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Abstract
Purpose of Review Hyperthermia is used to treat peritoneal surface malignancies (PSM), particularly during hyperthermic 
intraperitoneal chemotherapy (HIPEC). This manuscript provides a focused update of hyperthermia in the treatment of PSM.
Recent Findings The heterogeneous response to hyperthermia in PSM can be explained by tumor and treatment conditions. 
PSM tumors may resist hyperthermia via metabolic and immunologic adaptation. The thermodynamics of HIPEC are 
complex and require computational fluid dynamics (CFD). The clinical evidence supporting the benefit of hyperthermia is 
largely observational.
Summary Continued research will allow clinicians to characterize and predict the individual response of PSM to hyperther‑
mia. The application of hyperthermia in current HIPEC protocols is mostly empirical. Thus, modeling heat transfer with CFD 
is a necessary task if we are to achieve consistent and reproducible hyperthermia. Although observational evidence suggests 
a survival benefit of hyperthermia, no clinical trial has tested the individual role of hyperthermia in PSM.

Keywords Hyperthermia · Hyperthermic intraperitoneal chemotherapy · Peritoneal surface malignancy · Peritoneal 
cancer · Cancer treatment · Thermodynamic model · Prognosis · Heat transfer · Survival

Introduction

Hyperthermic intraperitoneal chemotherapy (HIPEC) was 
first introduced in clinical practice by Spratt in 1980 [1]. 
Since then, the use of hyperthermia as a therapeutic com‑
ponent for peritoneal surface malignancies (PSM) has been 

adopted globally [2]. The combination of chemotherapy and 
hyperthermia has been proposed to eliminate microscopic 
disease, not addressed by cytoreductive surgery alone, thus 
improving the oncologic outcome of these patients [3]. In 
addition to the pharmacokinetic advantage inherent to the 
intracavitary delivery of cytotoxic drugs, which results in 
regional dose intensification, hyperthermia has the added 
advantage of direct cytotoxic effect on tumor cells [4••].
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The application of hyperthermia in HIPEC occurs 
through the intraabdominal perfusion of heated fluid. A 
machine, providing the flow and the heating mechanism, 
recirculates the fluid between the inflow and outflow cath‑
eters. The perfusion of fluid can occur via the open coliseum 
or closed techniques. In the open technique, the abdominal 
wall is retracted, a tent is developed to accommodate the 
fluid, and the chemotherapeutic agent is uniformly exposed 
to all anatomical structures by continuous manual stirring 
by the surgeon [5]. In the closed technique, the inflow and 
outflow catheters are placed in the abdominal cavity and 
the skin is sutured tightly to ensure an adequate seal prior 
to circulating the chemotherapeutic drug using a perfusion 
machine [6].

Despite its widespread acceptance, there is great variabil‑
ity in the protocols and techniques used for HIPEC [2]. In 
recent years, the results of randomized controlled trials have 
questioned the therapeutic benefit of HIPEC after complete 
surgical cytoreduction [7••, 8••]. However, it is still unclear 
whether these results are due to cancer‑specific sensitivi‑
ties, choice of chemotherapeutic agent, inadequate thermal 
exposure, or application of the protocol. The present review 
aims to provide a focused update of the current knowledge 
of hyperthermia in PSM, understand heat transfer and its 
clinical consequences during HIPEC, and review the most 
recent clinical studies.

The Cellular Response to Therapeutic 
Hyperthermia in Peritoneal Surface 
Malignancies

It is well known that elevated temperatures alone, by cause 
of protein denaturation and aggregation, can induce cell 
death. As described by Dewey, the survival of cell lines 
at temperatures above 43°C follows a straight line in an 
Arrhenius plot, indicating a dose‑dependent relationship 
between temperature and time on survival. A biphasic plot 
was observed below this threshold, indicating the develop‑
ment of thermotolerance [9]. Based on these observations, 
equivalent thermal damage can be estimated as the thermal 
isoeffect dose, such as the cumulative equivalent minutes at 
43°C [10]. Ultimately, cell death occurs early due to apop‑
tosis or later due to necrosis, cell‑cycle arrest, and loss of 
clonogenicity [11]. Because cancer cells are known to be 
more susceptible to thermal cytotoxicity than normal human 
cell lines [12], therapeutic hyperthermia can be exploited in 
patients with cancer.

The cellular response to non‑lethal hyperthermia is 
largely governed by heat‑shock proteins (HSP) [13]. Fol‑
lowing heat exposure, heat‑shock factor 1 is liberated from 
HSP70 and HSP90 (which are recruited to stressed pro‑
teins) and forms oligomers that bind more avidly to the heat 

shock element, increasing the expression of HSP [13, 14]. 
Elevated levels of HSP‑70 and HSP‑90 are demonstrated 
both in stomach cancer cells and in the serum of patients 
undergoing HIPEC for stomach cancer [15]. Among a vast 
array of functions, the HSP network works in the unfolding 
and refolding of stress‑denatured proteins, regulation of the 
cell cycle, proliferation, and apoptosis [16]. In this manner, 
HSPs can prevent irreversible protein aggregation and cell 
death secondary to heat exposure and are widely regarded 
as targets for antitumor therapies [13, 17].

The expression of HSPs can also modulate the immune 
system. Akyol et al. demonstrated elevated levels of HSP10 
in the serum of ovarian cancer patients, which inhibited the 
expression of CD3‑zeta and prevented the activation of T 
cells [18]. When released into the circulation, HSPs can 
also be presented to dendritic cells (via CD91) and induce 
a Th1‑like response against cancer [19]. Finally, Sedlacek 
et al. showed that HSP gp96 activates NK cells, inducing a 
phenotype of increased cytokine production [20].

The PSM comprise a histologically heterogeneous group 
of cancer cell lines with various origins, including gastric, 
colorectal, ovarian, uterine, mesothelial, and appendi‑
ceal [21]. As thermal sensitivity varies between cell lines 
[22–24], a single thermal isoeffect dose is unlikely to be 
effective for all. Indeed, it has been pointed out that the 
biological rationale of temperatures and heating periods in 
HIPEC is lacking [4••, 24], stressing the need for continued 
research.

In a recent study, Helderman et al. used human colorectal 
cancer cell lines and exposed them to increasing tempera‑
tures with and without chemotherapy [4••]. The in vitro 
studies showed a dose‑dependent relationship between 
temperature and decreased cell viability at 48 hours, and 
decreased clonogenic activity at 10 days following 60 min‑
utes of treatment, particularly with temperatures of at least 
41°C. Likewise, Bespalov et al demonstrated that hyperther‑
mia at 41°C improved the survival of female Wistar rats who 
were inoculated with ovarian cancer cells, increasing their 
life expectancy by 14 days [25].

Although hyperthermia can alone produce cell death, the 
most important purpose of hyperthermia in current HIPEC 
protocols is chemosensitization. In vitro studies show that 
the effect of platinum‑based agents is temperature depend‑
ent, with increasing levels of apoptosis and a predominant 
arrest of all cell lines in the G1 and G2 phases [9]. Pharma‑
cokinetic studies demonstrate that hyperthermia increases 
the concentration of chemotherapeutic agents in intraab‑
dominal tissues and the rate of systemic absorption, with no 
significant changes in the maximum systemic concentrations 
[26, 27••].

Unfortunately, thermal enhancement is not uniform 
across chemotherapeutic agents or cells. For instance, Hel‑
derman et al. observed that while temperature‑dependent 
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synergy occurred with platinum‑based drugs (e.g., oxali‑
platin, cisplatin, and carboplatin), colorectal cancer cells 
were equally susceptible to mitomycin or 5‑FU, regardless 
of hyperthermia [4••]. In another study, de Bree et al. 
cultured ovarian cancer (SKOV‑3, OVCAR‑3) cells and 
exposed them to paclitaxel and docetaxel in conditions 
of normothermia (37°C) or hyperthermia (41.5°C) [24]. 
Exposure of SKOV‑3 cells to hyperthermia only resulted 
in thermal enhancement at 24 hours, with no differences at 
7 days. In contrast, OVCAR‑3 cells had a higher prolifera‑
tion rate at 24 hours, but evidence of thermal enhancement 
at 7 days. Interestingly, OVCAR‑3 cells exposed to 2h of 

hyperthermia alone showed a trend toward increased pro‑
liferation at 7 days.

Atallah et al. exposed ovarian (IGROV‑1) and colon can‑
cer (Caco‑2, HT‑29) cells to oxaliplatin alone or in combi‑
nation with 1h of hyperthermia at 42°C [22]. Hyperthermia 
effectively decreased the dose to achieve 50% growth inhi‑
bition across all cell lines by several orders of magnitude. 
Notably, while IGROV‑1 cells arrested in G1 phase (via p53) 
or G2‑M phases (upregulation of cyclins A and B), HT‑29 
cells arrested in mid‑G1 (via ckd2 inhibition).

Several mechanisms of resistance to hyperthermia have 
been elucidated recently (Table 1). Kanamori et al. found 

Table 1  Potential Mechanisms of Resistance to Therapeutic Hyperthermia in PSM Cell Lines

Author, year Cell line Type of cancer Hyperthermia exposure Mechanism(s) of resistance

Tu et al., 2018 [15] SGC7901 Gastric 41° C for 60 mins Overexpression of HSP90 
(stabilizes proteins for cell 
development, growth, and 
survival).

Overexpression of HSP70 
(interferes with apoptosis).

Tu et al., 2018 [15] AGS Gastric 41° C for 60 mins Overexpression of HSP90 
(stabilizes proteins for cell 
development, growth, and 
survival).

Overexpression of HSP70 
(interferes with apoptosis).

Cesna et al., 2019 [28] OVCAR‑3 Ovarian 43° C for 60 mins Heme‑oxygenase 1 prevents 
free heme from sensitizing 
cells to undergo apoptosis.

Sukovas et al., 2019 [29] 40, 43° C for 60 mins Stimulation of glutamine 
dehydrogenase (metabolic 
adaptation)

Kanamori et al., 2021 [30•] SKOV‑3 Ovarian 46° C for 60 mins Downregulation of glycolytic 
pathways and upregulation 
of mitochondrial pathways 
(metabolic adaptation)

Kong et al., 2020 [31] 37, 39, 41, 43, 45° C for 60 
mins

Overexpression of HSP27 ➔ 
reduced expression of Bax 
and Caspase‑3 ➔ increased 
Bcl‑2 ➔ reduced apoptosis.

Akyol et al., 2006 [18] Immune Function Study Ovarian No exposure Expression of HSP10 inhibited 
CD3‑zeta, preventing T‑cell 
activation.

Kimura et al., 2017 [32] MKN45 Gastric 43° C for 180 mins Expression of HSP110 and 
increased cell proliferation.

Hatakeyama et al., 2016 [33] SKOV3, HeyA8, ES2, and 
KLE

Ovarian 46° C for 60 mins Upregulation of CTGF and 
modulation of glycolysis‑
related genes.

Lis et al., 2011 [34] SKOV3/CAOV3 Ovarian 42° C for 60‑120 mins Activation of CXCR4 (prolif‑
eration) through mesenchy‑
mal stem cell secretion of 
CXCL12.

Liu et al., 2021 [35] SH‑10‑TC, HGC‑27 Gastric 42° C for 120 mins CDK6 upregulation via 
hyperthermia‑induced AKT 
inhibition, resulting in 
decreased apoptosis.
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that hyperthermia‑resistant SKOV‑3 cells responded to 
hyperthermia by downregulating glycolytic pathways (via 
ubiquitination of PKM 1/2) and sustaining ATP production 
by upregulating mitochondrial activity [30•]. In OVCAR‑3 
cells, metabolic adaptation to hyperthermia may occur via 
stimulation of glutamine dehydrogenase [29]. SKOV‑3 cells 
can also resist hyperthermia‑induced apoptosis via HSP27, 
which in turn promotes Bcl‑2 expression and inhibits the 
expression of Bax and Caspase‑3 [31]. In vitro studies sug‑
gest a variable expression of heme‑oxygenase 1 among cell 
lines and that silencing heme‑oxygenase 1 activity results in 
decreased cell viability of ovarian cancer cells (OVCAR‑3), 
but not in gastric cancer cells (AGS) [28].

Hyperthermia can also exert indirect effects by modu‑
lating the immune response. For instance, 2 hours of mild 
preoperative hyperthermia (39°C) in patients undergoing 
colorectal surgery increased the levels of HSP60, 70, and 
90, while ameliorating increases in TNF‑α and procalcitonin 
[36]. Others have documented an increased antigen‑specific 
cytokine response in T cells [37], and an enhanced IL‑2 
production by CD4 T‑cell activation [38]. In contrast, Ahl‑
ers et al. showed that after 1 hour of whole‑body radiant 
hyperthermia at 42°C, the populations of NK cells and γδ 
T cells increased, while the number of T cells decreased. In 
addition, the serum levels of IL‑12 and INF‑γ/IL‑10 ratio 
decreased [39]. In patients undergoing HIPEC, Roth et al. 
found that longer durations of hyperthermia (60 and 90 min‑
utes vs. 30 minutes) led to a secondary peak in CRP levels 
between postoperative days 5 and 8 [40].

Heat Transfer During HIPEC

In this section, we begin with the underlying physical prin‑
ciples necessary to comprehend and properly model HIPEC. 
Some of the limitations of the models used to describe the 
physical processes behind will be highlighted. From the 
physical point of view, an understanding of HIPEC requires 
connecting principles of heat transfer and fluid dynamics. 
Physical models of this process have been proposed in the 
literature [41–43], as well as experimental measurements of 
temperature distribution [44], the effect of high flow rates 
[45], and intraabdominal pressures during HIPEC [46].

The body temperature depends on the heat exchange during 
the surgery. The heat gained is heat transferred by the heated 
fluid and that due to the production from the metabolism. 
The first can be calculated with the input flow rate (assum‑
ing steady‑state flow, no accumulation) and the inflow and 
outflow temperatures; the second one is primarily a func‑
tion of the mass of the patient. The heat loss comes from 
mechanisms of energy transfer (radiation, convection, and 
conduction), as shown in Fig. 1A. Evaporative heat losses 
are negligible in the context of a closed HIPEC [43]. The heat 

loss by radiation, conduction, and convection is all roughly 
proportional to the surface area of the body, the skin, and the 
surrounding temperature. Because for radiation the rate of 
heat gain or loss is proportional to the fourth power of the 
absolute temperature of the skin (or clothing) minus the fourth 
power of the surrounding temperature, radiation is dominant 
in heat exchange when the temperature difference exceeds a 
few degrees (6°‑10°) [47]. A complete quantitative analysis of 
the heat exchange is a formidable task since it is necessary to 
know various parameters, including air velocity, air humidity, 
barometric pressure, the contact area with the materials in the 
operating room, the thermal conductivity of these materials, 
etc., parameters generally not reported in the literature.

On the back of such concerns, one can focus on modeling 
the heat exchange in the abdominal cavity [42, 48••]. In a 
simplified way, a four‑compartment model can be employed, 
with the four compartments being the organs, the peritoneal 
wall, the chemotherapeutic hot fluid, and the blood volume, 
as shown in Fig. 1D. The compartments exchange heat only 
through conduction and convection. A simplified model of 
the abdominal cavity was considered to simulate the inflow 
and outflow temperatures by Ladhari et al. [42] Recently, a 
more realistic model of the heat exchange in a rat was pre‑
sented by Loke et al. [48••].

Temperature changes in a cross section of tissue vary 
according to the position and the sinusoidal heat flux cre‑
ated by the blood flow, as proposed by the Pennes equation. 
This equation is of common use in other models of thera‑
peutic hyperthermia, such as the radiofrequency ablation of 
tumors [49]. To model the circulating hot fluid in the cavity, 
it is mandatory to use the Navier–Stokes equations, which 
describe a continuum of moving fluid and include other 
parameters such as pressure and velocity. Although exact 
solutions to the Navier–Stokes equations have only been 
obtained in particular cases, the problem can be numeri‑
cally approximated using computational fluid dynamics 
(CFD). This area has recently seen significant advances, 
including the development of CFD software to simulate the 
dynamic flow, temperature, and drug distribution during 
HIPEC [48••, 50, 51]. Studies in rats have demonstrated 
that maximizing the distance between in‑ and outflows and 
adding multiple catheters leads to increased temperature 
homogeneity and stability [43, 48••, 52]. Moreover, a homo‑
geneous distribution of temperature can be achieved when 
the abdomen is maximally distended and a high flow rate is 
maintained [44, 45, 48••].

The complexity of the CFD model required the use of vari‑
ous assumptions, such as a laminar flow and a temperature‑
independent fluid density [48••]. Because of the geometry of 
the flow region, the presence of obstacles, the manual shak‑
ing of the abdomen, and the gravitational effects, the use of 
a turbulence model is advised. Naturally, this entails consid‑
erable computation time. Finally, large vessels passing near 
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or through the intraabdominal cavity can conduct heat loss 
causing heterogeneities in temperature distribution [53–55]. 
These vessels can act as heat exchangers between the blood 
and the intraabdominal cavity during HIPEC and should also 
be included in future models of hyperthermia in HIPEC.

Because the tissues are poor conductors of heat, tissues 
outside of the abdominal and pelvic cavities (e.g., the brain, 
the extremities) gain heat primarily via the blood vessels 
[56]. Thus, the rate of heat transfer in the body is dictated 
by the blood flow, which could help predict overheating. 
Poiseuille’s law shows that blood flow increases as blood 
viscosity decreases, assuming a constant blood pressure dur‑
ing surgery. Experimentally, it has been observed that blood 
viscosity increases as hematocrit increased and as tempera‑
ture decreased [57–59]. Consequently, blood temperature 
and hematocrit determine the resistance to blood flow and 
limit the rate of heat transfer out of the abdominal cavity.

Finally, the thermal conductivity of the tissues needs to be 
considered. For instance, the fatty tissue has a low thermal 
conductivity and likely interferes with heat transfer in obese 
people, acting as an insulating barrier [60]. Moreover, both 
blood flow and temperature affect the thermal conductivity 
in living tissues [47, 61]. As thermal conductivity increases 
linearly with temperature [61], future research would benefit 
to consider such changes in future models.

Clinical Measurements During Hyperthermia 
in Humans

The physiological response to intraabdominal hyperthermia 
has several components. Intraoperatively, the hemodynamic 
response is characterized by increased cardiac index, heart 
rate, and central venous pressure, along with a decreased 

Fig. 1.  Schematic Representation of the Thermodynamic Model for 
Closed HIPEC. (A) The human silhouette shows an inflow catheter 
with a temperature TInflow and an outflow catheter with a temperature 
TOutflow, as well as the heat exchange with the fluid and the environ‑
ment. HRadiation, HConvection, and HConduction are the heat current of radi‑
ation, convection, and conduction, respectively. All three are propor‑
tional to

(

T
n

S
− T

n

A

)

 with n = 1 for conduction and convection and n = 4 
for radiation, where TS and TA are the skin (superficial) temperature 

and ambient temperature, respectively. HFluid and HMetabolic are the 
heat current transferred by the fluid and that due to the metabolism, 
respectively. In the abdominal cavity, the fluid flow (B) and temper‑
ature distribution (C) are pictured for illustrative purposes only; the 
directions and numbers are not suitable for interpretation. (D) A com‑
partment model of the abdominal cavity. The arrows indicate where 
heat is exchanged by convection and conduction. Image created with 
Biorender®.
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stroke volume variation [62, 63]. Owing to vasodilatation 
and a decreased blood viscosity, a reduction in systemic vas‑
cular resistance has also been observed [64•]. Within studied 
parameters, changes in the intraabdominal pressure (8‑12 vs. 
18‑22 mmHg) seem to only affect the central venous pres‑
sure [63]. As reported by Reis et al., high intraabdominal 
pressures (but not temperature) caused an increase in peak 
inspiratory pressure [63]. Moreover, patients may experi‑
ence metabolic changes associated with the degree of hyper‑
thermia. In a study by Ceelen et al., a linear relationship 
was found between the area under the curve of temperature 
and the changes in glucose, sodium, and lactate levels, with 
near significant changes for bicarbonate levels [65]. Finally, 
because HIPEC occurs several hours after the beginning 
of anesthesia, the thermodynamic state at the beginning of 
perfusion assumes that heat redistribution from core to the 
periphery has stabilized [66].

According to Rettenmaier et al., the temperature of the 
intraabdominal fluid demonstrates an initial gain of ~1°C 
during the first 15 minutes of HIPEC and remains constant 
thereafter [44]. As such, while inflow temperatures in their 
study were maintained at 42.5°C, outflow temperatures 
increased from 41 to 42°C. Accordingly, all percutaneously 
placed intraabdominal temperature probes (upper, midline, 
and suprapubic quadrants) showed a ~1°C temperature 
increase from their respective baseline prior to stabilizing, 
in line with the inflow/outflow temperature gradient.

Despite a relatively constant fluid temperature, other 
measures of hyperthermia are highly variable in clinical 
conditions. Hendrix et al. studied a total of 135 subjects 
undergoing CRS/HIPEC [67•]. Their 90‑minute HIPEC 
protocol included a starting mean core‑body temperature 
(CBT) of 36.7°C, mean perfusion flow of 2.35 L/min, and 
target outflow and intraperitoneal temperatures of ≥40°C 
and 40‑42°C, respectively. Overall, the sample achieved 
maximum temperatures between 37.5 and 40.1°C. About 
half of the patients (56%) achieved temperatures of 38.5‑
39.5°C, while only 27% were above 39.5°C. Goldenshluger 
et al. reported a study of 115 patients undergoing CRS/
HIPEC via the closed‑abdomen technique, using a volume 
of 3‑5 L of solution and an inflow temperature of 44°C to 
achieve a mean inflow/outflow of 41.7°C for 60‑90 minutes. 
The authors reported a mean bladder temperature of 38.1°C 
±0.9°C and mean CBT of 37.5°C ±0.7°C, with no patients 
exceeding 40°C [68].

A major obstacle to predicting the development of hyper‑
thermia is the heterogeneity of HIPEC protocols in current 
practice. In a recent systematic review, Yurttas et al. dem‑
onstrated that exposure times among the 171 reports ana‑
lyzed varied between 20 and 120 minutes, with perfusate 
volumes between 2 and 6, closely related to the technique 
used (open vs. closed) [69••]. Regarding hyperthermia, 
studies mostly reported inflow temperatures of 42°C, while 

intraabdominal temperatures ranged anywhere from 38.5°C 
to 44°C. In the study of Hendrix et al., patients experienc‑
ing core‑body hyperthermia of at least 39.5°C had a lower 
BMI (25.3 vs. 28.2 Kg/m2, p=0.03) and suffered less fre‑
quently from hypertension (25 vs. 46%, p=0.03). Recently, 
we performed an analysis of 214 patients undergoing CRS/
HIPEC to determine the predictors of bladder hyperthermia 
according to several prespecified definitions [70•]. Overall, 
the incidences of mild (T≥38°C) and moderate‑to‑severe 
(T≥39°C) hyperthermia were 53.27% and 6.54%, respec‑
tively. After multivariate analysis, independent predictors 
for hyperthermia included age (OR=0.968, 95% CI 0.945‑
0.992, p=0.01), BMI (0.953, 95% CI 0.913‑0.995), female 
gender (OR=0.208, 95% CI 0.108‑0.403), type of chemo‑
therapy (cisplatin vs mitomycin, OR=0.235, 95%CI 0.104‑
0.503, p=0.036), and duration of chemotherapy (OR= 1.094, 
95%CI 1.018‑1.177).

The Clinical Role of Hyperthermia in PSM

In the treatment of PSM, hyperthermia has been largely 
judged by the overall impact of HIPEC on survival out‑
comes. Because PSM is a group of diseases, differences 
in the median overall survival (OS) in patients undergoing 
CRS/HIPEC are best understood by the primary histology 
of the tumor. In a large cohort study by Kyang et al., median 
OS was reported to be 30, 35, 60, 63, and 248 months for 
ovarian, colorectal, mesothelioma, high‑grade appendiceal, 
and low‑grade appendiceal carcinomas, respectively [71].

Considerable evidence supports the benefit of CRS/
HIPEC over systemic therapy in selected surgical candidates 
[72–75]. In a landmark study, Verwaal et al. randomized 
105 colon cancer patients to either CRS/HIPEC or systemic 
chemotherapy and found that CRS/HIPEC significantly 
improved OS (HR= 0.55, 95% CI 032‑0.95; p=0.032), pro‑
longing the median OS by 10 months [76••]. Robust obser‑
vational data support CRS/HIPEC for PSM of appendiceal 
etiology [77•]. For malignant peritoneal mesothelioma, a 
pooled analysis of 1047 patients (20 studies) reported OS 
of up to 92 months [74]. Finally, better OS rates (HR=0.61, 
95% CI 0.41‑0.76; p<0.01) have been shown in patients with 
PSM secondary to ovarian cancer that receive HIPEC in 
addition to CRS with or without systemic therapy, particu‑
larly in studies with larger sample sizes, longer durations of 
hyperthermia, and CRS/HIPEC followed by chemotherapy 
[75].

Just recently, experimental studies started to address the 
independent effect of HIPEC in patients undergoing CRS. 
Table 2 describes the HIPEC protocols, and the measures of 
hyperthermia published in comparative trials. In the COLO‑
PEC trial, 202 patients with perforated colon cancer were 
randomized to receive CRS and adjuvant chemotherapy with 
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or without the administration of HIPEC [8••]. The primary 
outcome was defined as the peritoneal metastasis‑free sur‑
vival at 18 months after surgery. No significant differences 
were noted between the two groups (69 vs. 69.3%, p=0.99). 
Because the protocol allowed for HIPEC to occur at the time 
of surgery or at 5‑8 weeks, many patients in the experimen‑
tal group had evidence of peritoneal metastasis prior to 
receiving adjuvant HIPEC. Addressing these limitations, 
the PRODIGE‑7 trial randomized 265 patients to either 
CRS alone or CRS/HIPEC [7••]. Again, the authors did not 
identify differences in the OS between the two groups (HR= 
1·00, 95% CI 0·63–1·58; p=0.99), prompting them to not 
recommend the use of HIPEC in this population. However, 
critics of this trial contend that the duration of HIPEC (30 
minutes of oxaliplatin) administered may have contributed to 
the lack of improvement in survival. This criticism is further 
strengthened by the fact that when patients were stratified by 
PCI (peritoneal carcinomatosis index); the cohort of patients 
with a PCI of 11‑15 did have an improvement in overall 
survival in comparison with patients who did not receive 
hyperthermic intraperitoneal chemotherapy (41.6 months vs 
32. 7 months, p=0.021).

Conflicting results have been reported in ovarian cancer. 
In the CARCINOHIPEC trial, Antonio et al. randomized 
79 women with PSM secondary to ovarian cancer to CRS 
alone or with cisplatin HIPEC [81]. Multivariate analysis 
suggested that the risk of recurrence was reduced in patients 
receiving HIPEC (HR= 0.12, 95% CI 0.02‑0.89; p=0.038). 
In contrast, Zivanovic et al. could not demonstrate a superior 
treatment strategy between CRS with or without carbopl‑
atin HIPEC [79]. In a recently published RCT by van Driel 
et al., the addition of HIPEC to cytoreductive surgery in 
patients with stage III ovarian cancer showed an improve‑
ment in both recurrence free (14.2 months vs 10.7 months) 
and overall survival (45.7 months vs 33.9 months) compared 
to cytoreductive surgery alone at a median follow‑up of 4.7 
years [80•].

To date, no experimental study has addressed the inde‑
pendent effect of temperature in the prognosis of patients 
with PSM. As a secondary outcome, our group analyzed a 
sample of 214 patients undergoing CRS/HIPEC [70•]. Our 
results showed that OS and recurrence‑free survival curves 
were consistent with the primary tumor histology. Interest‑
ingly, we found that the lack of mild hyperthermia (≥38°C) 
at the end of perfusion was independently associated with 
worse recurrence‑free and overall survival. Moreover, a 
trend toward improved survival was noticed for patients who 
achieved bladder hyperthermia for at least 30 minutes during 
perfusion [70•].

Concerning safety, the evidence from clinical trials is 
conflicted by the presence of chemotherapy and the impli‑
cations of major abdominal surgery. For instance, staged 
HIPEC alone had a lower complication rate and a shorter Ta
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length of stay than simultaneous HIPEC in the COLOPEC 
trial [8••]. Moreover, the PRODIGE‑7 trial demonstrated 
that the length of stay and the interval between surgery and 
food intake were longer in those undergoing CRS/HIPEC 
versus CRS alone. Although the incidence of grade 3 or 
higher adverse events was higher in the CRS/HIPEC group, 
individual differences were only significant for hematologi‑
cal events such as neutropenia and thrombocytopenia. Nei‑
ther Antonio et al. or Zivanovic et al. observed differences in 
the short‑term postoperative outcome of women undergoing 
CRS/HIPEC for ovarian cancer [79, 81]. Finally, Koole et 
al. did not find significant differences in the quality of life 
between patients randomized to CRS alone or CRS/HIPEC 
[82].

Few observational studies have addressed the independ‑
ent effect of hyperthermia in postoperative complications. 
Hendrix et al. found that elevated core‑body temperatures 
(defined as ≥39.5°C) were associated with a higher risk 
of 30‑day postoperative complications (OR=3.77, 95% CI 
1.56‑9.14) [67•]. For Goldenshluger et al., each Celsius 
degree increase in CBT raised the odds of postoperative 
complications by more than two‑fold (OR 2.68, 95% CI 
1.2–6.01, p = 0.02) [68]. In contrast, our study showed that 
bladder hyperthermia was not an independent risk factor of 
30‑day complications [70•]. In a propensity score‑matched 
study, Gremonprez et al. analyzed the postoperative outcome 
of 90 colorectal cancer patients undergoing CRS with either 
normothermic (n=45) or hyperthermic (n=45) intraperito‑
neal chemotherapy [83]. Overall, the differences in major 
postoperative morbidity at 30 days between the HIPEC and 
normothermic groups did not reach statistical significance 
(35.6% vs. 26.7%, p=0.362).

Conclusion

Patients with PSM receive therapeutic hyperthermia in the 
context of HIPEC. Although hyperthermia induces and 
enhances cellular death [9, 22, 26], cancer cells can resist it 
through HSP upregulation [13], metabolic adaptation [30•], 
and modulation of the immune system [39]. Because the 
response to hyperthermia (at the temperatures administered 
in HIPEC) is variable, clinical practice will benefit from 
molecular markers that predict the individual response to 
therapy.

Unlike a well‑circumscribed tumor, the residual disease 
of PSM is invisible when the patient has undergone an opti‑
mal cytoreduction. As a result, applying thermal dosimetry 
principles to HIPEC is problematic. While the intraabdomi‑
nal fluid temperature is relatively constant, heat uptake is 
variable and depends on patient variables and the perfu‑
sion protocol. Thus, we need better indicators of adequate 
heat transfer to the tissues, such as the core‑body or bladder 

temperatures. To understand the role of hyperthermia in 
PSM, we need a better ability to model hyperthermia dur‑
ing HIPEC, so that clinical trials can adequately test specific 
temperature, goals, and outcomes.

Despite the existing gaps in knowledge, the growing body 
of literature is encouraging. HIPEC is being increasingly 
evaluated for PSM secondary to stomach [84, 85], pancre‑
atic [86], and hepatobiliary [87] malignancies. As the use of 
computational fluid dynamics and thermodynamic models 
improves our understanding of hyperthermia [42, 43, 48••], 
the inclusion of real‑world data will allow such develop‑
ments to individualize therapy and increase its margin of 
safety. New clinical trials are underway, including those test‑
ing the individual effect of hyperthermia in HIPEC [88–90].
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