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were superior to mesenchymal stem cell exosomes in 
mitigating chemotherapy induced neurotoxicity and in 
enhancing antineoplastic drug activity (data not shown). 
Although miRNA-214 has been shown to target p53 in 
breast cancer [60], this is not likely the mechanism by 
which hCEC-Exo-214 exert their effect in HCC. hCEC-
Exo-214 significantly increased anti-cancer drug activity 
in both HepG2 and Hep3B cell lines. However, HepG2 
cells are p53 wildtype allele, whereas Hep3B cells are p53 
null allele [63]. Instead, this study suggests that hCEC-
Exo-214 target P-gp and SF3B3. Western blot analysis 
showed significant reduction in protein levels of both 

P-gp and SF3B3, two genes directly or indirectly targeted 
by miR-214 (Figure 5). Both genes have been reported 
to be involved in cancer progression. P-gp mediates 
chemoresistance in HCC [27, 64]. Increased expression of 
P-gp was observed in HCC cells resistant to 5-fluorouracil 
and epirubicin, as well as sorafenib [65, 66]. Reducing 
P-gp using antisense RNA attenuates doxorubicin 
resistance in HepG2 cells [67], whereas increased P-gp 
levels substantially reduces sorafenib efficacy in HCC 
cells [68]. SF3B3 is a pro-oncogene in renal cancer and 
knockdown of SF3B3 in renal cancer cells significantly 
inhibits tumor growth in tumor-bearing mice [69]. SF3B3 

Figure 5: The effect of hCEC-Exo-214 in combination with anti-cancer drugs on P-gp and SF3B3 in HCC cells. (A and 
B) Representative Western blot images and quantitative data of protein levels of P-gp (A) and SF3B3 (B) in HepG2 and Hep3B cells 2 
days after treatment. Blot images of sorafenib treatment set were combined with no drug and oxaliplatin treatment set. Western blot band 
intensity was quantified by using ImageJ with normalization to GAPDH. Values are expressed in mean ± SEM. N = 3. (C) Dual-luciferase 
activity assay. Putative miR-214-3p target sequence of SF3B3 3′-UTR region were listed. WT: wildtype. mut: mutant. Assay was performed 
in HepG2 cells. NC: negative control. Values are normalized and are presented in mean ± SEM. N = 3 individual experiments.
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filter (Millipore, CA, USA) to remove dead and large cell 
debris. The flow through was then centrifuged at 100,000Xg 
for 2 hours. The pellet was dissolved in 200 μl sterilized 
PBS, and the supernatant was collected as a negative control. 
The particle numbers and size of harvested hCEC-exosomes 
were analyzed by Nanoparticle Tracking Analysis (NTA) 
system (IZON, UK). Transmission electron microscope 
(TEM) and Western blot analysis were performed to 
characterize hCEC-exosomes [74]. Total proteins from 
hCEC-exosomes were collected using 2X lysis buffer (RIPA, 
Sigma) supplemented with Protease Inhibitor Cocktails set 
I (100X) (MilliporeSigma, Burlington, MA, USA) followed 
by Western Blot analysis of exosomal marker proteins. 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 
diplenyltetrazolium bromide) assay

To measure cell viability, cells were seeded in 
96-well plates at a density of 800 cells per well. After 
overnight incubation, culture medium was removed, and 
cells were rinsed with PBS and incubated in complete 
medium with indicated treatment. After 5 days of treatment, 
medium was removed and MTT was added to each well 
with an additional 4 hr incubation to allow mitochondrial 
dehydrogenase to convert MTT into insoluble formazan 
crystals. The medium was then aspirated, and formazan 
solubilized by adding 150 μl of DMSO. The absorption of 
solubilized formazan was measured at a wavelength of 490 
nm by an ELISA plate reader (EL340 microplate reader; 
Bio-Tek Instruments, Winooske, VT, USA). 

Invasion assay

Invasion assay was performed according to our 
published protocol with modification [75]. Specifically, 
24-well Plate invasion chambers were pre-coated with 
Matrigel (Corning, Corning, NY, USA). HepG2 or 
Hep3B cells (5 × 104), after receiving indicated treatment 
for 2 days, were re-suspended in 0.5 ml of serum-
free medium and loaded to the upper chamber while 
the lower chamber was filled with 0.5 ml of complete 
medium containing FBS, which served as a chemo-
attractant. After 16 hr of incubation at 37°C, cell ability 
to penetrate the extracellular matrix (ECM) was assessed 
by staining the cells on the lower surface of the membrane 
with CellTracker™ Green (Molecular Probes, Eugene, 
OR, USA). Four fields of cells were counted randomly 
in each well under a fluorescent microscope at 200× 
magnification. Data are normalized to control treatment, 
which is set as 1, and are expressed as mean ± SEM of 
three independent experiments.

Western blot analysis

HepG2 and Hep3B cells (5 × 105 cells) were seeded 
in T25 flasks. One day after seeding, cells were subjected 
to indicated treatment for 48 hr. Cells were rinsed with 

ice cold PBS followed by extraction in 500 μl RIPA lysis 
buffer (Life Technologies, Carlsbad, CA, USA). Equal 
amounts of proteins, as determined by the BCA protocol 
(Pierce, Rockford, IL, USA), were run on 10% Tris-
Glycine gels (Invitrogen) and then transferred to PVDF 
membranes (Whatman). The membranes were blocked 
with 0.1% I-Block (Applied Biosystems, Foster, CA, 
USA) in PBS-T (0.1% Tween-20), followed by incubation 
with primary antibodies against P-gp (ab170904, Abcam), 
MRP2 (R260, Cell Signaling), SF3B3 (ab209402, 
Abcam), GAPDH (ab9484, Abcam), CD9 (ab92726, 
Abcam), CD63 (ab134045, Abcam), and Alix (3A9, Cell 
Signaling). Bands were detected using SuperSignal West 
Pico chemiluminescent protein detection kits (Pierce). Each 
experiment was repeated three times. The densities of the 
bands were analyzed using ImageJ software.

Isolation of total RNA and quantitative reverse 
transcribed-PCR

After 2 days of treatment, HepG2 and Hep3B cells 
were lysed in Qiazol reagent, and the total RNA was isolated 
using miRNeasy Mini kits (Qiagen, Valencia, CA, USA). 
miRNA was stem-loop reverse transcribed (RT) with the 
miRNA Reverse Transcription kit (Applied Biosystems) and 
real-time PCR amplification was performed with the TaqMan 
miRNA assay (Cat# 4427975, Applied Biosystems), which is 
specific for mature miRNA sequences. U6 snRNA was used 
as the internal control for TaqMan miRNA assay to detect the 
expression level changes of miR-214 in cells. Primers used 
for miR-214-3p (Assay ID: 002306), miR-92-3p (Assay ID: 
000431), U6 (Assay ID: 001973). 

Dual-luciferase activity assay

Luciferase reporter assay was conducted according 
to previous report [76]. Briefly, HepG2 cells were cultured 
in 6-well plates and co-transfected with 3 µmol of pMIR-
REPORT (Applied Biosystems) containing either SF3B3-
3′UTR-WT or SF3B3-3′UTR-mut, 30 pmol of miR-214-3p 
mimics (Cat#:4464066. ThermoFisher Scientific, Waltham, 
MA) or negative control (Cat#:4464058), and 1µmol of 
pRL-TK (Promega, Madison, WI, USA) containing 
Renilla luciferase per well. Transfection was performed 
by means of Lipofectamine 2000 (Invitrogen) and Opti-
MEM I reduced serum medium (Invitrogen). Three days 
after transfection, firefly and Renilla luciferase activity was 
analyzed by using the Dual-Luciferase Reporter Assay kit 
(Promega) and plate reader (Perkin Elmer, Waltham, MA, 
USA). Data were presented as relative luciferase activity. 
Three independent experiments were performed.

Statistical analysis

Data are presented as mean and standard error. 
Statistical significance was analyzed by Student T-test. P 
value less than 0.05 (P < 0.05) was considered significant. 
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