CRT-100.12 Risk of Bleeding Among Cangrelor-Treated Patients Administered Upstream P2Y12 Inhibitor Therapy

Jennifer Rymer
Brooke Alhanti
Steven Kemp
Deepak Bhatt
Dominick Angiolillo

See next page for additional authors
Authors
Jennifer Rymer, Brooke Alhanti, Steven Kemp, Deepak Bhatt, Dominick Angiolillo, Miguel Diaz, Kirk N. Garratt, Ron Waksman, Ajay Kirtane, Lawrence Ang, Richard Bach, Colin Barker, Ronald Jenkins, Mir B. Basir, Alex Sullivan, Hijrah El-Sabae, Leo Brothers, Jeff Washam, Magnus Ohman, Schuyler Jones, and Tracy Wang
ANTIPATELET THERAPY

CRT-100.12

Risk of Bleeding Among Cangrelor-Treated Patients Administered Upstream P2Y12 Inhibitor Therapy

Jennifer Rymer,1 Brooke Alhanti,2 Steven Kemp,2 Deepak Bhatt,3 Dominick Angiolillo,4 Miguel Diaz,5 Kirk N. Garratt,5 Ron Waksman,7 Ayaj Kirtane,8 Valery Smirnov,7 Elena Grishina,9 Natala Lyakhova,7 Elena Aleshkovich,10 Anna Saronbekian,11 Denis Andreev,12 Alexey Shabanin,13 Dmitry Sychev,14 Northwestern University, Chicago, IL;15 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;16 Sekenenov University, Moscow, Russian Federation;17 S.P. Botkin Clinical Hospital, Moscow, Russian Federation

INTRODUCTION

Little is known about the use of cangrelor in patients with MI who are treated with an oral P2Y12 inhibitor upstream prior to cardiac catheterization.

METHODS

CAMEO (Cangrelor in Acute MI: Effectiveness and Outcomes) is a 12-hospital observational registry studying platelet inhibition for MI patients undergoing cardiac cath. Upstream oral P2Y12 inhibition was defined as receipt of an oral P2Y12 inhibitor within 24 hours prior to hospitalization or in-hospital prior to cath. Among cangrelor-treated patients, we compared bleeding after cangrelor use through 7 days post-discharge among patients with and without upstream oral P2Y12 inhibitor exposure using logistic regression. We examined rates of bleeding among patients with a shorter (<1 hour) vs. longer (1-3 hours or >3 hours) duration between the last oral dose and cangrelor start.

RESULTS

Among 1,775 cangrelor-treated MI patients, 433 (24.4%) had upstream oral P2Y12 inhibitor treatment prior to cath. Of these, 165 patients (38%) started cangrelor within 1 hour, 109 (25%) between 1-3 hours, and 134 (31%) >3 hours after the in-hospital oral P2Y12 inhibitor dose. Cangrelor-treated patients who received upstream treatment were more likely to have a history of prior PCI, MI, PAD, and diabetes and to be clopidogrel-treated (all p<0.01) compared with those treated without upstream oral P2Y12 inhibitor exposure (Table). While bleeding events were higher in patients with longer delays to cangrelor initiation, bleeding risk was not significant after adjustment (Table).

CONCLUSIONS

Bleeding risk was not observed to be higher in cangrelor-treated patients after upstream oral P2Y12 inhibitor exposure compared with patients treated with cangrelor w/o upstream oral P2Y12 inhibitor exposure.

<table>
<thead>
<tr>
<th>Comparator</th>
<th>Observed Bleeding Rate</th>
<th>Adjusted OR 95% CI</th>
<th>Adjusted p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream (N=143) vs. no upstream (N=1,632)</td>
<td>10.0% vs. 7.9%</td>
<td>0.77 (0.46-1.34)</td>
<td>0.32</td>
</tr>
</tbody>
</table>

*Indicates for age, sex, race, diabetes, MI type, prior percutaneous coronary intervention (PCI), prior PCI, prior GABR, prior peripheral arterial disease (PAD), left ventricular ejection fraction <40%, and mechanical (drill/stirrup) support use.

Among 1,775 hospital upstream, when cangrelor was started after oral P2Y12 inhibitor dose (adjusting for age, sex, race, and CRITEAD bleeding risk)

<table>
<thead>
<tr>
<th>Comparator</th>
<th>Observed Bleeding Rate</th>
<th>Adjusted OR 95% CI</th>
<th>Adjusted p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream (N=134) vs. no upstream (N=1,641)</td>
<td>10.4% vs. 6.9%</td>
<td>2.63 (1.85-3.72)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

S14

CRT-100.25

MicroRNAs as Novel Biomarkers to Guide DAPT After PCI – Preliminary Assessment

Eric Rytkyn,1 Karin Mirzaev,2 Irina Bure,3 Kristina Akmalova,1 Sherzod Abduraeev,2 Anastasia Kachanova,1 Valery Smirnov,7 Elena Grishina,9 Natala Lyakhova,7 Elena Aleshkovich,10 Anna Saronbekian,11 Denis Andreev,12 Alexey Shabanin,13 Dmitry Sychev,14 Northwestern University, Chicago, IL;15 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;16 Sekenenov University, Moscow, Russian Federation;17 S.P. Botkin Clinical Hospital, Moscow, Russian Federation

BACKGROUND

Although both genetic testing and platelet reactivity measurements are implemented, there is an unmet need for newer biomarkers developed for a simple, quick, reliable and comprehensive prediction of insufficient response to clopidogrel. MicroRNAs are described in the literature as such potential biomarkers. These microRNAs are small non-coding sequences of nucleotides which bind to mRNA sites and block transcription. This causes a decrease in the production of protein. The microRNAs may regulate ADME genes and affect the effective drug concentration in blood. MicroRNAs can be used for clopidogrel resistance testing. ADME genes that demonstrated sufficient connection with miRNA expression levels showed connection to the following ADME genes: P2Y12R (A-G, rs3732759) and miR-29 (p=0.017), miR-124 (p=0.02); miR-23 (p=0.032) and miR-29 (p=0.008) have the potential to be used as biomarkers and may substitute platelet reactivity testing. ADME genes that demonstrated statistically significant connection with miRNA expression levels showed connection to the following ADME genes: P2Y12R (A-G, rs3732759) and miR-29 (p=0.017), miR-34 (p=0.003); CYP2C19 (C-8067T, rs1224856) and miR-142 (p=0.012); PTN (rs9528293, rs6626) and miR-29 (p=0.004), ABCG2 (G>T, rs2231412) and miR-34 (p=0.007).

CONCLUSION

This study has revealed new biomarkers for P2Y12-inhibitors resistance testing: miR-29, miR-34, miR-124, miR-232.

S14

CRT-100.33

A 30-Day Pooled Analysis of Acetyl Salicylic Elimination Trials (ASET) in Brazil and Japan: Synergy Stent with Prasugrel Monotherapy Without Aspirin

Yoshinobu Onuma,1 Shinhicho Masuda,1 Takashi Muramatsu,2 Yuki Ishibashi,1 Ken Kozuma,2 Hideyuki Kawashima,1 Gaku Nakazawa,1 Kuniaki Takahashi,2 Kengo Tanabe,1 Noritomo Kogame,1 Masato Nakamura,2 Taku Asano,3 Takayuki Okamura,1 Yosuke Miyazaki,1 Yuki Kihara,1 Yoshihiro Morino,1 Kai Ninomiya,1 Shigetaka Kagayema,2 Nozomi Kotoku,2 Patricia O. Guimarães,5 Pedro A. Lemos,1 Patrick W. Serruys1

1National University of Ireland Galway, Galway, Ireland;2Fujita Health University Hospital, Toyoake, Japan;3St. Marianna University School of Medicine, Kanagawa, Japan;4Teikyo University Hospital, Tokyo, Japan;5Kindai University Hospital, Osaka, Japan;6Mitsui Memorial Hospital, Tokyo, Japan;7Tokyo Rosai Hospital, Tokyo, Japan;8Toho University Ohashi Medical Center, Tokyo, Japan;9St. Luke’s International Hospital, Tokyo, Japan;10Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan;11Fujita Health University Okazaki Medical center, Aichi, Japan;12JCHO Hoshigaoka Medical Center, Galway, Ireland;13Sapporo Higashi Tokushukai Hospital, Hokkaido, Japan;14Iwate Medical University Hospital, Iwate, Japan;15InCor, University of Sao Paulo, Sao Paulo, Brazil