers. A somewhat similar approach was 
employed by Morris et al. who used fluorescent dextran in sequence 
with EB to differentiate between reperfused and unreperfused 
vasculature in cerebral ischemia [31]. 

One of the observations in this study was the gradation in 

susceptibility among cortical and subcortical regions in this model 
that support our and others’ previous observations [27,32,33]. Unlike 
in Str and Ctx, leakage patterns did not increase in PoA from 5 to 
20 min circulation suggesting it is affected very early in the disease 
cascade. The absence of further increase in damage may be due to the 
maximum extent of effects already happening in this region. Moreover, 
unlike many other intravenous tracers, due to its albumin binding, EB 
maintains a relatively steady blood level for a significant duration after 
a single bolus injection (Figure 6); therefore, the continued reduction 
in CBF could have limited the delivery of the tracer and led to lesser 
extravasation despite an open BBB and tracer availability. The decrease 
in the number of cells labeled by EB in PoA from 5 to 20 min was 
probably due to ongoing cell death and lysis. All three parameters 
showed increases from 5 to 20 min in Str, due to the relative tightness of 
the BBB that required longer circulation duration to manifest its breach. 
Also note that post-reperfusion CBF restitution in Str was higher than 
in PoA (Table 2) and fewer animals showed Str abnormalities (Table 3). 
In contrast, Ctx demonstrated relative resilience to damage. Not only 
the measured MR indices were the least affected in it (Table 2), just 
two rats showed cortical vascular injury (Table 3). Due to the negligible 
amount of injury seen in the 5 min group, even though just one animal 
showed BBB damage, the increases at 20 min circulation turned out to 
be statistically significant (Figure 4). Another factor for the increase in 
the number of slices showing EB leakage may be tracer diffusion over 
the circulation period from the source of leakage.

Vascular pathophysiology in stroke has been the subject of some 
studies [33-35]. They have shown that neocortical structures possess 
more collateral that can compensate for localized flow reductions. 
Moreover, flow can also be ‘plasmatic’ in some loci with about 4% of 
capillaries showing no RBC flow [36]. Our data support these notions 
to some extent. Cortical vascular networks seemed denser and more 
complex than subcortical regions and there were several vascular 
segments in all three ROIs that seemed to show no FITC-RBCs (Figure 
2). These observations, however, need to be confirmed in future studies 
by quantification. It may be premature to conclude that all segments 
that did not show the presence of FITC-RBCs were plasmatic since 
only a fraction of RBCs were FITC-labeled (about 2.0%, assuming 
a total blood volume of 20 ml and the measured hematocrit value 
of 40% (Table 1)). Nonetheless, such characterizations of cerebral 
vasculature in stroke, especially in the context of co-morbidities such 
as hypertension and diabetes that are known to affect cerebrovascular 
integrity in a region specific manner, are warranted if we are to develop 
therapies that address the complete NVU as the treatment target 
[37-40].

The correlation between decreased CBF and increased extravascular 
EB (Figure 5) confirms our previous observation that reduction in CBF 
during stroke seemed to determine impending BBB damage and the 
concept that ‘time is brain’ [41,42]. The present data indicate that in 
embolic stroke, restitution of CBF as quickly as possible is crucial in 
limiting ensuing brain damage. They also indicate that the extent of 
reduction in CBF may be a predictive biomarker for I-R-induced BBB 
damage in acute stroke along with permeability changes suggested to 
portend hemorrhage by other investigators [43]. However, our data 
suggest the extent of CBF reduction during occlusion could be the 
more robust and less region-specific predictor than after reperfusion. 
Acute CBF measurements may also provide an independent parameter 
for secondary confirmation of vascular injury when permeability 
measurements vary across different imaging modalities such as MRI 
and computed tomography [44]. 
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The cellular uptake of extravascular EB raises some interesting 
questions. Can therapeutic molecules follow suit and, if so, is it possible 
to use such BBB openings as conduits for brain drug delivery in stroke 
[45]? Supporting such an assumption are reports of biphasic BBB 
opening in stroke [9,46-48]. It needs to be tested whether a transient 
breach in the barrier will allow the passage of small drug molecules. 
This approach may also have the additional advantages that the normal 
brain tissue with an intact BBB will not be exposed to the drug and 
that the known edema fluid flow across the stroke lesion may provide 
additional diffusion and bulk flow carriers for the drug [49,50]. It may 
be pertinent to note here that techniques to temporarily open the BBB 
for delivering drugs are being actively investigated [51-53]. 

MCA occlusion is a widely prevalent method for stroke studies and 
is being used to test several putative therapies [54]. The overall effects 
of such therapies have been usually measured in decreases in lesion 
size, neuronal morphology and motor functions, and a small number 
have focused on brain regional differences in such evaluations. Such 
differences, however, may be crucial in determining therapy efficacy. 
For instance, caffeinol therapy was reported to be protective in cortical 
regions with little effect on subcortical regions or on brain edema 
[32,55]. It is conceivable that the highly complex vascular architecture 
of the cortex with abundant collateral flow may have rendered it less 
susceptible to stroke injury, thus augmenting caffeinol’s protective 
effects. Also important in this scenario is the observation that edema 
is likely to be more pronounced in subcortical than cortical regions 
in this stroke model. Presently, rather than the previously prevailing 
‘neurocentric’ approach, inclusion of vascular protection as an 
essential component of stroke treatment is being recommended [56]. 
Implementing such recommendations will require inclusion of 
techniques for detailed analyses of cerebral microvasculature. 

In summary, regional differences in stroke susceptibility and 
region-specific protective effects of some putative stroke treatments are 
known. Varying vascular dispositions in different parts of the brain are 
likely to contribute significantly to such differences. Thus, elucidation 
of ischemia-induced changes in microvascular status is vital for 
evaluating experimental therapies that aim to achieve cerebroprotection 
in stroke [57].
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