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Abstract Inactivating mutations in the Methyl-CpG Binding Protein 2 (MECP2) gene are the

main cause of Rett syndrome (RTT). Despite extensive research into MECP2 function, no treatments

for RTT are currently available. Here, we used an evolutionary genomics approach to construct an

unbiased MECP2 gene network, using 1028 eukaryotic genomes to prioritize proteins with strong

co-evolutionary signatures with MECP2. Focusing on proteins targeted by FDA-approved drugs led

to three promising targets, two of which were previously linked to MECP2 function (IRAK, KEAP1)

and one that was not (EPOR). The drugs targeting these three proteins (Pacritinib, DMF, and EPO)

were able to rescue different phenotypes of MECP2 inactivation in cultured human neural cell

types, and appeared to converge on Nuclear Factor Kappa B (NF-kB) signaling in inflammation.

This study highlights the potential of comparative genomics to accelerate drug discovery, and

yields potential new avenues for the treatment of RTT.

Introduction
Rett syndrome (RTT [MIM: #312750]) is a rare genetic disorder caused by mutations in the methyl-

CpG binding protein 2 (MECP2) gene (Amir et al., 1999). It is an X-linked dominant disorder, almost

exclusively affecting females. RTT is characterized by normal early development followed by regres-

sion, loss of purposeful hand movements, and intellectual disability (Liyanage and Rastegar, 2014).

Characteristics of the disease such as age of onset, range of symptoms, and their severity vary

between patients (Neul et al., 2008). The MECP2 protein has a role in transcriptional regulation but

its exact mechanism of action, co-factors and downstream targets, are not fully characterized

(Picard and Fagiolini, 2019).

The MECP2 protein, as a transcriptional regulator, has been linked to both gene silencing and

activation (Horvath and Monteggia, 2018). It binds methylated CG dinucleotides through its

methyl-binding domain and has a transcriptional repression domain that mediates binding to co-

repressor proteins (Lyst et al., 2013). These two domains are hotspots for missense, nonsense, and

frameshift mutations for RTT disease (Ragione et al., 2016; Krishnaraj et al., 2017). Transcriptomic

analyses of RTT patient postmortem brain tissues, blood samples, cell lines, and murine models

(Shovlin and Tropea, 2018) have revealed hundreds of affected genes but with a low degree of

overlap between studies (Picard and Fagiolini, 2019).

Therapies aiming to restore MECP2 loss of function are in early development stages and are not

approved for patients. These include attempts at read-through inducing drugs to overcome non-

sense mutations (Brendel et al., 2011; Merritt et al., 2020), X reactivating therapies to allow
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expression of silenced endogenous MECP2 (12), and gene therapy treatments to introduce wild-

type MECP2 copies into the brain (Guy et al., 2007; Garg et al., 2013). Furthermore, current gene

therapy methods show limited transduction efficiency and are unable to modify all cells in the target

tissue (Gadalla et al., 2013). Targeting factors downstream of MECP2 offers a promising avenue

which could allow for partial amelioration of Rett symptoms, without the severe neurological pheno-

types associates with MECP2 overexpression (Chao and Zoghbi, 2012; Ramocki et al., 2009).

One major downstream target of MECP2 is brain-derived neurotrophic factor (BDNF)

(Chen et al., 2003), a key modulator of neuronal development and function. BDNF levels are

reduced in symptomatic MECP2 KO mice (Kline et al., 2010) and experimental interventions that

increase BDNF levels improve RTT-like phenotypes (Chang et al., 2006). The IGF-1 protein potenti-

ates BDNF activity, and treatments with recombinant human IGF-1 and its analogs have led to

improvement in several clinical measurements (Khwaja et al., 2014; Glaze et al., 2019), with a trial

of an IGF-1 synthetic analog currently in Phase 3 (NCT04181723). Additional trials include the admin-

istration of triheptanoin supplementation which is being investigated in a Phase two clinical trial

(NCT02696044) to target mitochondrial dysfunction in RTT (Park et al., 2014). Other interventions,

such as ketamine (NCT03633058), targeting N-methyl-D-aspartate receptor (NMDAR) dysfunction,

and Anavex 2–73 (NCT03758924), aimed at restoring mitochondrial dysfunction (Kaufmann et al.,

2019), are currently being studied. Histone deacetylases (HDACs) mediate MECP2 gene repression,

and have also been suggested as therapeutic targets for Rett syndrome (Shukla and Tekwani,

2020), which may act on BDNF trafficking (Xu et al., 2014). The lack of a successful therapy to date

emphasizes the need for accurate and comprehensive mapping of the MECP2 network with a focus

on targetable proteins that could be used for interventions (Vashi and Justice, 2019). Here, we use

a genomics approach that has thus far not been applied to MECP2 (phylogenetic profiling), com-

bined with data from drug target databases, to construct such a map.

A well-tested approach for gene functional prediction and identification of functional gene net-

works is phylogenetic profiling (PP), which analyzes gene conservation patterns across an evolution-

ary related set of organisms (Pellegrini et al., 1999). Genes with similar evolutionary patterns are

functionally coupled, irrespective of sequence homology (Date and Marcotte, 2003). PP was used

successfully to predict protein function (Enault et al., 2004; Eisen and Wu, 2002; Jiang, 2008;

Merchant et al., 2007), protein interactions (Kim and Subramaniam, 2006; Sun et al., 2005) and

protein localization within the cell (Marcotte et al., 2000; Pagliarini et al., 2008; Avidor-

Reiss et al., 2004; Hodges et al., 2012). When a pathway becomes non-functional in a specific line-

age (often due to loss of a key gene in the pathway), then other genes involved in the pathway may

lose the fitness advantage they provide to the organism if they are not involved in other important

pathways/functions. PP captures these pathway-level loss events, providing a quantitative measure-

ment of functional relatedness and prioritizing those genes minimally involved in the same pathway

over pleiotropic genes required in multiple pathways. This property is especially attractive for drug

development, where the goal to is target the most specific proteins possible. Because PP is based

on evolutionary dynamics rather than protein expression or sequence/structure features, it produces

results that are highly complementary to traditional methods (Dey et al., 2015; Arkadir et al.,

2019).

In our recent work, we developed an improved version of PP that normalizes signals across hun-

dreds of eukaryotic genomes to identify important new members of cellular and disease pathways

(Arkadir et al., 2019; Sherill-Rofe et al., 2019; Tabach et al., 2013a; Tabach et al., 2013b;

Schwartz et al., 2013). As protein function and evolution are very complex (Bloch et al., 2020), co-

evolution within a local lineage (i.e. mammals, vertebrates, fungi, etc.) can provide complementary

evidence, and is especially informative for genes with multiple functions that show complex or recent

evolution (Sherill-Rofe et al., 2019). We recently incorporated a clade-specific analysis into our Nor-

malized Phylogenetic Profile (NPP) software pipeline (Tsaban et al., 2021), which is used for all the

analyses in this study. We have used several functional databases including CORUM (Ruepp et al.,

2008), KEGG (Kanehisa and Goto, 2000), and REACTOME (Jassal et al., 2020) to validate the NPP

method and show that it recovers known protein complexes and pathways with higher specificity

and sensitivity than other phylogenetic methods (Bloch et al., 2020; Tsaban et al., 2021).

We combined our PP-derived interaction map of MECP2 with drug targeting databases to select

new candidate drugs for RTT. There are thousands of known bioactive compounds collected in data-

bases such as Drug-Gene interaction database (DGIdb) (Cotto et al., 2018) and Open Targets
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(Oxford Academic, 2019), that contain information about validated direct or indirect effect on spe-

cific proteins or pathways. Network-based drug discovery methods are emerging as important tools

to identify novel drug targets and predict the drug’s mode of action and potential side-effects

(Iorio et al., 2013), and have been associated with higher success rates in clinical trials

(Nelson et al., 2015; Pushpakom et al., 2019). From our PP network, we selected three proteins

that showed robust co-evolution with MECP2 across multiple evolutionary scales, had related roles

in inflammation, and could be targeted by pharmacologically-validated compounds. These three

compounds – pacritinib, EPO and DMF – were then functionally validated in MECP2 Knock-Down

(KD) human neural cells, including microglia, astrocytes and neural stem cells. The ability of all these

drugs to reverse some aspects of the MECP2-KD phenotypes demonstrates how comparative

genome analysis can be used to understand and target this disease network.

Results

Phylogenetic profile analysis of MECP2 in eukaryotes and mammals
identifies MECP2 co-evolved genes
To trace the evolutionary history of MECP2, we used BLASTP (Camacho et al., 2009) to compare

the MECP2 protein to the proteomes of 1028 eukaryotic species. We repeated the process for each

of 20,192 human transcripts to generate a profile of conservation for each human gene. The scores

were normalized according to sequence length and the evolutionary distance between humans and

the queried species as described previously (Tabach et al., 2013b; Bloch et al., 2020). This Normal-

ized Phylogenetic Profile (NPP) describes how conserved a transcript is in each species across the

tree of life, compared to its expected conservation. Genes with similar NPPs (i.e. genes that are

either conserved or lost as a group) are functionally related, often belonging to the same pathway

(Sherill-Rofe et al., 2019; Tabach et al., 2013a; Tabach et al., 2013b; Schwartz et al., 2013). We

have shown that both across-clade and within-clade measures of co-evolution can be informative,

and thus we computed NPPs both across all eukaryotes (Figure 1A and Figure 1—figure supple-

ment 1A) and within mammals (Figure 1B and Figure 1—figure supplement 1B) as described pre-

viously (Sherill-Rofe et al., 2019; Bloch et al., 2020; Tsaban et al., 2021; Braun et al., 2020).

We first used NPP scores to sort all human genes by their phylogenetic similarity to MECP2

across eukaryotes (Figure 1A and Figure 1—figure supplement 1A). We selected the top 200

genes (the ‘E200’ set), which showed high correlation (R>0.47) with MECP2. Similarly, we used NPP

scores within the mammalian clade (Figure 1B and Figure 1—figure supplement 1B) to select the

top 200 mammal-centric genes (the ‘M200’ set), which also showed high MECP2 correlations

(R>0.49) (Supplementary file 1) [code is available on GitHub (Unterman et al., 2021; copy archived

at swh:1:rev:14063b44a40688a8024a06347b63cfdac74b96ad)]. These two lists find correlated evolu-

tion at different scales, billions of years for eukaryotes and hundreds of millions for mammals. There-

fore, the M200 set may show genes more recently co-evolved with MECP2. E200 and M200 had

very different functional properties, based on STRING enrichment to Gene Ontology and other

annotation sets (Supplementary file 2) The E200 list was enriched in a number of different functional

categories, with some of the most significant related to innate immunity and the immune response.

These included MHC Class II receptor activity and peptidoglycan receptor activity in GO, and the

associated autoimmunity Asthma, Allograft rejection, and Type I in KEGG. In contrast, the M200 list

had almost no functional enrichment, except for the general ‘Disease’ category within Uniprot anno-

tated keywords.

The E200 and M200 lists had 10 genes in common (Figure 1C). As mammals are included within

the eukaryote analysis, the two lists are not independent and thus the expected degree of overlap is

hard to determine. Nevertheless, in two independent gene lists of this size we would only expect

two overlapping genes. We thus considered the set of 10 overlapping genes, as well as the full union

set of 390 genes, as two tiers of candidates for further exploration. A GeneAnalytics query of the

390 gene union set revealed it was enriched with genes expressed in the brain (p-value < 0.00024),

with 79 genes linked to the cerebral cortex and 54 to the cerebellum (Figure 1—figure supplement

1C; Ben-Ari Fuchs et al., 2016). Only 24 of the 390 gene list were overlapping with a length-

matched list of MECP2 interactions from STRING (Figure 1—figure supplement 1D,E), highlighting
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Figure 1. The phylogenetic profile of MECP2. (A) The Normalized Phylogenetic Profile (NPP) of MECP2 in eukaryotes along with the top 5000 co-

evolved proteins. Each row represents one human protein, ordered by Pearson correlation to MECP2, with the top 200 proteins labeled as E200. Darker

color indicates higher normalized conservation of the protein in each species. Organisms are grouped by phylogenetic clade, and clustered within each

clade. (B) The NPP of MECP2 in 51 mammals along with the 5000 top co-evolved proteins, ordered by Pearson correlation to MECP within mammals.

The top 200 proteins are labeled as M200. (C) Gene overlap of the top 200 most co-evolved genes in eukaryotes and mammals, listing the 10 gene

names listed in both.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Scaled phylogenetic profiles of all human genes by similarity to MECP2.
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the complementary role phylogenetic analysis to other measurements and predictions of protein

interaction.

MECP2 druggable protein network identifies several drug targets
located in evolutionarily conserved chromosomal clusters
We chose to focus on the subset of MECP2 co-evolved genes that could be targeted by readily

available compounds. This approach allows for straightforward functional testing in both in vitro and

animal models of MECP2 inactivation and moves us closer to the ultimate goal of identifying a candi-

date therapeutic for RTT. Using DGIdb (Cotto et al., 2018) and Open Targets (Oxford Academic,

2019), we searched specific drug-gene interaction types (e.g. inhibitory, activating) to identify direct

effects on the 390 candidate genes. Open Targets identified such protein-compound interactions for

11 proteins from our list, and DGIdb identified an additional 22, resulting in 33 druggable proteins

in the MECP2 phylogenetic network. MECP2-linked proteins were neither more or less druggable

than other proteins in the genome, since the number expected by chance was 39.9±6.0.

Two of the 33 druggable NPP-linked proteins (IRAK1 and EPOR) were found in both the eukary-

otic E200 and the mammalian M200 lists, and were targeted by compounds with clinical efficacy and

acceptable safety profiles (Pacritinib and EPI), making these immediately attractive for further study.

In a STRING (Szklarczyk et al., 2019) functional interaction map, which is based on independent

data types, IRAK1 was one of the six proteins functionally linked to MECP2, whereas EPOR had no

known functional links (Figure 2A). To identify additional targets among the 31 druggable NPP-

linked proteins found in only one of the E200 and M200 lists, we investigated chromosomal clusters

of genes with MECP2-linked genes, since clustered genes often indicate a shared evolutionary func-

tion. Indeed, IRAK1 is directly adjacent to MECP2 on an evolutionary conserved chromosomal band

on the X chromosome (Figure 2B and Figure 2—figure supplement 1). In a chromosomal clustering

analysis of all MECP2-linked genes, the chr19p13.2 band contained more MECP2 co-evolved genes

than any other in the genome (Figure 2C). Unexpectedly, this 5.6 Mb domain contained 5 of the 33

druggable MECP2 coevolved genes - EPOR, DNMT1, ICAM1, ICAM3, and KEAP1 (Figure 2D), mak-

ing this the most strongly enriched band in the genome (p<1E-5, Figure 2D and Figure 2—figure

supplement 2). Topologically Associated Domains (TADs) define the 3D organization of functionally

co-regulated gene clusters (Fritz et al., 2019), and the entire chr19p13.2 gene cluster defines a sin-

gle TAD-based high-resolution Hi-C mapping (Rao et al., 2014; Figure 2E). Additionally, this region

has been shown to be bound by MECP2 (Yasui et al., 2007).

For the two druggable proteins found in both NPP lists (IRAK1, EPO1) and the other four proteins

located in the chr19p13.2 TAD (DNMT1, ICAM1, ICAM3, KEAP1), we further investigated the associ-

ated drug’s mode of action and efficacy and safety profile in other contexts. IRAK1 has been identi-

fied as a key intermediary in NF-kB signaling in RTT, with MECP2 directly binding the IRAK1

promoter to regulate its expression in MECP2-null mouse brains and NFKB1 dramatically increasing

lifespan in MECP2 null mice (Kishi et al., 2016). Pacritinib is a JAK2/FLT3 inhibitor with IRAK1 inhib-

iting capabilities (Jensen et al., 2017), presently under clinical investigation for myelofibrosis and

glioblastoma. As it is currently the only clinical stage IRAK1 inhibitor with known clinical efficacy and

acceptable safety even after prolonged administration (Singer et al., 2018), we chose this com-

pound for our functional studies to target IRAK1.

EPOR forms a heterodimer with b common receptor (bCR), also known as the Tissue-Protective

Receptor (TPR) (Brines et al., 2004). The endogenous hormone EPO binds the TPR activating signal-

ing cascades with roles in neuroprotection (Rey et al., 2019). EPO has a very well understood phar-

macological profile, and several variants of erythropoietin lacking hematopoietic effects have been

developed and shown to preserve the neuroprotective effects of EPO administration (Chen et al.,

2015; Patel et al., 2011).

KEAP1 is the key repressor of the transcription factor nuclear factor erythroid 2-related factor 2

(NFE2L2), which is involved in response to antioxidants through its transcriptional regulation of

inflammatory pathways. Dimethyl fumarate (DMF) is an approved treatment for both multiple sclero-

sis and psoriasis (Torkildsen et al., 2016; Blair, 2018). Its administration decreases KEAP1 levels,

increases NFE2L2 levels and causes dissociation and nuclear transport of NFE2L2. DMF treatment

has proven to be effective and safe in conferring neuroprotection (Montes Diaz et al., 2018).

Since the three candidate proteins targeted by these drug products (IRAK1, EPOR, and KEAP1)

all have possible roles mediating inflammation, we chose to proceed with these for functional studies
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in cells modeling neural inflammatory phenotypes. The other three proteins identified (DNMT1,

ICAM1, and ICAM3) may also be interesting targets for future study.

Human neural cell cultures exhibit Rett-like phenotypes when MECP2 is
silenced
To analyze the effects of the three selected compounds on a RTT model system, we employed

human immortalized primary neural cells silenced for MECP2. We chose to use a human in vitro

model system for preliminary validation due to the significant differences in the phenotypes and

functions of mouse and human neural cells (Xu et al., 2018). Indeed, recent studies reported the use
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Figure 2. The MECP2 druggable genes network. (A) The 390 genes co-evolved with MECP2 in either eukaryotes or mammals contain 33 genes that are

targets of known drugs/compounds. These genes are shown in a STRING interaction graph, with known gene-gene interactions shown as colored

edges, and those with very strong co-evolution (Pearson correlation > 0.7) shown as gray edges. The two proteins co-evolved in both eukaryotes and
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interacting genes along chromosome X in humans and mice. (C) Karyotype band locations of MECP2 and the 390 co-evolved genes. * p<0.05,

**p<0.01, *** p<0.001 (D) Genomic location of MECP2 interacting genes along chr19p13.2 in humans and chromosome nine in mice. (E) Intra-
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The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Synteny in the Chr19p13.2 locus.

Figure supplement 2. Synteny between MECP2 and IRAK1.
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of iPSCs and immortalized glial cells as reliable human models for analyzing specific therapeutic tar-

gets for various diseases including autism (Tsilioni et al., 2020), neuroinflammation (Chiavari et al.,

2019; Timmerman et al., 2018) and for analyzing the crosstalk of glioma with glial cells

(Henrik Heiland et al., 2019; Zeng et al., 2020; Bier et al., 2020).

Since all three selected compounds were associated with changes in neuroinflammation, we first

focused on microglia and astrocytes. Loss or impaired function of MECP2 has been reported to

affect the functions of glial cells and these changes have been implicated in the pathogenesis of RTT

(Kahanovitch et al., 2019; Jin et al., 2017). We first characterized the effects of MECP2 silencing

on the phenotypes of microglia (Figure 3). For these experiments, we transduced the cells with lenti-

virus vectors expressing control or MECP2 shRNAs. The expression of MECP2 was silenced by over

80% in these cells (Figure 3—figure supplement 1). MECP2 silencing induced a relative increase in

the expression of M1 markers (IL1, and CD86) and a relative decrease of M2 markers (CD206 and IL-

13) (Figure 3A), suggesting an increase in neuroinflammation. We also found that MECP2 silencing

decreased the phagocytosis of the microglia cells (Figure 3B).

We next analyzed the effect of MECP2 silencing on human astrocyte differentiation and functions.

For these experiments, neural stem cells (NSCs) were transduced with lentivirus vectors expressing

the differentiation reporters, GFP/fLuc GFAP or the mCherry/Luc MAP2. The cells were plated on

laminin coated plates and luciferase activity was determined 10 days later. In accordance with previ-

ous reports (Andoh-Noda et al., 2015; Mok et al., 2020), we found that MECP2 silenced NSCs dis-

played preferential expression of the glial differentiation marker (GFAP) with a concomitant

decrease in expression of the neuronal differentiation marker (MAP2) (Figure 3C). The MECP2

silenced astrocytes expressed lower levels of Excitatory Amino Acid Transporter 2 (EAAT2), indicat-

ing impaired function of these cells, as was suggested for mouse astrocytes (Okabe et al., 2012;

Figure 3D).

We finally examined the effects of MECP2 silencing on the expression of BDNF in human neurons

and astrocytes and found that, as reported for mouse cells (Chang et al., 2006; Li et al., 2012),

MECP2 silencing decreased the expression of BDNF mRNA in both astrocyte and neuronal cultures

(Figure 3E). Altogether, these finding indicate that the immortalized human cells employed in this

study represent a reliable model for studying MECP2-related pathways and potential treatments.

DMF, EPO, and pacritinib differentially abrogate the effects of MECP2
silencing on microglia polarization
We then analyzed the effects of the three selected compounds, DMF, EPO and pacritinib, on

MECP2 silenced cells. We first demonstrated that in the concentrations range we used, none of

these compounds exerted a toxic effect on neither microglia cells, astrocytes, primary neuronal cells

nor NSCs (Figure 3—figure supplement 2).

Control and MECP2 silenced microglia were treated with the DMF, EPO, and pacritinib, and their

effects on the relative expression M1 (IL1, TNFa and CD86) and M2 (CD206 and IL-13) markers were

determined using RT-PCR. While MECP2 wild-type cells were unchanged by the three compounds,

all three abrogated the M1 shift induced by MECP2 silencing, albeit to a different degree

(Figure 4A–C). EPO exerted the most significant effect, abrogating the effects of MECP2 silencing

in all five marker genes (Figure 4A). In contrast, both DMF and pacritinib exerted only partial effects,

abrogating the effects of MECP2 silencing in CD206, CD86, and IL-1, but failing to abrogate the

effects on IL-13 and TNF-a (Figure 4B–C). We also analyzed the effects on phagocytosis in microglia

cells. Treatment of MECP2 silenced cells with DMF exerted a significant increase in the phagocytosis

of the silenced cells, whereas EPO and pacritinib did not (Figure 4D).

EPO and DMF inhibit NF-kB activation in MECP2 silenced microglia cells
Knockdown of MECP2 has been reported to lead to increased NF-kB activity in neuronal and mye-

loid cells (O’Driscoll et al., 2015) and this deregulated activity has been associated with neuroin-

flammation and decreased dendritic arborization and spine density in a mouse model of RTT

(Kishi et al., 2016). We therefore examined the ability of our three candidate compounds to abro-

gate the increased NF-kB activity in MECP2 KD microglia cells. MECP2-silenced microglia cells were

transfected with lentivirus vectors expressing the NF-kB luciferase reporter and a constitutively

active Renilla luciferase construct (as a transfection control). The cells were treated with EPO, DMF
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EAAT2

Astrocytes

M1 markersM2 markers

Glial marker Neuronal marker

Neural Stem Cells

Microglia Microglia

A. B.

C. D. E.

Figure 3. Effects of MECP2 knockdown on neural cell phenotypes. Human microglia (A,B), NSCs (C), astrocytes (D,E), and neurons (E) were silenced for

MECP2 using lentivirus vector. The relative expression of M1 and M2 markers was analyzed in microglia cells using RT-PCR (A) and degree of

phagocytosis using the pHrodo assay (B). NSCs were transduced with lentivirus vectors expressing the differentiation reporters GFAP and MAP2 and

were differentiated as described in the methods. Ten days later, luciferase activity was determined (C). Astrocytes silenced for MECP2 were analyzed for

the expression of EAAT2 using western blot analysis (D) and the expression of BDNF mRNA in both MECP2 silenced astrocytes and neurons was

determined using RT-PCR (E). The results are a representative experiment of three separate tests analyzed in quadruplet. **p<0.01, ***p<0.001,

****p<0.0001.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Silencing of MECP2 in neural cells.

Figure supplement 2. Cytotoxic effects of tested compounds.
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and pacritinib for 24 hr and luciferase activity was determined thereafter. A significant increase in

NF-kB-dependent luciferase activation was observed for EPO and DMF in the MECP2-silenced cells

(Figure 4E), indicating that EPO and DMF were able to downregulate the increased NF-kB activa-

tion in MECP2 KD cells.

EPO, but not DMF or pacritinib, abrogate improper astrocytic
differentiation and astrocyte function in MECP2-silenced neural cells
Various studies support a non-cell-autonomous effect of astrocytes on neuronal cell functions and

contribution of astrocytes to various aspects of Rett syndrome pathogenesis via regulation of gluta-

mate levels, homeostasis, and neuroinflammation (Kahanovitch et al., 2019; Maezawa et al.,

2009). As presented in Figure 3C, MECP2 silencing increased astrocytic differentiation of NSCs at

the expense of neuronal differentiation. Treatment of the silenced NSCs with pacritinib or DMF did

not have significant effects on markers of neuronal (bIII tubulin) or astrocytic (GFAP) differentiation

(Figure 5A). In contrast, EPO abrogated the impaired NSC differentiation as reflected by an increase

of bIII tubulin and a decrease of GFAP (Figure 5A). In human astrocytes, MECP2 silencing decreased

the expression of the glutamate transporter EAAT2 (Figure 3D). Treatment of these cells with EPO

MicrogliaMicrogliaMicroglia

Microglia Microglia

M1 markersM2 markers M1 markersM2 markers

M1 markersM2 markers

A. B.

C.

D. E.

Figure 4. Effects of tested compounds on the polarization of microglial cells. Human microglia cells were silenced for MECP2 using lentivirus vectors

expressing MECP2 shRNA. Control cells were transduced with lentivirus vectors expressing a control shRNA. After 5 days, the expression of MECP2 was

determined by western blot analysis (Figure 3—figure supplement 1). Control and silenced cells were treated with EPO 10 ng/ml (A), DMF 10 mM (B)

and pacritinib 10 mM (C), and the expression of M1 and M2-associated markers were determined after 72 hr using RT-PCR. MECP2 silenced microglia

cells treated with EPO, DMF, or pacritinib were also analyzed for phagocytosis using the pHrodo assay (D). MECP2-silenced microglia cells were

transduced with lentivirus vectors expressing the NF-kB reporter followed by treatment with EPO, DMF, and pacritinib for 24 hr. Luciferase activity was

determined (E). The results demonstrate the means ± SD of a representative experiment of three separate tests analyzed in quadruplet. *p<0.05,

**p<0.01, ***p<0.001,****p<0.0001.
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inhibited the decreased EAAT2 expression, whereas pacritinib and DMF did not have a significant

effect (Figure 5B).

DMF and EPO upregulate BDNF expression in MECP2-silenced cells
BDNF plays important roles in neuronal growth and development and represents a well-recognized

transcriptional target of MECP2 (Chen et al., 2003). Silencing of MECP2 decreased BDNF

Neural Stem Cells Astrocytes

GFAP Con shRNA

GFAP MeCP2 shRNA

bIII-tubulin Con shRNA

bIII tubulin MeCP2 shRNA

A. B.

Figure 5. Effects of tested compounds on the differentiation of NSCs and EAAT2 expression in astrocytes. Human NSCs (A) and astrocytes (B) were

silenced for MECP2 using lentivirus vectors expressing MECP2 shRNA. Control cells were transduced with lentivirus vectors expressing a control shRNA.

After 5 days, the expression of MECP2 was determined by western blot analysis (Figure 3—figure suppplement 1). (A) Control and silenced NSCs

were allowed to differentiate for 10 days and the expression of differentiation markers GFAP and bIII tubulin were determined using RT-PCR. (B)

Silenced astrocytes treated with the different compounds or with medium were analyzed for the expression of EAAT2 using RT-PCR. The results are of a

representative experiment of three separate tests analyzed in quadruplet. *p<0.05, **p<0.01, ***p<0.001,****p<0.0001.

AstrocytesNeurons AstrocytesA. B. C.

Figure 6. BDNF expression in neural cells. MECP2 expression was silenced in human neurons (A) and astrocytes (B, C) and BDNF expression was

analyzed in cells treated with a medium or the specific tested compounds using both RT-PCR (A) and ELISA (B, C). The combinatorial effect of EPO and

DMF was assessed on BDNF expression in astrocytes (C). *p<0.05, **p<0.01, ***p<0.001,****p<0.0001.
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expression in both neurons and astrocytes (Figure 6A–B). DMF and EPO induced an increase in

BDNF mRNA in the silenced neurons (Figure 6A) and in the silenced astrocytes (Figure 6B), whereas

pacritinib did not exert a significant effect in either. We replicated this experiment in astrocytes,

testing DMF and EPI both individually and in combination (Figure 6C). This showed a modest

increase in the level of BDNF in the in the combined treatment, suggesting potentially independent

modes of action.

Discussion
Rett syndrome is a neurodevelopmental disease without evidence of degeneration and thus rescuing

MECP2 downstream activity might improve disease pathophysiology even in adulthood

(Faundez et al., 2019). In murine models, reintroduction of MECP2 to adult animals led to vast phe-

notypic improvements (Guy et al., 2007). In parallel with approaches aimed at increasing MECP2

levels directly (Brendel et al., 2011; Merritt et al., 2020; Przanowski et al., 2018), accurate map-

ping of the MECP2 gene network is important to provide additional avenues for intervention, and

avoid the toxicity associated with overexpression of MECP2 (Ramocki et al., 2009). Here, we have

presented a framework for identifying potential drug-gene interactions based on comparative geno-

mics, and validate these interactions in human immortalized primary neural cells. We analyzed phylo-

genetic profiling across mammals and hundreds of eukaryotes to infer functional links and generated

a network of co-evolved genes, identifying known targets such as IRAK1 as well as new candidates

such as EPOR. We then mined this network to identify actionable drug targets, prioritizing a list of

associated compounds using a combination of strong co-evolutionary evidence of the target pro-

teins and a proven safety profile of approved pharmaceutical compounds (Pacritinib, DMF, and

EPO). While we prioritized based on the potential for drug repurposing, our evolutionary analysis

could also be used to identify additional targets for drug design. Furthermore, we only performed

functional validation 3 of the 33 co-evolved genes associated with approved drugs, leaving others

for potential future study.

We reproduced a number of RTT phenotypes by reducing expression of MECP2 in human neural

cell cultures. When treated with the three selected compounds, these phenotypes could all be

reversed to different degrees in a cell-dependent manner. While all the compounds restored the

polarization of microglia and reduced the hyperactivity of NF-kB signaling in microglia, only DMF

abrogated decreased phagocytosis. EPO alone reversed the impaired neuronal/astrocyte differentia-

tion of NSCs. In neurons and astrocytes, DMF and EPO abrogated the inhibitory effect of MECP2

silencing on BDNF expression and secretion, whereas pacritinib did not have a significant effect.

The activity of these compounds on microglia polarization and NF-kB activity is mechanistically

interesting. Activation of microglia cells has been reported in MECP2 KO mice (Zhao et al., 2017)

and has been associated with pathological process in RTT (Kahanovitch et al., 2019). An MECP2

KO mouse model also implicated NF-kB signaling and IRAK1 as important mediators of the neuroin-

flammatory response in RTT (Kishi et al., 2016). While the mechanisms involved in the reversing

effects of these three compounds remains to be determined, NF-kB signaling downstream of

MECP2 is an attractive candidate (Figure 7). EPOR and KEAP1 have also been implicated as NF-kB

modulators involved in the inflammatory response. The endogenous hormone EPO binds the TPR to

suppresses inflammatory cytokines in immune cells, a process which involves inhibition of the NF-kB

pathway through GSK3b (Patel et al., 2011). NFE2L2, usually bound by KEAP1, also has a direct

cytoplasmic role in modulating NF-kB signaling through degradation of IkB and nuclear transloca-

tion of NF-kB (Ganesh Yerra et al., 2013). The three compounds tested all inhibited NF-kB-depen-

dent luciferase activation in microglia cells to a certain extent, validating their involvement in this

context.

In addition to the inflammatory effect, we found that MECP2 silencing decreased the neuronal

while increasing the astrocytic differentiation of NSCs. However, human astrocyte function was

impaired in the MECP2 silenced cells and these cells expressed lower levels of the glutamate trans-

porter EAAT2. The signaling pathways involved in these effects of EPO are not fully characterized;

however, NF-kB has been recently reported to regulate EAAT2 expression in astrocytes (Wei et al.,

2019).

Finally, we found that both DMF and EPO rescued the decreased BDNF expression in MECP2-

silenced microglia and astrocytes. Indeed, both NF-kB and NFE2L2 pathways have been reported to
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be associated with the regulation of BDNF expression (Caviedes et al., 2017; Nair and Wong-Riley,

2016). Thus, DMF can increase BDNF levels through an increase in NFE2L2, which binds the BDNF

promotor and acts as a transcriptional activator (Nair and Wong-Riley, 2016). EPO administration

activates the STAT3 signaling pathway (Rey et al., 2019), which can in turn elevate BDNF expression

(Chen et al., 2016).

While the strong evolutionary linkage of our target proteins to MECP2 strongly suggest that they

are mediating the reversal of MECP2 silencing phenotypes by their associated drugs, we have not

ruled out the possibility for alternative action of these drugs or joint action upon our involving other

protein targets. A good example of this are the HDAC chromatin modifiers, a group of genes which
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Figure 7. A model of MECP2 network genes converging on NF-kB signaling. (A) We propose that reduced MECP2 levels could lead to increase in

ICAM1, ICAM3, IRAK1, and KEAP1 levels, and a decrease of EPOR levels within the tissue-protective receptor. (B) IRAK-1 plays a role in NF-kB

activation through IKK activation, which leads to IkB phosphorylation and subsequent degradation, NF-kB nuclear translocation and the expression of

its pro-inflammatory target genes. KEAP1 binds NFE2L2 and prevents its nuclear localization. NFE2L2 target genes inhibits NF-kB signaling through a

non-transcriptional mechanism involving degradation of IkBa. EPO binds EPOR and enhances the activation of Akt, resulting in inhibition of GSK-3b

and inhibition of NF-kB nuclear transport.

Unterman et al. eLife 2021;10:e67085. DOI: https://doi.org/10.7554/eLife.67085 12 of 21

Research article Computational and Systems Biology Genetics and Genomics

https://doi.org/10.7554/eLife.67085


did not come up as specifically linked to MECP2 in our evolutionary analysis but are well-known

interactors. HDACs play a crucial role in neuronal development, and MECP2-mediated gene repres-

sion occurs mainly through HDAC recruitment via the Sin3a and NCoR complexes (Lyst et al., 2013;

Ebert et al., 2013; Nan et al., 1998). HDACs have been suggested as therapeutic targets for Rett

Syndrome (Shukla and Tekwani, 2020) and HDAC6 inhibition has been linked to improved BDNF

trafficking in a Rett mouse model (Xu et al., 2014). Importantly, one of the compounds we exam-

ined, DMF, can reduce HDAC1/2/4 expression in rat astrocytes (Kalinin et al., 2013), and EPO can

promote phosphorylation of HDAC5 in rat hippocampal neurons (Jo et al., 2016). It is thus plausible

that HDAC inhibition mediates the effects we observe for these drugs, at least in part. However, the

effects on HDAC activity are not the principal mechanisms of action of either of the proposed com-

pounds (Kalinin et al., 2013; Jo et al., 2016), nor do they have established interactions with the

HDAC most implicated in RTT biology (HDAC6). Future studies should investigate if any of the

MECP2-rescuing activities of these drugs act through HDACs in concert with or independent of the

target proteins identified here.

In summary, EPO, DMF and pacritinib act differentially on MECP2-silenced NSCs, microglia and

astrocytes, providing a preliminary validation of our approach. The investigation into specific drug

effects and mechanisms of actions are important areas for future studies, as are drug combination

assays and in-vivo studies of EPO, DMF and pacritinib using MECP2 KO mice. These will be to assess

whether any of the identified drugs can be further be explored for clinical use.

Materials and methods

Mapping MECP2 conservation along 1028 eukaryotic species and
identifying correlated genes
We used the pipeline we described in Tsaban et al., 2021 to calculate the Normalized Phylogenetic

Profile (NPP) of 1028 eukaryotic species and rank genes based on their evolutionary similarity to

MECP2. Briefly, 20,192 human proteins (one representative protein sequence per gene) were down-

loaded from UniProt reference proteomes (June 2018 release) (Bateman and UniProt Consortium,

2019). We used the Uniprot canonical isoform for each gene. For the 29 genes with more than one

canonical isoform, we selected the longest isoform to maximize sequence information. The proteins

were searched with BLASTP (Camacho et al., 2009) against the proteomes of the 1028 eukaryotes.

A bit-score of 20.4, corresponding to a BLAST e-value of 0.05, was set as a minimal similarity thresh-

old. The top scoring protein in each organism was selected. The bit-scores were normalized to pro-

tein length and phylogenetic distance from humans. The output is a matrix P of size 20,242 x 1028

where each entry Pab is the best BLASTP bit score between a human protein sequence ‘a’ and the

top result in organism ‘b’. The Pearson correlation was calculated for each profile with the MECP2

profile. The top 200 genes in all eukaryotes were selected as the E200 group for further analysis.

This procedure was repeated using only the 51 mammal species, and the top 200 genes in were

selected as the M200 group for further analysis.

Filtering genes with drug interactions and constructing protein network
Drug gene interactions were collected from DGIdb (Cotto et al., 2018) and from Open Targets

(Oxford Academic, 2019). Drugs at any stage of development were included in the search as long

as the interaction with the target gene had known directionality (e.g. inhibitory, activating). Drug-

gene interactions were validated through a literature review and known gene-gene interactions were

collected from STRING (Szklarczyk et al., 2019). Network diagram was constructed using STRING

and Cytoscape (Lopes et al., 2011).

Synteny and co-localization analysis
Gene locations were retrieved from BioMart (Kasprzyk, 2011), the NCBI genome data viewer (Fig-

ure 2—figure supplement 1A, Figure 2—figure supplement 2A), and Genomicus (Nguyen et al.,

2018; Figure 3A). Synteny in ancestral species was obtained from Genomicus (Nguyen et al.,

2018). Intra-chromosomal Hi-C contact heatmaps and TAD borders were collected from the 3D

Genome Browser (Wang et al., 2018), using GM12878 cell data from the high-resolution Hi-C data-

set of Rao et al., 2014.
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Neural cell cultures
Immortalized human microglial cells and astrocytes were obtained from Applied Biological Material

(Richmond, BC, Canada). Human NSCs (H9, hESC-derived) (ReNcell) were obtained from Invitrogen,

Merck (Germany). Human neurons were obtained from ScienCell (Carlsbad, CA, USA). All cells

employed in this study were tested for mycoplasma contamination (Mycoplasma PCR Detection Kit)

and found negative.

Transduction of neural cells
Lentivirus vectors (System Biosciences, Mountain View, CA, USA) expressing the MECP2 or control

shRNAs and the reporters GFP/fLuc GFAP, mCherry/Luc MAP2 and NF-kB luciferase were packaged

and used to transduce the cells according to the manufacturer’s protocol and as previously

described (Giladi et al., 2015).

NSC differentiation
Human NSCs were maintained as spheroids in an NSC maintenance medium containing fibroblast

growth factor 2 (FGF-2) and an epidermal growth factor (EGF, 20 ng/ml) on laminin-coated flasks.

For differentiation, the cells were maintained in NSC maintenance medium without FGF-2 and EGF

and neuronal and glial differentiation were observed.

Microglia polarization
Human microglia cells were silenced for MECP2 using lentivirus vectors expressing MECP2 or control

shRNAs. After 5e days, the expression of MECP2 was determined by western blot analysis and cells

exhibiting a decrease of at least 80% were employed in further studies. Control and silenced cells

were treated with the specific compounds and the expression of M1- and M2-associated markers

were determined after 72 hr using RT-PCR. All experiments were done in triplicates and were

repeated three times.

Cytotoxicity assay
Cells were treated with different concentrations of DMF (1 10 and 50 mM), EPO (10, 30 and 50 ng/

ml), and Pacritinib (1 and 10 mM). Following 3 days of treatment, the cells were analyzed for cell

death using LDH assay. The results are presented as the means ± SD of six samples for each

compound.

Western blot analysis
Cell pellet preparation and Western blot analyses were performed as previously described

(Lomonaco et al., 2009). Equal loading was verified using an anti-b-actin or tubulin antibodies as

described (Giladi et al., 2015; Bier et al., 2018).

Real-time PCR
Total RNA was extracted using RNeasy midi kit according to the manufacturer’s instructions (Qiagen,

Frederick, MD, USA). Reverse transcription reaction was carried out using 2 mg total RNA

(Bier et al., 2018). The primer sequences are described in the supplementary files

(Supplementary file 3).

Phagocytosis analysis
Human microglial cells were silenced for MECP2. Phagocytosis was determined using the pHrodo

Green zymosan bioparticle assay (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s

instructions. Briefly, microglia were incubated with a solution of pHrodo Green zymosan bioparticles

in Live Cell Imaging Solution (0.5 mg/ml) for 2 hr. Phagocytosis was determined using a fluorescence

plate reader at Ex/Em 509/533.

Luciferase activity
The firefly luciferase activity of the NF-kB, GFAP and MAP two activities and the control Renilla lucif-

erase activity were analyzed using the Dual-Luciferase Reporter Assay System (Promega

Corporation).
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Statistical analysis for cell assays
The results are presented as the mean values ± SD. Data were analyzed using a Student’s t-test with

correction for data sets with unequal variances (Welch’s unequal variances t-test).
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Data availability

The phylogenetic data required to reproduce the analysis are openly available at Zenodo [https://

zenodo.org/record/4464120#.YEoFpHmxVPY]. Code used for the analysis is openly available

through Github https://github.com/GuIrene/MECP2_phylogeny (copy archived at https://archive.

softwareheritage.org/swh:1:rev:14063b44a40688a8024a06347b63cfdac74b96ad).

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Stupp D, Tsaban T,
Bloch I, Sharon E,
Tabach Y

2021 CladeOScope: elucidating
functional interactions via a clade
co-evolution prism

https://zenodo.org/re-
cord/4464120#.
YQjhGRMzael

Zenodo, 10.5281/
zenodo.4464120
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