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ORIGINAL ARTICLE

The Toronto Postliver Transplantation 
Hepatocellular Carcinoma Recurrence 
Calculator: A Machine Learning 
Approach
Tommy Ivanics ,1,2,3,* Walter Nelson,4,5,* Madhukar S. Patel,6 Marco P.A.W. Claasen,1,7 
Lawrence Lau,1 Andre Gorgen,1 Phillipe Abreu,1 Anna Goldenberg,8 Lauren Erdman,8,9,** and 
Gonzalo Sapisochin1,10,**
1 Multi- Organ Transplant Program, Division of General Surgery, Toronto General Hospital, University Health Network, University 
of Toronto, Toronto, ON, Canada; 2 Department of Surgery, Henry Ford Hospital, Detroit, MI; 3 Department of Surgical 
Sciences, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden; 4 Centre for Data Science and Digital Health, Hamilton 
Health Sciences, Hamilton, ON, Canada; 5 Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada; 
6 Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX; 
7 Department of Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands; 8 Centre for Computational 
Medicine, SickKids Research Institute, University of Toronto, Toronto, ON, Canada; 9 Center for Computational Medicine, SickKids 
Research Institute, Toronto, ON, Canada; and 10 Abdominal Transplant & HPB Surgical Oncology, Toronto General Hospital, 
University of Toronto, Toronto, ON, Canada

Liver transplantation (LT) listing criteria for hepatocellular carcinoma (HCC) remain controversial. To optimize the utility of 
limited donor organs, this study aims to leverage machine learning to develop an accurate posttransplantation HCC recurrence 
prediction calculator. Patients with HCC listed for LT from 2000 to 2016 were identified, with 739 patients who underwent 
LT used for modeling. Data included serial imaging, alpha- fetoprotein (AFP), locoregional therapies, treatment response, 
and posttransplantation outcomes. We compared the CoxNet (regularized Cox regression), survival random forest, survival 
support vector machine, and DeepSurv machine learning algorithms via the mean cross- validated concordance index. We 
validated the selected CoxNet model by comparing it with other currently available recurrence risk algorithms on a held- out 
test set (AFP, Model of Recurrence After Liver Transplant [MORAL], and Hazard Associated with liver Transplantation 
for Hepatocellular Carcinoma [HALT- HCC score]). The developed CoxNet- based recurrence prediction model showed a 
satisfying overall concordance score of 0.75 (95% confidence interval [CI], 0.64- 0.84). In comparison, the recalibrated risk 
algorithms’ concordance scores were as follows: AFP score 0.64 (outperformed by the CoxNet model, 1- sided 95% CI, >0.01; 
P = 0.04) and MORAL score 0.64 (outperformed by the CoxNet model 1- sided 95% CI, >0.02; P = 0.03). The recalibrated 
HALT- HCC score performed well with a concordance of 0.72 (95% CI, 0.63- 0.81) and was not significantly outperformed 
(1- sided 95% CI, ≥0.05; P = 0.29). Developing a comprehensive posttransplantation HCC recurrence risk calculator using 
machine learning is feasible and can yield higher accuracy than other available risk scores. Further research is needed to con-
firm the utility of machine learning in this setting.

Liver Transplantation 0 1‒10 2021 AASLD.
Received May 26, 2021; accepted September 23, 2021.

Liver transplantation (LT) is the best treatment option 
for patients with early stages of hepatocellular carci-
noma (HCC).(1- 4) However, the use of LT depends on 

maintaining a balance between patient- specific sur-
vival benefit, the availability of alternative treatment 
modalities,(5,6) and the equitable distribution of donor 
organs.(5,7- 12)

Current selection criteria aim to avoid transplan-
tation futility by excluding patients at a high risk of 
tumor recurrence.(10,11) Selecting patients with HCC 
within Milan criteria has been shown to provide 
excellent patient outcomes.(13- 15) However, the Milan 

ivanics et al.
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criteria has been challenged by other series reporting 
equivalent outcomes for transplanted patients with 
larger and more numerous tumors. Furthermore, while 
the use of parameters such as tumor size and num-
ber simplify the criteria,(14,16,17) recent studies have 
shown that the sole reliance on morphologic features 
does not adequately reflect tumor biology.(18,19) Thus, 
the need to incorporate additional prognostic factors, 
such as serum alpha- fetoprotein (AFP score)(20- 22) and 
neutrophil- to- lymphocyte ratio (Model of Recurrence 
After Liver Transplant [MORAL] score),(23) became 
apparent and was further explored. In addition, radio-
logic and AFP responses to downstaging or bridging 
treatment have also been suggested to be important in 
predicting outcomes after LT.(24- 26)

Given the opportunity cost of suboptimal organ 
allocation, creating a more precise and quantitative 

posttransplantation outcome calculator remains para-
mount. However, one of the main hurdles in develop-
ing such a calculator has been the limitation of standard 
statistical methods to account for many variables and 
their potential for various interactions. Looking forward, 
the amount of clinical data is only likely to increase. 
Machine learning represents a tool that can be used to 
derive meaning from such data.(27) Traditionally, humans 
have analyzed data and adapted systems to the changes 
in data patterns. However, as the volume of data sur-
passes the ability of humans to interpret and write rules, 
there will likely be a natural inclination to increasingly 
turn to automated systems that can actively learn from 
the data and adapt to shifting landscapes. With progress 
in applying machine learning techniques in medicine, we 
propose that these methods can be utilized to identify 
complex nonlinear relationships between a comprehen-
sive set of factors and recipient outcomes in transplan-
tation oncology.(28- 31) Thus, we hypothesize that an 
accurate posttransplantation HCC recurrence calculator 
can be developed using a machine learning algorithm 
mapped on preoperative patient and tumor characteris-
tics and have designed this study as a proof of concept.

Methods
This study was approved by our institutional review 
board (REB#15- 9989), and a waiver of informed con-
sent was obtained.

stUDY pOpUlatiOn
Patients who underwent LT for HCC from 2000 to 
2016 were identified from the prospectively maintained 
Toronto General Hospital LT database. A detailed 
description of listing criteria has been outlined else-
where.(19) Moreover, in contrast to the United States, 
there is no mandatory 6- month waiting time for patients 
with HCC exception points. In Ontario specifically, pa-
tients with HCC that meet selection criteria for listing 
start at 22 points (Model for End- Stage Liver Disease 
[MELD]) and increase by 3 points every 3 months.(32) 
Recipients with incidentally discovered HCC in the 
explanted liver were excluded. Data on age, sex, body 
mass index, comorbidities, etiology of liver disease, and 
MELD score were collected. HCC- specific variables 
were tumor size, volume, number, and AFP levels, all at 
transplantation, listing, and delisting (dropout). Bridging 
therapy (administered or not), the timing of bridging 
therapy, and number of sessions were also included.

C virus; IQR, interquartile range; LASSO, least absolute shrinkage 
and selection operator; LT, liver transplantation; MELD, Model for 
End- Stage Liver Disease; MELD– Na, Model for End- Stage Liver 
Disease– sodium; MLA, Machine learning algorithm; MORAL, 
Model of Recurrence After Liver Transplant; mRECIST, modified 
Response Evaluation Criteria In Solid Tumors; NASH, nonalcoholic 
steatohepatitis; NLR, Neutrophil- lymphocyte ratio; SRTR, Scientif ic 
Registry of Transplant Recipients.
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DevelOping a MacHine 
learning MODel
A machine learning approach was used to create a 
model to determine the risk of posttransplantation 
HCC recurrence. Nearly 15% of randomly selected pa-
tients were held out as a test set. The remaining 85% of 
patients constituted the development set. This splitting 
ratio was chosen based on a classic rule of prescribing an 
80%:20% split between the development and test sets, 
with an increased training set size of 85% to account for 
the rate of right censorship in the recurrence outcome.

The candidate machine learning models were 
selected on the basis of being representative of the main 
paradigms of machine learning: regularized regression, 
ensembled decision trees, support vector machines, 
and deep neural networks. CoxNet refers to the usual 
Cox proportional hazards model, with an added pen-
alty term that regularizes the coefficients during model 
fitting. This penalty term has the effect of driving coef-
ficients with little or no independent predictive value to 
0 and shrinking other coefficients to prevent overfitting. 
Random survival forests are a generalization of decision 
trees. Whereas the output of a traditional decision tree is 
a probability or binary decision, the output of a survival 
tree is a valid cumulative hazard function. A survival 
random forest consists of a large number of these trees 
with the final prediction of the forest being the mean 
prediction from each individual tree. Survival support 
vector machines project data into high- dimensional 
space using a patient- patient similarity function defined 
over the predictors. The model then learns to rank the 
training samples; new samples are then ranked relative 
to the training samples. Lastly, DeepSurv is an alterna-
tive to the Cox proportional hazards model where the 
relative risk term is parameterized by an artificial neural 
network instead of linear regression, enabling the appli-
cation of deep learning. Within the development set, 
the 4 machine learning algorithms were compared by 
5- fold cross- validation to identify the best performing 
algorithm to develop the final model (Supporting Fig. 1 
and Supporting Table  1). The number of folds was 
chosen to ensure sufficient data in each fold for model 
selection in each iteration of cross- validation. Of note, 
all the models other than CoxNet investigated for the 
presence of nonlinear interactions in the set of available 
pre- LT variables. The mean concordance for each algo-
rithm for the optimal set of hyperparameters across the 
held- out folds during the cross- validation step (only on 
the development set) was reported to assess each model’s 

performance. The best performing model, according to 
the concordance index, was trained on the full devel-
opment set with the optimal set of hyperparameters, of 
which all non- zero coefficients are reported in Table 1. 
This was referred to as the final model.

cOMparisOn WitH previOUslY 
pUBlisHeD MODels
We compared the final performing machine learning 
model (CoxNet) with the models underlying several 
other HCC recurrence scores: MORAL,(23) AFP,(33) 
and Hazard Associated with Liver Transplantation for 

taBle 1. Our Model’s coefficients (Development set)

Variable Coefficient
Hazard 
Ratio

Age −0.004 0.996

Number of bridging therapies 0.228 1.257

Etiology: other −0.153 0.858

Total tumor diameter (at listing) 0.041 1.042

Largest lesion size (at listing) 0.020 1.021

log- AFP (before transplantation) 0.191 1.210

Largest lesion size (before transplantation) 0.020 1.020

Within Milan criteria (before 
transplantation)

−0.060 0.942

Neutrophil count (before transplantation) 0.025 1.025

Sodium (before transplantation) −0.010 0.990
Tumor burden score (before 

transplantation)
0.038 1.039

NOTE: The model was fit to a standardized predictor matrix, that 
is, the mean and standard deviation were subtracted prior to model 
fitting. However, these coefficients have been rescaled according 
to the standard deviation to ensure that the hazard ratios are in-
terpretable with respect to the original units (with the exception of 
log- AFP, which must still be interpreted on the natural log- scale).
y  =  (age × 0.23)  +  (etiology other × −0.15)  +  (total tumor di-
ameter  ×  0.04)  +  (largest lesion size [at listing]  ×  0.02)  +  
(log- AFP*0.19)  +  (largest lesion size lesion [before 
LT] × 0.02) + (within Milan criteria [before LT] × −0.06) + (neu-
trophil count [before LT]  ×  0.02)  +  (sodium [before 
LT] × −0.01) + (tumor burden score [before LT] × 0.04)
Age: per 1- year increase
Etiology: other (reference non- other)
Total tumor diameter: per 1- cm increase
Largest lesion size (at listing): per 1- cm increase
AFP: per 1- unit increase (ng/mL)
Largest lesion size (before LT): per 1- cm increase
Within Milan criteria (before LT): reference not within Milan cri-
teria before LT
Neutrophil count (before LT): per 1- unit increase (×109/L)
Sodium (before LT): per 1- unit increase (mmol/L)
Tumor burden score (before LT): per 1- unit increase.
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Hepatoceullar Carcinoma (HALT- HCC).(34) These 
models were selected because they use pre- LT vari-
ables and evaluated a similar outcome (recurrence) 
which allowed for appropriate comparisons to be per-
formed. The AFP model and the MORAL score are 
well- known prognostic scores used to predict HCC 
recurrence following LT.(15,33) The AFP model aims 
to identify HCC candidates with a low recurrence risk 
who would otherwise be excluded based on the Milan 
criteria. It also takes into account the largest tumor 
diameter, number of nodules, and the AFP level.(22) 
The pretransplantation MORAL score (pre- MORAL 
[herein referred to as MORAL score]) uses preoper-
ative neutrophil- to- lymphocyte ratio, AFP, and the 
maximum tumor size to predict post- LT recurrence. 
The AFP variables at listing and delisting were log- 
transformed to satisfy the assumption of normally 
distributed residuals. The Tumor Burden Score,(35) an 
input to the HALT- HCC model, was derived and used 

as an engineered predictor to the machine learning 
models for fairness. For each comparison algorithm, 
the corresponding Cox model was recalibrated on our 
development set and evaluated on the held- out test set. 
As expected, this improved the resulting concordance 
statistics on the held- out test set for each of the com-
parison models. In Table 2, we report the differences 
between the coefficients reported in each comparison 
model’s original publication and the coefficients found 
by recalibrating the Cox model on our development 
set. Lastly, we assessed, both before and after recali-
bration, whether CoxNet offered advantages over the 
other models by testing for improvement in model per-
formance according to the concordance index.

FOllOW- Up anD recUrrence 
DeFinitiOn
Following transplantation, patients were followed with 
either contrast- enhanced computed tomography of 
the chest and abdomen or ultrasound together with 
AFP measurements in 3- month intervals for the first 
2 years. After that, surveillance occurs every 6 months 
for 2 years and then yearly. Additional imaging stud-
ies were performed for any suspected recurrence, in-
cluding contrast- enhanced computed tomography, 
contrast- enhanced ultrasound, or magnetic resonance 
imaging.(36) The time to recurrence was calculated 
from transplantation to the first imaging study that 
confirmed tumor recurrence.

Data analYsis
Continuous variables were described using median and 
interquartile range (IQR), whereas categorical variables 
were described using frequency and percentage (%). 
Disease- free, intention- to- treat, and posttransplanta-
tion survival were evaluated using the Kaplan- Meier 
method in R (R Core Team).(37) All models were fit using 
the scikit- survival package in Python 3.6.(38) The grid 
search space for each model is given in the Supporting 
Material. All P values were computed via bootstrapping 
(the baseline procedure described by Kang et al.(39)), ex-
cept where expressly noted. Two- sided z- tests were used 
in our initial models (CoxNet, survival random forest, 
survival support vector machine, and DeepSurv) to test 
the alternative hypothesis of differences in model per-
formance. One- sided z- tests were used to compare our 
best model with 3 competing models in order to test the 
alternative hypothesis that our model performs better 
than previously published algorithms.

taBle 2. coefficient comparison

Variable/Condition
Reported 

Coefficient
Refitted 

Coefficient

a. MORAL model
Maximum AFP ≥200 (before 

transplantation)
0.318 0.483

Neutrophil- to- lymphocyte ratio ≥5 (before 
transplantation)

0.417 0.063

Maximum lesion size ≥3 cm (before 
transplantation)

0.265 0.454

b. AFP model
Maximum lesion size ≤3 cm (at listing) — — 

3 cm < maximum lesion size ≤6 cm (at 
listing)

0.069 0.111

Maximum lesion size >6 cm (at listing) 0.343 0.356

Lesion count ≤3 (at listing) — — 

Lesion count ≥4 (at listing) 0.177 0.157

AFP ≤100 (at listing) — — 

100 < AFP ≤ 1000 (at listing) 0.170 0.097

AFP >1000 (at listing) 0.241 0.279

c. HALT- HCC model
Tumor Burden Score (before 

transplantation)
0.376 0.363

log- AFP (before transplantation) 0.547 0.609
MELD- Na score (before transplantation) 0.077 −0.028

NOTE: All coefficients for each model were normalized such that 
their absolute values sum to one, to account for potential scale dif-
ferences when comparing the between columns. Directional dis-
crepancies are underlined. AFP units is in ng/mL. All coefficients 
for each model were normalized such that their absolute values sum 
to 1, to account for potential scale differences when comparing the 
between columns. Directional discrepancies are underlined.
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Results
The study data set comprised 1013 patients with 
HCC listed for LT. Of these, 831 (82%) were male, 
and the most common cause of underlying liver dis-
ease was chronic hepatitis C (51.7%). At listing, 304 
(30%) patients were beyond Milan criteria. Of the 
listed patients, 739 (73.0%) underwent LT, of which 
142 (19.2%) had grafts from a living donor. While 
on the waiting list, 625 (61.7%) underwent bridg-
ing treatment, with 241 (38.6%) having more than 1 
treatment. Of a total of 977 bridging therapy treat-
ments, the majority received either radiofrequency 
ablation (564 treatments [57.7%]) or transarterial 
chemoembolization (311 treatments [31.8%]). The 
median time on the waiting list was 6.1  months 
(IQR, 3.0- 10.3). During the wait time, 269 (26.6%) 
patients dropped out and 5 had not experienced an 
event (dropout or transplantation) by the end of the 
study follow- up. Baseline patient characteristics are 
summarized in Table 3.

Among the patients who underwent LT, 143 
(19.4%) had tumor recurrence after a median fol-
low- up of 4.5  years (IQR, 2.0- 8.9). The 1- , 3- , and 
5- year disease- free survival rates were 91.5%, 82.4%, 
and 79.9%, respectively (Fig.  1A). Most recurrences 
(79%) occurred in the first 3 years after LT, as demon-
strated by Fig. 2. The median intention- to- treat over-
all survival was 3.4 years (IQR, 1.5- 7.4). The 1- , 3- , 
and 5- year intention- to- treat overall survival rates 
were 83.3%, 63.8%, and 55.5%, respectively (Fig. 1B).

When using these data to fit CoxNet, survival 
random forest, survival support vector machine, 
and DeepSurv models, CoxNet performed the best 
according to cross- validation within the development 
set (Supporting Table 1), although this was not sta-
tistically significant. The characteristics of the der-
ivation and test cohorts are provided in Supporting 
Table 2. Based on both model performance and par-
simony, CoxNet was selected as the final model, and 
trained on the full development set. The CoxNet 
model being the best performing model also signified 
that nonlinear interactions were not included. The 
selected optimal hyperparameters include an L1- ratio 
of 0.55 (commonly referred to in the elastic net lit-
erature as α), suggesting that the benefit of CoxNet 
is its ability to both automatically exclude meaning-
less predictors via L1- regularization and reduce the 
contributions of less meaningful predictors via L2- 
regularization. The inclusion of particular variables is 

always determined by their contribution to predictive 
performance, rather than their individual statistical 
significance— a fundamental difference between the 
regularization- based and forward selection– based 
approaches, respectively.

taBle 3. patients Baseline characteristics

Variable Total (n = 1013)

Male sex, n (%) 831 (82.0)

Age (years), median (IQR) 59 (53.6- 63.7)

BMI (kg/m2), median (IQR) 26.9 (24.2- 30.4)

MELD score at listing, median (IQR) 10 (8- 14)

AFP level at listing (ng/mL), median (IQR) 11 (5- 45)

Etiology, n (%)

HCV 524 (51.7)

HBV 204 (20.1)

ETOH 138 (13.6)

NASH 67 (6.6)

Other 80 (7.9)

Months on waiting list, median (IQR) 6.1 (3.0- 10.3)

Median tumor size at listing (cm), median (IQR) 2.8 (1.9- 3.9)

Tumor number at listing, median (IQR) 1 (1- 2)

Within Milan criteria at listing, n (%) 709 (70.0)

Bridging therapy (yes), n (%) 625 (61.7)

Number of bridging therapies, n (%)

0 388 (38.3)

1 384 (37.9)

2 156 (15.4)

3 64 (6.3)

4 19 (1.9)

5 2 (0.2)

Dropout rate while on waiting list, n (%) 269 (26.6)

Median tumor size before LT (cm), median (IQR) 1.6 (0.0- 3.0)

Tumor number before LT, median (IQR) 1 (0- 2)

Within Milan criteria before LT, n (%) 580 (78.5)

Transplanted, n (%) 739 (73.0)

Living donor liver graft, n (%) 142 (19.2)

Milan on pathology, n (%) 368 (49.9)

Median tumor size on pathology (cm), median 
(IQR)

3.0 (2.0- 4.0)

Tumor number on pathology, median (IQR) 5 (3- 8)

Tumor differentiation, n (%)

Well 89 (14.5)

Moderate 457 (74.3)

Poor 69 (11.2)

Unable to be assessed/missing 124

Microvascular invasion (yes), n (%) 207 (28.0)

Follow- up of transplanted patients (years), median 
(IQR)

4.5 (2.0- 8.9)

Recurrence rate, n (%) 143 (19.4)
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Within the held- out test set, we next assessed whether 
our CoxNet model outperformed the AFP, MORAL, 
and HALT- HCC scores, using the coefficients given 
in their original publications. Indeed, our final model, 
with a concordance of 0.75, outperformed the MORAL 
score, with a concordance of 0.62 and a difference of 0.13 
(1- sided 95% confidence interval [CI], >0.04; P = 0.01); 
the AFP score, with a concordance of 0.63 and a differ-
ence of 0.12 (1- sided 95% CI, >0.03; P  =  0.02); and 
the HALT- HCC score, with a concordance of 0.64 and 
a difference of 0.10 (1- sided 95% CI, >0.03; P = 0.02). 
Lastly, the conventional models were recalibrated on 
the development set used to train our machine learning 
model, and we subsequently assessed whether the gain 
in performance of the machine learning approach holds 
over the recalibrated models. The recalibrated MORAL 
score, with a concordance of 0.64, continued to be out-
performed by the CoxNet model (1- sided 95% CI, 
>0.02; P = 0.03). Similarly, the recalibrated AFP score, 
with a concordance of 0.64, was outperformed by our 
model (1- sided 95% CI, >0.01; P = 0.04). However, the 
recalibrated HALT- HCC score performed well (with a 
concordance of 0.72) and was not significantly outper-
formed (1- sided 95% CI, ≥0.048; P = 0.29).

As the final model is linear, its coefficients (Table 1) 
can be interpreted as in other Cox models. In particular, 

the risk score can be computed by multiplying the coef-
ficient for each variable with its value and summing up 
the products. In addition, the final machine learning 
model is available as an online calculator at https://
hccca lcula tor.ccm.sickk ids.ca.

Discussion
This study aimed to develop an accurate posttrans-
plantation HCC recurrence calculator using available 
clinicopathologic data. A machine learning approach 
was used due to the vast number of potentially pre-
dictive factors and the possibility of multiple nonlinear 
interactions. Our results demonstrate the feasibility of 
applying machine learning in transplantation oncology 
and suggest that this risk prediction method provides 
improved accuracy over other currently available risk 
scores, including AFP and MORAL.

Four well- known supervised learning algorithms 
were developed in this study, with the CoxNet model 
selected based on model performance and parsi-
mony. To assess this new Toronto HCC recurrence 
calculator’s validity, its performance was compared 
with 3 well- known prognostic calculators— the AFP 
model,(33) the MORAL score,(40) and HALT- HCC 

Fig. 1. (A) Posttransplantation disease- free survival. (B) Intention- to- treat overall survival.

https://hcccalculator.ccm.sickkids.ca
https://hcccalculator.ccm.sickkids.ca
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score.(34) The coefficients derived for the recalibrated 
AFP and MORAL models largely resemble those 
provided in the original publications. By contrast, the 
MELD– sodium (MELD- Na) coefficient derived for 
the HALT- HCC score in our data set was direction-
ally different from the published coefficient, suggesting 
a discrepancy. Notably, the MELD- Na in the HALT- 
HCC was the only directionally discrepant variable 
across all 3 comparison models. The improved per-
formance of the Toronto HCC recurrence calculator 
may be due, in part, to the methodologic advantages 
of the machine learning approach. The HALT- HCC 
score was generated using a cohort of 420 patients from 
Cleveland Clinic and subsequently validated in a larger 
cohort of US liver recipients from the Scientific Registry 
of Transplant Recipients (SRTR), where Cleveland 
Clinic patients are included.(34) In the subsequent inter-
national validation cohort by Firl et al., of the 4089 
patients included, 1851 were from North America (of 
which the US constituents were part of the SRTR data; 
460 [45.1%] in the training and 1391 [45.3%] in the 
validation cohorts, respectively).(41) Given this overlap 
in patients in the development and subsequent valida-
tion cohort, it is conceivable that this may have resulted 
in overly optimistic c- indices. Ideally, a fair assessment 
of the performance of the present machine learning 

algorithm (MLA) model and the HALT- HCC should 
thus be done in an external patient cohort. In other 
words, a cohort that does not contain any patients used 
to derive the HALT- HCC or patients from Toronto. 
Notwithstanding this, this model development aimed 
not necessarily to outperform currently available models 
per se, but rather to evaluate the feasibility of MLA as a 
proof- of- concept study and shed light on various tech-
niques and potential pitfalls in the process. By statisti-
cally appraising all variables in the data set, potentially 
informative features were integrated without additional 
selection bias. Notably, the critical variable selection 
step sifted out poorly predictive or collinear variables, 
limiting noise and over- fitting, and in this way worked 
to optimize the model.

Although our model exhibited strong predictive 
performance using internal data, external validation 
is required before the model can be more broadly 
applied.(42) Within this context, given that many trans-
plantation centers restrict listing to patients that meet 
the Milan criteria, it is unclear how well the present 
model would perform in that setting, especially given 
that the present cohort included a higher proportion 
of patients that exceeded Milan criteria. In a study 
by Schrem et al., a prognostic model developed in 
Germany to predict 90- day post- LT mortality based 
on pretransplantation donor and recipient variables 
could not be validated in a cohort of patients from the 
United Kingdom.(43) This highlighted the challenge 
of suboptimal translation between 2 transplantation 
environments with different donor/recipient popula-
tions, health care systems, allocation policies, and clin-
ical/surgical practices. Because of the long- standing 
application of the Extended Toronto Criteria,(19) in 
our model, patients were not excluded based on HCC 
size or number alone, resulting in 30% of the patients 
in the data set falling beyond Milan criteria. This fur-
ther reflects the ability of the algorithm’s predictive 
performance to be maintained for patients who are 
beyond conventional macromorphological transplan-
tation criteria. Further, a prediction model validated 
on internal data alone will likely yield the most opti-
mistic representation of the model. Nonetheless, it 
remains to be determined whether internally derived 
prognostic models are required to be generalizable to 
other settings or whether individual health care sys-
tems should optimize models to serve their specific 
population best.(44,45) Regardless, as this study sug-
gests, incorporating factors reflective of tumor biology, 
with an emphasis on excellent covariate fidelity and 

Fig. 2. Distribution of recurrences over time (months).
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granularity, remains an essential tenet in developing a 
calculator with high accuracy.

Over the past 2 decades, machine learning algo-
rithms have been increasingly applied for cancer 
diagnosis, prognostication, and treatment outcome pre-
diction.(31,42,46,47) Recently, an MLA approach based 
on a random forest workflow has been developed by a 
group in Germany to predict disease- free survival after 
liver resection for HCC.(48) This model had a robust 
predictive potential for early recurrence with an area 
under the curve of 0.79 (0.66- 0.92).(48) In our model, 
recurrence was selected rather than recurrence- free 
survival (which considers both death and recurrence as 
an event), as it may potentially offer greater clinically 
relevant insight to refining postoperative management, 
given that we censored patients who died from non- 
HCC related reasons. As the standard machine learn-
ing workflow involves model performance monitoring 
and retraining to account for model drift, a multidis-
ciplinary partnership between clinicians and data sci-
entists is required, with a commitment to the curation 
and iterative maintenance of data sets to allow for the 
development of meaningful decision- support tools.(45) 
This process should involve, first and foremost, a 
robust, consistent, and objective means of collecting 
data. The data may be clinicopathologic characteris-
tics from electronic medical records, genomics, and 
imaging studies.(31) Clinicians should strive to estab-
lish interdisciplinary partnerships that strive toward a 
common goal, rather than a “turf and credit” mindset. 
Leveraging the knowledge and technologies of such 
partners can achieve synergism. For instance, clini-
cians help provide a clinically relevant outcome, and 
data scientists can identify the optimal methodology to 
make predictions for the outcome based on the avail-
able data. The HCC recurrence calculator developed 
in this study demonstrates the potential for integrat-
ing machine learning in transplantation oncology. 
Increased accuracy in outcome prediction enables cli-
nicians and patients to make better- informed decisions 
regarding their care. In the case of HCC, where LT is 
a potentially curative treatment modality, the impor-
tance of a quantifiable and accurate recurrence calcula-
tor is of particular relevance to ensure fair and equitable 
access to the limited number of available donor organs.

This study is limited by its retrospective single- center 
study design. Further, the generalizability of the results 
requires external validation. Although machine learn-
ing results yield high- performance prediction models, 
several additional limitations warrant mention. First, 

the quality of the data output is dependent on the 
quality of data input. Objective data are thus preferred 
over subjective data, such as the modified Response 
Evaluation Criteria in Solid Tumors (mRECIST), 
which may differ between institutions and radiologists, 
for model input, the latter of which is prone to bias. As 
a surrogate for response, the size of the largest tumor 
size at both listing and before LT were included. The 
latter variable captured the size of the viable portion 
of the tumor, which was smaller when there was a 
successful response to bridging therapy. Although the 
variables used in this study were objective, misclassi-
fication bias may affect the validity of model perfor-
mance. Second, despite the high predictive capacity 
of machine learning models, there is potential for pre-
diction “overfitting,” which may generate overly opti-
mistic results.(49) This limitation may be overcome by 
external validation before algorithms are adopted for 
clinical use. Previous non- MLA– based prognostic 
scores have included AFP response and found it to be 
predictive of outcomes.(24) In the present MLA- based 
model, both AFP at listing and AFP before LT were 
introduced into the model, but only AFP before LT 
remained, as it resulted in improved model predictive 
performance. Because AFP response is a linear combi-
nation of AFP before transplantation and AFP at list-
ing, all models, including the selected elastic net model, 
implicitly consider AFP response. As with other HCC 
prognostic calculators, it is important to note that the 
time point at which the values of relevant variables are 
known dictates the clinical time point when the model 
predictions are relevant. For instance, variables known 
just before LT are only relevant for patients who can 
reach that point and not dropout from the waiting list. 
As such, our model, similar to many of the other well- 
known HCC prediction models, would be unable to 
guide the decision of whether or not to list a patient 
for transplantation given that it does not represent an 
intention- to- treat analysis of survival but rather than 
a per- protocol (from the time of LT) prediction for 
recurrence. The utility of this model is therefore pri-
marily to provide a prognostic assessment of oncologic 
outcomes from the time of transplantation, which may 
potentially help individualize screening for recurrence 
or lower thresholds for early institution of future adju-
vant therapies/clinical trial inclusion based on predicted 
recurrence risk. Future models should also seek to eval-
uate the prognostic performance of transplantation 
outcomes from before or at the time of listing, as this 
would potentially help refine current patient selection 
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for LT in the treatment of HCC. Lastly, variables from 
multiple time points (transplantation listing, bridging 
therapy, and transplantation) were incorporated into 
this model. This contrasts with de facto data obtained 
across multiple institutions in electronic health records 
to facilitate billing or patient care, which may lack the 
same standardization, completeness, or granularity.(44) 
This may, in turn, limit the calculator’s performance in 
those settings.(47) Notwithstanding these limitations, 
machine learning algorithms represent a powerful 
statistical platform that can improve clinical decision 
making and, most importantly, patient outcomes.

Conclusion
The development of a posttransplantation HCC 
recurrence risk calculator using machine learning is 
feasible using a comprehensive data set of relevant 
patient and tumor features before LT. This proof- of- 
concept study underscores the potential of a machine 
learning approach to augment individual clinical de-
cision making and help safeguard equitable organ 
allocation.
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