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A SYNCHRONOUS GROUP OF MAMMALLIAN CELLS WHOSE 

IN VIVO BEHAVIOR CAN BE STUDIED* 

H. M . FROST** 

INTRODUCTION 

1.) In a synchronous cell culture, all its individual cells undergo division at 
nearly the same time; i.e., they are "in step" with each other. These cultures have 
been particularly productive of information about those aspects of cell physiology 
that are related most directly to DNA (deoxyribo nucleic acid) and RNA (ribonucleic 
acid). In microorganisms it has been shown with this technique that switch-like and 
step-like mechanisms, and ordered sequences of events, characterize the control of 
some kinds of cell metabolic behavior (see Pardee and Wilson 22; Shailberger et al, 
25; Sorokin, 27; Halvorson, 14). These kinds of behavior seem to arise largely 
from the nature of the chemical dynamics and control of (;) DNA replication, (/;) 
transcription of encoded information from DNA to messenger RNA, (;//) and trans­
lation of this information into specific cellular proteins."'^''"" xhese kinds of cell 
behavior will be designated discrete modes of behavior in the following text. They 
differ from that of chemical reactions in solution, and from chemical processes which 
attain equilibrium, which are the kinds of chemical behavior with which physicians 
and biologists are most familiar. 

While these discrete modes of behavior are known to exist in microorganisms, 

it has been proposed (for example, by Pardee and Wilson^^) that in higher animals 

including man, metabolism of differentiated cells in the adult is mostly or all controlled 

by altering enzyme activity. While this is a reasonable proposal in view of the evidence 

that is available, its truth is hard to assess in the absence of in vivo studies of 

synchronous mammalian adult cells. While many kinds of differentiated cells from 

adult animals will survive in cell or tissue culture, discrete modes of metabolic 

behavior in such preparations have not been reported to my knowledge, although they 

have been seen in embryological material, for example by Grobstein" and by 

Fugita et al.^' 

*Work supported by the following grants-in aid: 293, Henry Ford Hospital; AM-04186, N.I.H. 
A publication of the Orthopaedic Research Laboratory. 

**Associate Orthopaedic Surgeon. 
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2) : But there are serious difficulties in trying to draw analogies between the 
behavior of a mammalian cell in tissue culture, and its behavior in vivo in its 
natural state. These difficulties are in part: (/): By definition, cultures of differentiated 
mammalian cells or tissues do not duplicate the natural state of the cells. Therefore 
the relevance to the intact organism of observations made in such cultures is suspect 
until comparisons with cell behavior in vivo establish such relevance, {ii): Cells in 
these cultures tend to be asynchronous at the start of their culture, and {iii) they tend 
.subsequently to dedifferentiate and resume active, repeated and asynchronous cell 
division.''^^ These factors make it unlikely that discrete modes of metabolic behavior 
of individual cells would be seen in such preparations even if they did exist in vivo. 
In this respect I believe it is significant that the discrete modes of behavior in 
uncellular organisms tend to occur between, rather than during, cell divisions, to 
such a degree that the time of cell division is usually taken as time zero in such 
studies."'"" (iv): As noted by Weiss among others, in animals the non chemical 
aspects of the cell environment (in terms of neighboring cells, physical structures 
and properties, electrical fields, and in terms of changes in and orientation of these 
things) are an essential part of the cell milieu to a degree that is seldom approached 
by unicellular organisms or duplicated in culture.^^ " ^ Consequently even if its natural 
chemical environment could be exactly duplicated, the behavior of an adult animal 
cell in a culture would probably still not reproduce that which occurs in vivo. 

3) : If a system existed in which the natural behavior of a synchronous group of 
cells of higher animals or/and man could be studied or deduced, and this with 
assurance that the act of study would not affect the cell behavior being studied, this 
would be of great interest to many scientists. This article calls attention to such 
a system: the secondary osteon (i.e.. Haversian system), as defined by Enlow,' in 
compact bone. And interestingly, there is already a body of evidence which shows 
that cells in this system in man do have discrete modes of behavior. To see which 
cells in this system are synchronous, and why and how, the dynamic anatomy of an 
actively forming osteon must be described; then we must deduce how its cells arise. 
Following this some pertinent differences between synchronous groups of micro­
organisms and of animal cells will be pointed out, and some advantages of bone as 
a tool in studying mammalian cell synchrony will be described. 

T H E HISTODYNAMICS AND C E L L DYNAMICS OF OSTEON FORMATION 

A) Morphological Dynamics 

Figure 1 shows the histological dynamics of a newly forming osteon, as seen in 
longitudinal section in human compact bone. Five subprocesses are involved in its 
manufacture,' '" which move in space as shown by the arrows. If one were to watch 
these processes from some stationary point, such as the planes of section, ( A ) , in 
the inserts in the figure, he would see, passing from right to left in correct temporal 
order:* (Ai) bone resorption done by nondividing''^'^'^-^^ motile, multinucleated, 
differentiated cells called osteoclasts, which in effect "drill" a hole called a resorption 

*The subscripts refer to the order in time of successive moments of observation. 
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space through the cortex; (A2) followed by a group of spindle shaped, undifferentiated 
cells among which mitotic figures can be found; (A3) followed by a capillary blood 
vessel; (A4) followed by the appearance of nondividing,^ '̂̂ '̂̂ '̂ ^ nonmotile, uninucleate, 
differentiated cells called osteoblasts which condense in a ring-shaped monolayer on 
the wall of the resorption space (whereupon the space is renamed the Haversian 
canal); (As) followed by filling the canal up, centripetally, with new bone made by 
the osteoblasts. After the canal is filled up the osteoblasts disappear, some having 
been trapped inside the new bone to become osteocytes but most having died and 
autolysed*. 

These five processes move through bone as a coherent group, with approximately 
constant longitudinal and temporal spacing. Their end product is a 200 micron 
diameter tube whose 70 micron thick walls are made of lamellar bone.' ' " According 
to L. C. Johnson, in man the resorption front moves longitudinally through the 
bone about 100 microns in 20 days," while I have calculated that the centripetal 
closure of the resulting hole takes about 80 days.*' The distance between the spindle 
cells and the ring-like zone where the osteoblasts appear is about 350 microns, and 
between the resorption front and the ring of osteoblasts about 400 microns. Thus 
from the time that resorptive activity first appears at some transverse level such as 
( A l ) , to the time of the formation of the first new bone at the same level, now 
(A4), about 80 days elapse. While there is some uncertainty about these numbers 
(which must be removed in the future), this does not alter the validity of the 
relationships which are described. 

B) Cell Dynamics 

To be considered synchronous, the cells in this system (henceforth restricted 
to the spindle cells, osteoclasts and osteoblasts) must be shown, (a) to have an 
ancestral origin* that can be determined in both time and space, (b) to be an 
ancestrally homogenous group, unmixed with cells of different origin and age, a,nd 
(c) to be identifiable as a group by some practical selection criterion which will 
allow the group, or its behavior, to be distinguished and isolated for study purposes 
from neighboring extraneous cells. 

a): Concerning origin, there are three possibilities (/) the cells are brought 
to the region by the blood, having been made by progenitor cell division at indeter­
minate times and places elsewhere in the body; {ii) or they are temporarily specialized 
versions of local cells that were present before the osteon started to form, but whose 
ages are indeterminate with respect to the cell divisions of which they are daughters; 
{iu) or they derive from progenitor cell division which occurs in the locale and at 
determinate times before these cells appear and begin to function. The evidence 
bearing on these hypotheses is, one: workers with tritiated thymidine have uniformly 

*About 3300 osteoblasts start making the bone in a one mm. length of a new osteon; 700 of them 
subsequently become osteocytes, and 2600 just "disappear". 

*The origin of a cell here means the location in time and space of the progenitor cell division of 
which it was a daughter, using progenitor cell division in the general sense of the mitotic division 
which made the cell, regardless of the nature or location of the parent cell. 
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found in mice, rats and rabbits (excepting osteon formation, which has not yet been 

adequately studied in any animal with this technique) that osteoclasts and osteoblasts 

are made by progenitor cell division* which occurs in the locale and at determinate 

times before, these cells appear and begin to function.'''•'''™-^''^'" Man and dog are 

probably similar. Two: but, since no studies with tritiated thymidine exist in man 

or dog that bear on this problem, 7th ribs from 100 metabolically normal adult 

people and 17 two year old Beagle dogs* were longitudinally sectioned, suitably 

stained*,'''-^^ and the actively forming osteons in them searched for mitotic figures 

with the hght microscope. These figures should occur if the progenitor cell-osteoclast-

osteoblast relationship in man and dog is similar to that in the rodents already 

mentioned. Of the mitotic figures that were found, 94% were confined to the region 

shown by the plus signs in figure I . Thus, at least some of the cells in this system 

in man and dog are made by local progenitor cell division. Three: the number of 

cell nuclei in an actively forming osteon is larger (by a factor exceeding 20) than 

the number present in the same volume of bone before active formation of the 

new osteon began. This means that at the minimum more than 95% of the cells 

in the actively forming osteon are new, and cannot be temporary specializations of 

cells that were previously present in the area. It follows that hypotheses {i) and {ii) 

are untenable, and in both man and dog, as in rodents, osteoclasts and osteoblasts 

Figure 1 

Upper part: Diagram of longitudinal section through an actively developing new osteon. The 
processes move from right to left as a coherent group with approximately constant longitudinal and 
temporal spacing. The planes of section (A) represent successive moments of observation at some 
fixed joint, and are ordered in time according to the subscripts. The distinct processes are: A, : the 
resorption front; A,: the spindle cells with mitoses (plusses); A3: the capillary loop; A^: appearance 
of a ring-shaped layer of osteoblasts on the wall of the hole; A5: closure of the hole with new bone, 

ocl: osteoclast. sem: spindle ceU mass. os: new bone osteoid or matrix, 
obi: osteoblast. cl: capillary. 

'The dogs were supphed courtesy of Dr. R. Johnston, and of the Upjohn Co., Kalamazoo, Mich. 
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are made by progenitor cell division in the region were, and at a determinate time 
before, they appear and begin to function. 

b ) : Concerning ancestral homogeneity, the following two-part argument is made: 

I.) Osteoclasts are nondividing cells which have been found without exception 
in tritiated thymidine studies (but in animals other than man) to originate from 
progenitor cell divisions in the locale where they appear and begin to function.™^' ™'^''"'" 
The plus marks in figure 1 show where the vast majority of the mitotic figures were 
found in the bones examined in this laboratory. They are very close to the osteoclasts, 
so this is almost certainly where the progenitor cell divisions occur which make 
osteoclast nuclei. 

2) : Consider the osteoblasts lining the Haversion canal in any thin section cut 
transverse to the longitudinal axis of the canal. There are two possibilities: (/) they 
are continuously replenished during the time it takes to make the osteon, and so 
must be heterogeneous; (//') or the first ones to appear on the wall of the canal 
(as a ring shaped monolayer at the plane of section A4 in figure 1) are solely 
responsible for the subsequent closure of the canal with new bone at that level, and 
so are homogeneous. The relevant facts are: one: if (/) were true, and since 
osteoblasts are nonmotile and with rarest exceptions nondividing, the mitoses accom­
panying a postulated continuous replenishment should occur in a layer near and 
parallel to the layer of osteoblasts. Two: since osteoblasts outnumber osteoclast 
nuclei at any representative moment by more than five to one in the average actively 
forming o.steon, a commensurately larger number of mitoses should be found associated 
with osteoblast than with osteoclast production. Three: But the plus signs in figure 
1 show where 94 percent of the mitoses were found in 600 longitudinal sections of 
ribs from 100 adult humans, and in 83 sections of ribs from 17 adult Beagle dogs. 
This means that the continuous supply hypothesis is unreasonable, and that osteoblasts 
are probably also daughters of cell divisions that occur in the spindle cell region. 
This means too that in any plane transverse to the longitudinal axis of an a.ctively 
forming osteon, the monolayer of osteoblasts therein all appeared at about the same 
time at all points around the circumference of the Haversian canal. Thus osteoblasts 
are definitely synchronous in the limited sense that those in a plane transverse to 
the osteon appeared as functionally competent osteoblasts at about the same time. 

d ) : The Relation between Osteoclast and Osteoblast: The facts adduced so 
far indicate that both osteoclasts and osteoblasts derive from mitotic cell divisions 
in the same progenitor cell mass, which lies in the region (A2) shown by the plusses 
in figure I . This mass is determinate in space, and its mitotic activity is determinate 
in time (see also below). It remains to solve the relationship between osteoclasts 
and osteoblasts. There are three possibilities: (/) the progenitor cell mass makes 
both but separately: (;7) or the osteoblast is made first and then changes into an 
osteoclast; {iii) or the osteoclast is made first and then changes into an osteoblast. 
The facts that seem relevant to me are: One: resorptive activity precedes formative 
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as shown by Takahashi et al," whenever space-and-time-contiguous pairing of the 
two processes occurs. Two: time-space-continuous pairing of resorption and formation 
processes is the rule in adult man and dog at all periosteal, endosteal and Haversian 
canal surfaces of bone." These facts imply that osteoclasts transform to osteoblasts, 
i.e., { i i i ) . Three: the reverse order, i.e., formation before resorption, does not seem 
to occur," while the older osteobla.sts, which would seem more likely to transform 
to some other state than young ones, are the farthest removed physically from the 
resorption front,' meaning that osteoblasts do not transform to osteoclasts. Four: 
the effect of cortisone on this system is (in the steady state') to decrease the number 
of osteoclast nuclei" but to nearly arrest the appearance of osteoblasts.* Five: the 
spindle cells lie much closer in space to the osteoclasts than to the osteoblasts, so 
that were osteoblasts made directly by progenitor cell division, they would have to 
travel an unreasonable distance through a dense mass of tissue to materialize on the 
wall of the Haversian canal, where they begin to make new bone. Six: carbon 
particles injected into rabbit limb arteries subsequently appear in osteoclasts but not 
in the osteoblasts. These facts mean that hypothesis (/) is unreasonable, while {ii) 
seems excluded, to me at least, leaving unchallenged the admittedly unorthodox 
concept that the osteoclast nucleus is made first and later transforms, without any 
cell division, into an osteoblast. This point requires direct confirmation by other 
techniques. See figure 2. 

C) Summation 

The evidence can reasonably be taken to mean that (/) the progenitor cell 
divisions which make osteoclasts and osteoblasts occur in the spindle ce'lls that lie 
between the osteoclasts and the capillary loop, and so are determinate in both time 
and space, {ii) and that in any transverse plane through an osteon the osteoclasts 
and/or osteoblasts there are synchronous with respect lo their age after the time of 
both (i) their appearance as specialized cells and (;/) the cell divisions which made 
them. The selection criterion mentioned earlier emerges as the group of cells in 
any thin cross section through an osteon. This criterion applies to osteons at any 
stage of formation, and of any age after completion, noting that for osteocytes 
(i.e., inactive bone cells) there is an addidonal quahfication. This is that the osteo­
cytes lying in a common lamella in a thin cross section cut through an osteon are 
synchronous (within ± 10 days). With respect to determinability in time, note that 
at different transverse planes cut through the same osteon, the ages of the cells in 
such planes are related to each other as is their separation in microns along the 
longitudinal axis divided by the number of microns per day at which the resorption 
front moves through the bone. Using the numerical values quoted earlier, calculation 
gives the rate of this motion as 5 microns per day, a number which must be defined 
more accurately than it has been. This refinement should not alter the validity of 
the relationships just described. These relationships mean that the 400 microns 
between the resorption front ( A i ) , and the ring of osteoblasts (A , ) , covers about 
80 days, and cells in each successive cut 400 microns farther away from the resorption 
front are 80 days older than those in its immediate predecessor and 80 days younger 
than in its successor. 
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my) 

B 

c 
M.C : Ocl Obi 

Figure 2 

The possible, simplest-case relationships between progenitor (i.e., mesenchymal) cell, osteoclast and 
osteoblast are shown diagrammatically. A: osteoclasts and osteoblasts are generated independently. 
B: The same progenitor ceh generates the osteoclast first, the osteoblast second, by separate divisions. 
C: The progenitor cell makes an osteoclast, which later transforms to an osteoblast. MC: The 
mesenchymal (i.e., progenitor) cell, ocl: osteoclast, obi: osteoblast. While the facts presently 
available are compatible with C but not with A or B, these facts are not sufficient unto themselves 
to prove C. 

DISCUSSION 

/.• SOME DIFFERENCES in the MEANING of SYNCHRONY in MICRO­
ORGANISMS and in HIGHER ANIMALS. 

Several comparisons must be made of the cell system just described with 
synchronous cultures of unicellular organisms, because there are some unrecognized 
but very important and pertinent differences in cell behavior at these two widely 
different levels of biological organization. These differences will affect the manner 
of study and interpretation of the behavior of synchronous animal cells. 

A) Control of Cell Division: In cultures of microorganisms cell division is made 
to occur simultaneously in all cells by some artificial device. But in osteon production 
the cell divisions that make osteoclasts and osteoblasts occur serially and uninterruptedly 
so that in the natural state the kind of synchrony produced in cultures of unicellular 
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organisms does not and cannot exist. But the valuable property of osteons is that 
daughter cells of the same age are physically located in the same plane transverse to 
the longitudinal axis of the osteon. Using this knowledge the cells and their behavior 
can be studied. 

B) Time Scale: The approximate order of time between successive cell divisions 
in unicellular organisms is an hour, and in this "between time" synchronous metabolic 
activity of the cells in the culture is studied, and discrete modes of cell behavior are 
seen best. But the osteoclast-osteoblast nucleus lives (in its natural surroundings!) 
about 160 days (80 days as an osteoclast, and 80 as an osteoblast'").* Being 
characterized by nondivision, this period is comparable to the period between divisions 
in microorganisms. Thus the difference between microorganisms and animal bone 
cells, in the length of time during which the cells are doing metabolic "work" but not 
dividing, is on the order of one to 3800 respectively. 

C) The Relation of Cell Division to Metabolic Work: In its natural environment, 
a unicellular organism continues to divide, metabolize and divide repeatedly and 
indefinitely, while in its natural state the osteoclast-osteoblast is a differentiated, 
nondividing cell whose natural fate is, irreversibly, either death (without further 
division) or incorporation into new bone as an osteocyte (again without further 
division). In other words, in microorganisms the two functions of doing metabolic 
work and of making new cells are combined in the same cell as a repeating cycle 
of events. But in adult animals (i.e., their secondary osteons, and by inference in 
other animal tissues too) cells are of two functionally different kinds: (i) those 
which are undifferentiated, and make new cells but do not provide the metabolic 
functions that are necessary to maintain the life of the whole organism, (/i) and 
those which are differentiated, each individual among them providing one "package" 
of the metabolic work needed by the whole organism, and then dying or otherwise 
disappearing.t Were these "lost" differentiated cells not regularly replaced with 
new ones, their metabolic functions would disappear and the whole animal would 
then become ill or die (examples: aplastic anemia; Addison's disease; pemphigus). 

D) This division of responsibdity may have evolved in multicellular organisms 
because of the cellular specializations (i.e., differentiations) that characterize them. 
Thus, in man, a liver cell can perform the metabolic "work" needed for its own 
survival whether it be in the body of the host or in a cell culture. But it is expected 
to do more than this when in the host's body; it must perform other metabolic 
tasks for the other tissues of the body, tasks of which these tissues have (seemingly) 
been relieved so that they can better make their specialized contributions to the 
health of the whole animal or plant. And it is just this kind of metabolic work that 
higher plants and animals seem to assign to nondividing cells. This division of 
responsibility is not razor sharp: it is blurred but nonetheless real. 

* I refer only to the cells involved in lamellar bone remodeling. 
tThis "package" may last 2 weeks (bowel epithehum), 3 months (red cells of the blood) or the 
lifetime of man (neurons). 
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E) The Meaning of Relative Synchrony: In a culture of bacteria, synchrony 
usually means that most of the cells are within a few minutes of the mean phase 
of the entire culture. Clearly this order of synchrony does not exist in individual 
mammalian osteons. However, the ratio of the period between successive divisions 
in microorganisms, divided by the period between the creation (by progenitor cell 
division) and death of an osteoclast-osteoblast, is one measure of how much less 
synchronous the animal cell needs to be in absolute time to provide comparable 
relative synchrony. It is already said that this ratio is about 1/3800. This statement 
assumes that any discrete transitions in metabolic behavior in a cell in an osteon 
are of the same order of number as those in microorganisms, and clearly this 
statement needs to be evaluated by experiment. 

//; EXISTING EVIDENCE of DISCRETE BEHAVIOR in OSTEONS 

Actively forming osteons have some interesting properties which in abstraction 
resemble the discrete behavior of unicellular organisms referred lo before, and which 
suggest that they derive from synchronous cells, but which do not fit the idea that 
the metabolic work contributed to the whole man by a differentiated, adult cell is 
all continuous over time (i.e., is not switched on or o f f ) , is all regulated by nearly 
infinitely adjustable mechanisms (such as changing enzyme activity or substrate con-
centradon), and never involves irreversible sequences of different kinds of metabolic 
behavior. 

Six discrete properties are: (i) the formation of a new osteon begins and ends 
absolutely, at definite points in time, so the cells making it take a definite amount 
of time to make one and the relevant chemical reactions are started and stopped 
by mechanisms which are functionally discrete.' {d) Once made, the amount of 
bone in an osteon does not subsequently change through the activity of the same 
cells, even after many years, so that in effect bone resorption and formation by 
these cells is irreversibly "switched off" at the completion of each osteon;''" (iii) the 
amount of bone in an osteon is a measure of the amount of metabolic "work" 
contributed by its cells to the man, and as Currey, Landeros and Takahashi and 
I found, tends to be constant on the average throughout life,^-^'"'^^ although the 
insolubility of bone in the body fluids means that chemical feedback of the product 
on the reaction mechanisms making it cannot cause this; {iv) either a complete 
group of cells and processes is engaged in making a new osteon, or none are; there 
is no gradual transition between these states, so that, functionally and dynamically, 
making new osteons is a binary valued as well as a discrete activity;' (v) As Takahashi 
et al found, resorption almost always precedes formation in this system," and since 
the same cell nucleus provides both metabolic functions this is an irreversible sequence 
of forms of metabolic behavior in one cell; (vi) the shape of the kinetic curve of 
osteon formation is age invariant" although the rate at which the osteon is made is 
not; '" which implies that the mechanisms determining the manufacture of new bone 
by an osteoblast produce a functional dependence of the amount of bone made on 
the dimensionless period of osteon formation, but an independence of this amount 
on absolute time." 
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III: PRACTICAL ADVANTAGES of OSTEONS as CASES of SYNCHRONOUS 
CELL BEHAVIOR. 

Osteons have practical and potent advantages which make them attractive as 

model systems of synchronous cell behavior in mammals. Among them are: one: 

the observing act need not disturb the cells being studied. This is because their 

behavior can be studied after it has occurred, a property which is based on the 

following facts, (a): In adult man, bone turns over slowly (once every 20-40 years);' 

(b) : the microscopic architecture of mineralized bone is temporally stable for 

hundreds of years after the death of the individual; (c) the cells in bone are 

responsible for its microscopic architecture and for changes in it which are associated 

with disease, aging, growth and nutrition, (d ) : These changes are a form of 

intelligence concerning the behavior of the cells. Two: these facts mean that bone 

keeps a record of the behavior of its cells, whose intelligence may read after being 

transcribed therein.'' Three: in the living animal this intelligence is transcribed by 

cells that function in vivo, under completely natural conditions. Four: simple methods 

have been developed for preparing mineralized sections of bone, measuring them, 

and interpreting the information obtained therefrom.*'"''" These methods make it 

possible to study the dynamics of several kinds of bone cells, both as individuals 

and as cell populations, in some depth and with considerable accurarcy. Five: This 

novel approach to the study of cell behavior has the asset that the composition and 

content of the cells are irrelevant to the objective, which is to define what they did, 

with respect to things such as quality, amount, rate and pattern of metabolic 

activity.*'"'"'"'''"'^' 

These methods should work nearly as well in bones of dead or/ and extinct 

animals as they do in bones of live ones, provided only that the subjects from which 

they came formed good secondary osteons, as these structures are defined by Enlow.' 

SUMMARY 

In a thin transverse section, an actively forming osteon in mammalian compact 

bone contains a group of cells which seem to be synchronous with respect to (/) 

time of appearance as differentiated cells, {ii) and age after the progenitor cell 

divisions which made it. This system offers an opportunity to study the behavior 

of both differentiated and undifferentiated, mammalian (including human) cells 

as this behavior occurs in situ, in vivo, under completely natural conditions, immune 

to disturbance by the observing act. Several features of this system imply the presence 

of control mechanisms which are functionally and temporally ordered, discontinuous 

and discrete. Dynamically and in abstraction this behavior resembles some of the 

DNA- and RNA- dependent discrete controls which occur in microorganisms, and 

suggests that (/) analogous phenomena occur in at least some other mammalian 

cells, and that (ii) these phenomena may serve as tools for studying the in vivo 

operation of DNA- and RNA- dependent controls in mammalian including human cells. 
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