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REVIEW

Application of Neuromelanin MR Imaging
in Parkinson Disease

Naying He, MD, PhD,1 Yongsheng Chen, PhD,2 Peter A. LeWitt, MD,2,3

Fuhua Yan, MD, PhD,1* and E. Mark Haacke, PhD1,2,4,5

MRI has been used to develop biomarkers for movement disorders such as Parkinson disease (PD) and other neurodegen-
erative disorders with parkinsonism such as progressive supranuclear palsy and multiple system atrophy. One of these
imaging biomarkers is neuromelanin (NM), whose integrity can be assessed from its contrast and volume. NM is found
mainly in certain brain stem structures, namely, the substantia nigra pars compacta (SNpc), the ventral tegmental area, and
the locus coeruleus. Another major biomarker is brain iron, which often increases in concert with NM degeneration. These
biomarkers have the potential to improve diagnostic certainty in differentiating between PD and other neurodegenerative
disorders similar to PD, as well as provide a better understanding of pathophysiology. Mapping NM in vivo has clinical
importance for gauging the premotor phase of PD when there is a greater than 50% loss of dopaminergic SNpc melanized
neurons. As a metal ion chelator, NM can absorb iron. When NM is released from neurons, it deposits iron into the intra-
cellular tissues of the SNpc; the result is iron that can be imaged and measured using quantitative susceptibility mapping.
An increase of iron also leads to the disappearance of the nigrosome-1 sign, another neuroimage biomarker for
PD. Therefore, mapping NM and iron changes in the SNpc are a practical means for improving early diagnosis of PD and
in monitoring disease progression. In this review, we discuss the functions and location of NM, how NM-MRI is performed,
the automatic mapping of NM and iron content, how NM-related imaging biomarkers can be used to enhance PD diagnosis
and differentiate it from other neurodegenerative disorders, and potential advances in NM imaging methods. With major
advances currently evolving for rapid imaging and artificial intelligence, NM-related biomarkers are likely to have increasingly
important roles for enhancing diagnostic capabilities in PD.
Evidence Level: 1
Technical Efficacy: Stage 2

J. MAGN. RESON. IMAGING 2022.

MRI offers a variety of imaging methods to produce
quantitative measurements and spatial information

about the human brain. Specifically, it can be used to provide
exquisite structural imaging via high-resolution T1-weighted
(T1W) images, measurement of iron content through quantita-
tive susceptibility mapping (QSM), neuromelanin (NM) mapping
through NM-MRI sequences, white matter tractography
through diffusion tensor imaging (DTI) and network
connections through resting-state functional MRI. For achieving
unmet needs of movement disorders research, one of the major

areas of interest today is assessing the presence and integrity of
NM (in terms of the contrast and volume) in the brain stem,
mostly located in the substantia nigra pars compacta (SNpc),
ventral tegmental area (VTA), and locus coeruleus (LC).
Another area of increasing interest is mapping the iron content
in deep grey matter (DGM) structures. These two biomarkers
go hand in hand as will be seen as the background for NM
imaging unfolds.

Since available treatments for PD are still only for symp-
tomatic relief and fail to stop the neurodegeneration progress,
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early-stage PD biomarkers are sought to better understand the
pathophysiology, improve detection, and enable the application
of timely clinical interventions. Furthermore, sensitive bio-
markers of disease progression may speed up the process of
developing disease modification therapies. The reason mapping
NM is so important is that before PD motor symptoms
emerge, there is already a greater than 50% loss of dopaminer-
gic melanized neurons in the SNpc.1 The earliest and greatest
loss occurs in the nigrosome-1 (N1) territory, which is located
in the caudal and mediolateral portions of the SNpc.2 As a
metal chelator, NM is thought to absorb iron, thereby
protecting the dopaminergic neuron. If the NM can no longer
function as an iron chelator (whether it is already fully satu-
rated with iron and, hence, unable to absorb more of these
ions, or for another reason), there may be release of previously
intracellular iron in adjacent tissue.3 Usually, neuronal death
occurs at this stage since the NM can no longer protect the
dopaminergic neurons. This deposited iron is in the form of
ferritin and, therefore, becomes visible by MRI. Evidence
shows that, concurrent with this loss, there is an increase of
iron deposition in the SNpc in the PD brain.3 Therefore,
imaging NM and iron changes in the SNpc have proven to be
valuable in facilitating the early diagnosis of PD and in moni-
toring disease progression.

During this process, it also appears that, in the PD
brain, the NM-containing structures (SNpc and LC) and the
entire SN (SNpc plus substantia nigra pars reticulata [SNpr])
undergo significant atrophy.4–6 Loss of the NM manifests as
a loss of the N1 sign7 and an increase of iron content.4,8,9 In
PD patients, in the N1 territory where the earliest and
greatest loss of NM occurs,2 an increase in iron deposition is
also found.10 Recent studies have demonstrated NM loss and
an increase in iron in the SNpc as valuable imaging bio-
markers in PD.11 We have found that these imaging measures
(NM volume in the SN, N1 visualization, iron content in the
entire SN, and the SN volume), when combined, provide a
promising diagnostic biomarker for early-stage PD patients.4

Furthermore, neuronal loss in the ascending noradrenergic
projections from the LC occurs in PD.12 Degeneration of
NM-containing LC neurons precedes the loss of NM-containing
SN neurons in PD brain and may represent some of the earliest
evidence for the development of PD.12 Therefore, the need to
enhance the tools for imaging the LC has become increasingly
important.13

The current approach of NM-MRI is to use magnetization
transfer contrast (MTC) radiofrequency (RF) pulses to suppress
the surrounding macromolecule-rich white matter with little
effect on tissue with high-water content such as the NM in the
SN and LC.14 These RF pulses have high specific absorption
rates (which require a long repetition time) so that practical
approaches to scanning are often carried out to measure only a
small section of the brain.4 Furthermore, imaging the NM in
the SN and LC using a three-dimensional (3D) gradient echo

method requires multiple scans in which optimal parameters are
imposed separately for the two territories.13 The iron content of
the SN is measured using QSM, which has become a well-
established method. QSM is typically processed from
susceptibility-weighted imaging (SWI) phase data and it is also
used to assess N1 sign visualization. A recent study demon-
strated the feasibility of simultaneously imaging NM volume
and iron content in PD patients.4

The aim of this review is to discuss the following: 1) the
function, location, and degeneration of NM in PD; 2) how it
is visualized in cadaver brains and in MRI in vivo; 3) how
NM-MRI is performed and why it works; 4) the evidence
showing that NM-MRI correlates with other measures of NM;
5) new approaches to mapping NM and creating a clinical tool
for mapping NM automatically; 6) the ability of imaging bio-
markers to distinguish PD patients from healthy controls
(HCs) and differentiate PD from other movement disorder
patients; and 7) future directions of NM-MRI in imaging PD.

We performed a literature search on PubMed and Google
Scholar using multiple combinations of keywords including
“MRI,” “magnetic resonance imaging,” “neuromelanin,”
“NM,” “NM-MRI,” “magnetization transfer,” “MTC,” and
“Parkinson’s disease”. Only publications written in English
with full-text available (through open access and institu-
tional library subscription) were reviewed. In addition, rele-
vant publications identified from the bibliography of review
articles, our reading of many papers in the field and other
papers based on the best of our knowledge were also
included in this comprehensive narrative review. The litera-
ture search was initially performed by N.H., Y.C., and E.M.
H and subsequently reviewed by the other authors.

Neuromelanin, Iron, and the N1 Sign in PD
Neuromelanin and its Relationship With Iron
Deposition
NM is an intraneuronal pigment, whose clumped granules are
found exclusively in the brain. It is formed from catecholamines
acted upon by a process of auto-oxidation. It involves the incor-
poration of melanin into lipofuscin derived from lysosomes.15

NM has a brown-black appearance that is evident in an
unmagnified inspection of brain tissue. While the process of
regional generation of NM is not fully understood, it is known
to play several roles in dopaminergic neurons.16 Studies by Jan
Purkinje first recognized NM in 1837.17 The melanin leading
to the creation of NM is a by-product of dopamine synthesis. In
SN and LC neurons, the overall content of NM increases with
age. Thereafter, a decline in mean NM content has been found,
probably due to the continuing loss of the most heavily
pigmented neurons with increasing age.16 In PD, which leads to
a much accelerated loss of pigmented neurons compared to the
normal aging process, measurements show an 80% reduction in
neuronal count relative to healthy controls which was associated
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with a 15% reduction of tissue NM content.18 When neurons
die, their NM content can remain in the extra-neuronal tissue
or can be taken up in the cytoplasm of macrophages.

There is considerable evidence to link NM formation
with exposure to oxidative free radicals. This evidence has also
been one of the leading themes of research into the pathogen-
esis of PD, for which there is also evidence of oxidative stress
and telling by-products of this process such as peroxidated
lipid structures and transformed molecules like 8-hydoxy-7,-
8-hydro-20-deoxyguanosine. In brain regions where NM is
abundant—the SN, LC, and dorsal motor nucleus of the
vagus nerve—the most prominent loss of neurons is found in
PD along with its characteristic tissue finding, the formation
of Lewy bodies. One hypothesis for the abundant presence of
NM in catecholamine synthesizing is that auto-oxidation of
catechol structures to quinones creates NM as a by-product
that is difficult for neurons to remove. NM accumulation
may be physically disruptive to the health of such neurons
since it damages them by inducing mitochondrial-mediated
apoptosis. However, this is not necessarily the entire story in
PD, since nonpigmented neurons (such as those in the
nucleus basalis of Meynert) also undergo prominent loss in
PD.15 The dorsal tier of the SN (which has the greatest con-
tent of NM in the SNpc), is a region that undergoes the earli-
est neuronal loss in PD.1 However, the ventral tier of the
SNpc demonstrates the most neuronal loss as a feature of PD
progression.19

NM reduces ferric to ferrous iron and stores this iron as
an oxyhydroxide (similar to how this occurs in ferritin). NM
present in the SNpc/LC can have iron concentrations in the
range of 150–300/0–50 μg iron/gm tissue wet weight as it
accumulates from 20 years to 80 years of age20 (and which
appears to be predominantly in the form of H-ferritin). The
NM in the LC has about 10 times less iron relative to the
SNpc.20 The concentration of NM in the SNpc/LC ranges
from 500–4000/1000–3000 μg/g tissue wet weight over the
same age range.20 Given the concentrations of NM in the
SNpc/LC and the iron concentrations in NM, one would
expect the susceptibility of NM in vivo to be on the order of
that in grey matter (50 ppb or roughly 50 μg iron/gm tis-
sue).21 In the human SN, it has been estimated that the
amount of iron present as a NM–Fe complex is 10%–20% of
the total iron concentration present in the SN structure.22

Therefore, a loss of chelating function and a subsequent
increase in magnetically visible iron could serve as a biomarker
for NM dysfunction, particular the kind of change that might
occur in a neurodegenerative disease such as PD. Intraneuronal
NM can only be released following cell death of neurons and,
hence, its measure would serve as a direct biomarker of cell
damage. Once NM is in a depigmented state, it is thought to
deposit its chelated iron (and likely other bound metals) into
adjacent brain tissue. If this iron is in a reduced state, it can
participate in the Fenton reaction and promote the generation

of hydroxyl radicals facilitating regional oxidative stress. If the
previously intracellular NM is released into the extracellular
space, it can induce microglial activation. One outcome is trig-
gering the production of nitric oxide, superoxide, and hydro-
gen peroxide. As ferritin is soluble, its iron content can be
taken up systemically. In contrast, hemosiderin is insoluble and
the iron will be stored there indefinitely. Assuming that the
bound iron in NM behaves as in ferritin, then the depigmenta-
tion of that iron could lead to free iron or at least unprotected
oxyhydroxides. The presence of abnormal reactive levels of fer-
rous iron may then lead to neuroinflammation through a vari-
ety of neurodegenerative processes. There are many studies4,23

showing increased iron content in areas where NM is lost and
also many papers using NM-MRI showing loss of total NM
volume for PD patients (see Table S1 for details).

The SNpc NM content changes may play an important
role as a biomarker for PD. It is thought that between 50%
and 70% of the NM in the SNpc has depigmented before the
appearance of PD motor symptoms.1 The loss of dopaminergic
neurons is most obvious in the caudal and ventro-lateral
regions of the SNpc in PD patients. Imaging biomarkers that
allow for study of the etiology of disease have therapeutic
implications and diagnostic importance and are a major goal in
neurological research today, and MRI offers multiple bio-
markers noninvasively at the sub-millimeter level.

SN Subregions and the Distribution of
Neuromelanin
The SN can be subdivided into two major populations of neu-
rons: the SNpc and the SNpr. Although merged into one
another, the SNpc and the SNpr differ greatly in their anatom-
ical configuration and their functional connections.4 Differenti-
ating between the SNpc and SNpr is not easily accomplished
with conventional MRI or even from histopathological staining
of CNS tissue given that clusters of SNpc dopaminergic neu-
rons are deeply embedded within the SNpr.24,25 The SNpr is
located in the ventral portion of the SN and has abundant iron
content. While the SNpc is situated more dorsally, its identifi-
cation can also take advantage of differentiation from the SNpr
by its lower iron content and the presence of NM (found in
neurons that secrete dopamine). This differentiation can be
demonstrated through NM-MRI. For this, one of the more
promising approaches to understanding the SN structure is
using Calbindin D28k staining. Calbindin stains the protein in
afferent fibers of the SN neuropil matrix (consisting of
GABAergic striatonigral fibers). Calbindin staining also shows
the same regions associated with the presence of tyrosine
hydroxylase. A high-resolution cadaver brain study26 using Cal-
bindin D28k staining and 7 T high-resolution (0.67 mm iso-
tropic resolution) MRI validated the earlier demonstration of
SN findings by Damier.2,24 However, they found a mismatch
between the Perl stained results and what is shown in T2*W
images (i.e., the high iron content did not always match the
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T2*W images). The authors commented that the nigrosome
territories are structures with low iron content, which is in con-
cordance with the low susceptibility seen in these regions.

NM is absent at birth and one paper suggests that it
increases in concentration until the ninth decade of life.19

However, Liu et al27 reported that the increase in tissue NM
concentration levels off in the seventh decade in the
LC. Damier et al2,24 showed that 60% of the NM is found
within dopaminergic neurons of the nigral matrix (Calbindin
positive) while the other 40% of NM is in the dopaminergic
neurons associated with N1–N5 territories. Damier and col-
leagues note that the loss of NM occurs in the following
order from greater to lesser N1 > N2 > N4 > N3 > N5. The
N1–N4 structures lie predominantly below the rostral exiting
of the third cranial nerve. Above this is N5 and some rem-
nant of N4. N1 can cover as much as 5 mm below this ori-
gin; that is, for MRI with a slice thickness of 1.34 mm, it
could appear in four to five caudal slices, for example. Note
that the N1 can be posterior medial and be adjacent to the
N3 posterior lateral in the more caudal slices. The N5 is seen
predominantly posteriorly in the more rostral slices (Fig. 1).
Cell loss occurs throughout the SN, but the greatest extent of
cell loss is found in the nigrosome territories.2,24 Damier and
colleagues note that, from 7 to 32 years after onset, the cell
loss is from 75% to 95%. Also, about 80% of the NM loss is
from the SN and 20% in the SN pars dorsalis and SN pars
lateralis. These observations are in line with reports from
Gibb and Lees19 and from others who have seen similar local-
ization as the most vulnerable regions for NM loss.

Visualizing and Assessing the N1 Sign With the
Guidance of NM-MRI
Damier as well as Gibb and Lees note that orientation is
important in defining structures in the SN.2,19,24 That is cer-
tainly true from a 3D imaging perspective as well.7 The dif-
ferent apparent shapes shown in Fig. 2 demonstrate this

problem. The geometry changes of the N1 shape are shown
in Fig. 3. Consider the SN as a cylinder making an angle of
45� to the x-z axes and 45

�
to the x-y axes as well. Then with

a transverse cut through the cylinder the N1 sign will take on
a truncated ellipsoidal shape (Fig. 2f), whereas if the imaging
plane is perpendicular to the SN the N1 will look like a small
circle and if the plane is parallel to the long axis of the SN it
will look like a long oval shape (Fig. 2c,g). The situation is
further complicated by the fact that the N1 can sometimes
abu the edge of the SN and any iron that is there may not be
observable (Fig. 2a,b,e). This lower iron content may require
a much longer echo time to become visible. Depending on
the amount of iron present, the N1 sign can be seen with
echo times as low as 17.5 msec but in other cases, and partic-
ularly for younger individuals, it may require an echo time of
30 msec. As the orientation of the imaging plane changes, the
N1 sign can become more and more elongated until the
plane runs along the long axis of the cylindrical-like structure
representing the SN shape (Fig. 3f).

Visualizing the N1 sign is generally performed using a
T2*W gradient echo sequence such as SWI. The usual SWI
processing uses a mask on the high-pass filtered phase images.
This can enhance the presence of veins and iron but has the
drawback that the phase is geometry dependent. Using QSM
data instead to create a susceptibility mask, this problem can
be avoided.29,30 This method is referred to as true-SWI
(tSWI)29 or susceptibility map-weighted imaging (SMWI).30 It
is important to use the mask based on QSM of the high-pass
filtered phase data (denoted as QSM-hpf), otherwise, since
NM can also show iron content, the mask might indiscrimi-
nately suppress the signal from the N1 territory rendering the
N1 sign invisible. One can use QSM, but sometimes these
images show iron in the N1 region and when tSWI is created
from these data, it can also suppress the signal from the N1
sign hiding it in a sea of dark signal. Using QSM of the high-
pass filtered phase images will remove some of the background

FIGURE 1: The anatomy of the SN and its five nigrosome territories shown on serial axial sections based on figure 1 from the article
by Massey et al.28
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signal and does a better job revealing the N1 sign more consis-
tently. See Fig. 4 for a demonstration of these concepts for a
variety of movement disorders including rapid eye movement
sleep-behavioral disorder (RBD), postural instability and gait
difficulty (PIGD), tremor-dominant (TD), progressive supra-
nuclear palsy (PSP), multiple system atrophy (MSA) with pre-
dominant parkinsonism (MSA-P) and cerebellar subtype
(MSA-C), essential tremor (ET), and a healthy control
(HC) case.

However, interpreting when the N1 sign is present is
difficult from its shape alone.7 Usually when the NM volume
is normal and the contrast is high, the N1 sign is clearly pre-
sent in long echo gradient echo methods like SWI (Fig. 4,
HC and ET cases). Likewise, when the NM volume and con-
trast are low, there will be no N1 sign (Fig. 4, PSP case). We
have seen a number of other variants when assessing the N1
sign; even in the presence of NM, there may be no N1 sign;
low levels of NM do not guarantee absence of the N1 sign
(Fig. 4, RBD and MSA-P) and a small circular bright

structure in the most ventral lateral aspect of the NM terri-
tory may represent N3 in the caudal slices. Both T2-weighted
spin echo31 and T2W fluid attenuated inversion recover
(FLAIR)32 sequences have been shown to reveal the N1 sign,
but not with as good contrast as that available with long echo
gradient echo imaging.11 In summary, the best way to vali-
date the presence of the N1 sign is to use a variety of images,
perhaps the best of which are the overlay of the NM bound-
aries on the tSWI data.

As a first pass, perhaps the most rapid way to review the
data to visualize the N1 sign (or other nigrosome territories)
is to have three types of images available: 1) the QSM of the
high-pass filter (HPF) data; 2) echo times ranging from
20 msec to 30 msec; and 3) tSWI. Superimposing the bound-
ary of SNpc from the NM-MRI on the SWI or tSWI of
QSM of the HPF data will then reveal exactly what structure
within the NM that is being visualized. We have noted that
NM usually only appears clearly on the short TE NM-MRI
data but on occasion it can appear on a longer echo as well.

FIGURE 2: Cartoon illustration of the nigrosome 1 variants. Source: Figure reprinted with permission from reference 7 2020 John
Wiley & Sons, Inc.

FIGURE 3: (a–f) The N1 sign on QSM-hpf data in a pseudo transverse plane with different degrees of rotation about the y-axis for
(�20�, �10�, 0�, 10�, 20�, and 30�, respectively) from a 63-year-old healthy control. The 0� angle represents the original scanning
orientation along the anterior commissure–posterior commissure line. The yellow arrows show that as the scanning plane changes
from �20� to 30�, the shape of the N1 becomes more elongated as the angle starts to match the angle to which the SN is tilted
away from the transverse plane.
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The key take-away point here is that the NM boundaries
should be used to validate the interpretation of the N1 sign
as first presented by He et al.4 To appreciate more the

variability of imaging type, Fig. 5 shows the tSWI approach
applied to different echoes and several other imaging modali-
ties such as R2* and QSM maps. The R2* image shows the

FIGURE 4: The presence of the N1 sign in different movement disorders. The five columns represent, in the following order: the original
30� first echo NM image with a resolution of 0.67 mm � 1 mm � 1.34 mm; the tSWI image as applied to the QSM data of the HPF phase
from the first echo; the tSWI image as applied to the QSM data of the HPF phase of the third echo; the QSM data over three echoes
using MEiSWIM; and the tSWI of the first echo using the original QSM data (with no HPF). Since the regions of NM can sometimes have
non-zero iron content, using the original QSM can obscure the presence of the N1 sign depending on how the tSWI filter is designed.
Hence, we tend to use the tSWI of the QSM data of the HPF phase images for interpreting the presence of the N1 sign. Each row
represents a different movement disorder except for the first row, which is for a HC. The ET, RBD, MSA-C, MSA-P and the PD-TD either
show bilateral or unilateral N1 signs. The PSP and PIGD cases show bilateral loss of the N1 sign and an atrophied SN. The N4 sign
appears to be present in the PIGD case although no N1 sign appears to be present. The red boundaries are from the NM images and are
superimposed on all the images to make it clear where the N1 sign must lie if it is to be considered part of the NM territory.
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iron regions as bright. The QSM image looks quite different
and shows a single medial leg on each SN. The application of
tSWI to each of the first five echoes is revealing. Since there
is no dephasing in the first echo, it is necessary to see the N1
sign. The advantage is that the NM is still very bright on the
first echo and so the contrast between the iron containing
regions and NM is enhanced. Note that the NM disappears
as the echo times increase (due to the high R2* values in
these regions).

When there is sufficient signal-to-noise ratio (SNR),
the higher resolution imaging methods26,33 such as
0.67 mm isotropic or 0.8 mm isotropic can potentially
reveal the different nigrosomes.28 The N2–N5 nigrosomes
are more poorly visualized than the N1 in healthy con-
trols.34 Using NM-MRI and tSWI templates, Sung et al33

showed that the N1 and N2 signs were separately affected
in early-stage idiopathic PD patients. Langley et al35 used
high in-plane resolution (0.39 mm � 0.39 mm) NM-MRI
with an R2* map to create a voxel-based morphometry
representation of the N1 and N2 signs. Increasing the resolu-
tion and SNR with the appropriate sequences may indeed help
in the future to identify all of the nigrosome signs in a clini-
cally defined imaging protocol.

LC Structure and the Distribution of NM
There are several recent reviews36,37 that provide an excellent
overview of the role of NM in the LC, particularly the 2019
review by Betts et al37 discussing noradrenergic dysfunction in

the LC as a biomarker for neurodegeneration. Based on early
postmortem studies,38 each of the human LC nuclei is approxi-
mately 14.5 mm long and 2–2.5 mm in diameter (therefore,
with a volume of from 45 mm3 to 71 mm3). The paired LC
structures are localized 1 mm anterior to the fourth ventricle,
3 mm left and right from the midline, and centered 14–21 mm
above the ponto-medullary junction. LC volumes described in
more recent NM-MRI studies show inconsistencies with one
another and their volumes are much less than reported in the
postmortem study (reported to be from 11.4 mm3 to 30 mm3

in healthy controls39–41 and 8.2 mm3 in a PD cohort42). This
underestimate may have arisen from the limited number of thick
slices in which the LC has been MR-visible.

In studies of LC NM content and LC NM signal inten-
sity across the lifespan, an inverted U-shaped pattern has been
reported.16 This pattern also has been replicated in postmortem
tissue studies16 and NM-MRI studies.27 The increase and
decrease of NM content may reflect increasing pigmented gran-
ule content due to continuous noradrenaline production during
adulthood and preceding cell death. In PD and other neuro-
degenerative disorders, there is clearance of previously intra-
cellular NM, also contributing to the down-direction arm of
the U-shaped curve after the onset of neurological dis-
ease.16,27 Therefore, studies of LC NM content need to take
into account age-related effects when evaluating different
clinical populations.37

Some published studies37,43 found a reduction in LC
NM contrast in PD patients independent of the analytic

FIGURE 5: The role of different image types and different processing. Best visualizing the NM and iron content depend on the MT
preparation used, the sequence type used and the choice of imaging parameters. In these data, we used a 3D MT prepared
gradient echo SWI sequence with a resolution of 0.67 mm�1 mm�1.34 mm. These data were collected on a Philips Ingenia scanner.
The 30� first echo MTC image in the upper left shows high SNR and visibility. The boundary of the NM is drawn here and copied to
the first echo tSWI on the bottom left image. The N1 sign should appear within the NM boundary as is in fact the case. Yellow
arrows are then used to highlight the N1 sign in all the lower row tSWI images. This individual has low iron content and so the N1
sign cannot be clearly seen until the fifth echo magnitude image (TE = 37.5 ms). Note the bright region of the N1 is clearly seen
even in the early echoes of the tSWI data.
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method used (voxel approaches or probabilistic maps). In
these studies, the reduction displayed a distinct spatial pat-
tern, with the middle-caudal portion being more affected
than the rostral part.44 However, no significant correlation
was observed between LC NM contrast and noradrenaline
transporter density in PD patients.44 A recent study investi-
gated the association of LC structural changes with nonmotor
clinical symptomatology in PD and found that there is a spa-
tially heterogeneous degeneration of LC among PD patients.
There was an association between regional structural degener-
ation and individual expressions of PD nonmotor symptoms
(such as orthostatic dysregulation or apathy).43 Another group
found a significant positive correlation between LC NM con-
trast and the extent of motor improvement after levodopa
administration.45 They concluded that evaluating LC NM
parameters using NM-MRI might be predictive of levodopa
responsiveness in PD.

Technical Perspectives of NM-MRI
NM-MRI Sequence Types
NM in the SNpc and LC was first observed by Sasaki and col-
leagues as hyperintense regions on 2D multislice, high in-plane
resolution T1W images acquired with a turbo-spin-echo (TSE)
sequence, now referred to as NM-sensitive MRI or NM-
MRI.46 The initial study reported significantly reduced NM
contrast in the SNpc and LC regions in PD patients.46 The
contrast in NM-MRI is thought to be associated mainly with
the T1-shortening effect when NM is combined with minerals
(particularly, iron and copper). What has led to the NM–iron
complex being highlighted on T1W images (acquired with
TE/TR = 14 msec/600 msec at 3 T) relative to the surround-
ing white matter or iron-free gray matter is still not clear. The
inherent magnetization transfer (MT) effects caused by the
high radio-frequency (RF) radiation within a TR and/or a spec-
tral presaturation rf pulse are thought to synergistically contrib-
ute to NM image contrast. The 2D TSE sequence employs a
high in-plane resolution of less than 0.5 � 0.5 mm2, with
10 axial slices of 2.5 mm thick slices collected perpendicular to
the fourth ventricle. The number of slices were sufficient to
cover territory from the rostral slice of the SN caudally to the
LC. Other parameters contributing to the NM contrast-to-
noise ratio (CNR) include a single concatenation, an echo train
length of 2 and avoiding the use of parallel imaging accelera-
tion.46 Drawbacks of this particular sequence include the high
specific absorption rate (SAR) level that would limit the num-
ber of slices. Other negative factors include the highly aniso-
tropic voxel size (which impairs the accuracy of the 3D
visualization of the SN and LC), volume measurements for the
SN and LC, very poor SNR (requiring multiple acquisitions)
and very long scan times (>10 minutes), which are prone to
motion artifacts when imaging PD patients.

Aiming at achieving shorter scanning times, Nakane and
colleagues verified the NM contrast in the SNpc and LC on a
1.5 T scanner using a 3D gradient-recalled-echo (GRE) sequence
and an off-resonance MT pulse preparation.47 The latter study
confirmed that the MT effect induced by the off-resonance MT
pulse has the most contribution to the observed NM contrast.47

They also tried to optimize the nominal flip angle of the off-
resonance MT pulse for achieving better contrast of the LC and
reported that a 500

�
MT pulse gave improved LC contrast com-

pared to the 360
�
MT pulse (though it yielded a higher SAR

and a longer scan time).47 Further efforts optimizing the nominal
flip angle of the off-resonance MT pulse were carried out by
Chen and colleagues.48 Their study compared the MTC in the
SN and LC territories acquired from three sequences: the original
2D TSE sequence, and two 2D GRE sequences with either a
nominal 300� MT pulse or a 300� MT pulse applied to the cen-
tral part of k-space. They concluded that both the GRE
sequences were able to mitigate the SAR burden and provide a
standardized protocol to image the SN and LC simultaneously.
A subsequent study by Trujillo and colleagues employed syn-
thetic melanin–iron complex phantoms at different concentra-
tions to mimic the human SN for a systemic investigation of the
contrast mechanisms in NM-MRI.49 They found that the iron-
free melanin phantom produced a negligible MT effect, and the
melanin–iron complexes at different concentrations did not alter
the observed macromolecular water to free water pool-size-ratio
as measured by the quantitative MT method. Instead, the T1
and T2 shortening caused by the melanin–iron complex contrib-
uted the most to the observed MT contrast.49 This report was
followed by an in vivo study from the same group,50 in which
they observed a higher water pool-size-ratio of the SNpc in PD
patients compared with those in HCs. However, their results
need to be considered preliminary given their small sample size.
A further study on healthy controls also observed a significantly
lower LC water pool-size-ratio compared with surrounding brain
tissue.51 These quantitative MT-derived observations are consis-
tent with studies by Watanabe and colleagues that indicate NM-
MRI contrast in the LC is associated with high water content.52

We have further validated this finding by showing the high con-
trast of NM using low FAs (in which T1 does not play a signifi-
cant role13) and in mapping actual water content (which also
reveals NM14).

In line with the needs of 1) quantifying iron deposition
in the SN, 2) assessing the N1 sign, and 3) measuring NM
contrast and volume in the SNpc and LC to systematically
evaluate PD at the early stage, 3D multiecho GRE sequences
have received considerable emphasis.4,13 Liu and colleagues
optimized the NM contrast in the SN and LC as a function
of flip angles using a multiecho 3D GRE sequence with MT
preparation. Their method used an on-resonance 1-2-1 set of
binominal RF pulses.13 The study concluded that the optimal
NM contrast in the SN was achieved at a flip angle lower
than the Ernst angle of the tissues (15�–20�), while the
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optimal LC contrast was achieved at a slightly higher flip
angle with minor T1 weighting (20�–25�).13 Meanwhile, the
MT prepared multiecho GRE acquisition makes it viable to
simultaneously measure the NM content of the SN and
the LC from the short echo time-derived MTC images.
Iron deposition levels and the N1 evaluation in the SN could
be extracted from the SWI and QSM data derived from the
long echo times. A subsequent clinical study by He and col-
leagues7 used the 3D multiecho GRE method to achieve a
better diagnostic performance by combining the NM volume,
SN volume, iron content, and the N1 sign in differentiating
PD patients from healthy controls. The 3D GRE-based
NM-MRI methods benefit from the lower SAR level and
larger coverage than is possible with the 2D TSE based
methods. Drawbacks of 3D GRE-based NM-MRI methods
are mainly associated with susceptibility artifacts and blood
flow induced artifacts, which can be mitigated by using a
minimum echo time with proper flow compensation.

In summary, the majority of studies39,53,54 have used
the 2D TSE-based sequences for NM-MRI, with or without
adding a MT preparation pulse (see Table S2 for imaging
parameters). In addition, 2D GRE sequences with MT
preparation,48,55–57 3D single-echo GRE sequences with MT
preparation,58,59 and 3D multiecho GRE sequences with on-
resonance MT preparation4,13 have also been used for NM-
MRI. A direct comparison of 2D TSE sequences with and
without MT preparation, and a 3D multiecho GRE sequence
is shown in Fig. 6. The detailed imaging parameters of these
sequences are listed in Table S2. Briefly, all three scans
employed an in-plane resolution of 0.43 � 0.86 mm2. Six-
teen slices with a thickness of 3 mm were acquired in
6 minutes 49 seconds for the 2D TSE sequence without MT
preparation, and 9 minutes 36 seconds with MT preparation,
which had a longer TR. In contrast, 72 slices with a thickness
of 1.5 mm were acquired in 6 minutes 20 seconds for the 3D
GRE sequence. The MT pulse is a vendor-provided MT
option, which is a 10 msec single lobe sinc pulse with Gaussian
apodization, 500

�
nominal flip angle, and 1.2 kHz off-resonance.

The three scans shown in Fig. 6 provided comparable NM
contrast in the SN and LC. One major advantage of the 3D
GRE sequences is that they can provide co-registered SWI and
QSM data as well as MRA data comparable with the clinical
time-of-flight MRA acquired separately. Overall, with the
larger in-plane voxel size, the SNR and CNR in the 3D GRE
MT prepared data are higher than those from the limited slice
TSE scans. The fast 3D imaging with larger coverage makes it
easier to image all DGM structures rapidly, a valuable property
for imaging PD patients.

Imaging Neuromelanin at 7 T
While the vast majority of NM imaging studies in PD
patients have been conducted using 3 T MRI scanners,
recent developments and applications using 7 T have been

able to show NM contrast in the SN and in the LC using
high-resolution imaging.43,54,60,61 There is no clinical study
that directly compares the diagnostic performance of NM
loss in the SN using 3 T and 7 T scanners on the same
patient population. Independent studies from 3 T4 and
7 T61 reported comparable AUC values in differentiating
PD patients from healthy controls using the SN volumes
measured from the MTC and QSM data. This is not sur-
prising given that the size of the SN and the contrast mecha-
nisms of these data ensure good contrast and reliable
measures at 3 T. However, the LC is much smaller than the
SN. With increased imaging SNR, 7 T has the potential to
provide a much better depiction of the rod-like LC struc-
ture.54 Using 7 T NM-MRI, it is possible to investigate the
spatial heterogeneity of LC contrast43 and regional NM loss in
the LC,60 which are thought to be related to nonmotor symp-
toms in PD patients.

NM-Containing Structures, Segmentation, and
Template Mapping in the Brainstem
The ability for measurement of NM in the SN or LC and iron
in the SN biomarkers to be of practical value will depend on
the development of automated processing methods. Today,
this option comes in the form of template mapping in which a
structure and its boundaries can be defined in template space
based on a single high-quality dataset.25,48,56,62,63 Ideally, data
from other individuals of that class (healthy control or patient
type) are then mapped to this original dataset and a probability
map created from which one can define the extent of the struc-
ture. In turn, this template can be mapped to the MNI tem-
plate and the user can have access to Talairach coordinates. In
the early implementations, the atlases created were based on
T1 and or T2 data.56,64 Today, mapping NM and iron in the
midbrain use NM and QSM or R2* data to generate the tem-
plates. The boundaries from these templates are then used to
map out the SNpc as the overlap between the NM contrast
structure and the whole SN. Generally, the template
approaches reported so far used NM-MRI for SNpc56 or
QSM data for the SN.65,66 Recall that hyperintense signal
from the MTC N-MMRI sequences is related to the SNpc
and VTA.67

Most early studies used manual tracing methods. Subse-
quently, some semi-automated approaches were applied.48,68

More recently further attempts at full automation have been
reported.25,66 Automated approaches can potentially over-
come the limitations of differences between raters and also
dramatically reduce the time to process the data. Segmenting
the SN and NM can be performed algorithmically or by
using artificial intelligence (AI). The former usually involves a
clear set of rules while the latter is done ad hoc through a
deep learning process, extracting a set of critical features. This
process, in practice, could be similar to some of the algorith-
mic input. Several AI-related papers have been published
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recently on extracting DGM structures (including the
SN).69,70

Creating a template from QSM or T2* data alone cannot
separate the SNpc and SNpr because there are no apparent
boundaries in these images to differentiate them. However, com-
bined with a template from NM data, the overlap region can be
considered to be the SNpc. The remaining region not in the
overlap from the NM template can be assumed to be the VTA.
Segmenting the VTA has also been of interest in studying fiber
pathways with DTI where templates of the VTA have been
used, although results have been quite variable.62,71

One of the issues with algorithmic methods is setting the
contrast threshold above which the structure will be assessed.
This can lead to large variations in volumes.68 AI methods will
also depend on the training of the data and their accuracy
could be susceptible to how the training is carried out. A recent
neural net approach shows much larger than expected NM vol-
umes.69 Another major issue for comparing data across sites or
even over time in the same scanner is normalization. One way
to handle this problem is to use a normalized contrast (i.e., the
difference between the NM region and an adjacent structure,
normalized by the signal of the adjacent structure).25

Evaluating the data from a given individual after the
template has been created involves mapping that individual’s
data to the template, picking up the boundaries, mapping
them back to the original space, and then fine tuning the
boundaries.25 This approach allows finer details to be found.
For example, in some high-resolution data of the NM, fingers
can be seen projecting into the crus cerebri. Also fine tuning
the boundaries requires high SNR. Therefore, for mapping of
the NM in the SN, a slightly lower resolution (which also
requires less scan time) will provide much better SNR. For
example, reducing the resolution from 0.44 � 0.44 mm2 to
0.67 � 0.67 mm2 will reduce the scan time to 2/3 the origi-
nal scan time and increase the SNR by a factor of 1.5 to
2 (depending if the higher resolution requires doubling the
bandwidth or not). Imaging movement disorder patients is
often difficult, so a rapid scan time can be very useful. Also,
being able to extract both the NM and iron content from a
single scan makes it possible to use each of these variables in
clinical assessment and avoids the need for co-registration
between different types of scans. One recent approach used a
single MTC scan of 5 minutes to accomplish this goal.4 In
the end, mapping the NM may still prove challenging for any

FIGURE 6: A direct comparison of 2D TSE and 3D GRE NM-MRI sequences for a 41-year-old man. Images (a)–(c) in the left panel
were from the 2D TSE sequence without an MT pulse. Images (d) and (e) in the middle panel were from the 2D TSE sequence with
an MT pulse. Images (g)–(o) in the right panel were from the 3D multiecho GRE sequence. All three sequences show the NM
reasonably well although the data are still somewhat noisy (a, d, g) and LC (b, e, h) territories. Of note, images (g) and (h) were
averaged over two slices to match the slice thickness in the TSE sequences. The reformatted coronal view (c, f, i) showed that the 3D
GRE sequence had a sharper depiction of the LC structure given by thin slice 3D acquisition. In addition, the 3D GRE sequence was
also used to generate SWI (j and l), QSM (k), and MRA (m–o) images. Data were acquired using a Siemens VERIO 3 T scanner with a
32-channel head coil. Detailed imaging parameters are listed in Table S2.
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of these methods because the NM varies in shape for some
brain diseases and the SN is subject to atrophy.

NM-MRI Applications in PD and Atypical
Parkinsonism
PD Diagnosis and Clinical Correlation
NM-MRI studies evaluating the diagnostic performance of NM
biomarkers’ ability to discriminate between HCs and patients
with PD were summarized in a recent review.72 The results
showed a pooled sensitivity of 89% (95% confidence interval:
86%–92%) and a pooled specificity of 83% (95% confidence
interval: 76%–88%) using NM-MRI to diagnose PD. Using
the receiver-operating characteristic (ROC) analysis, the area-
under-the-curve (AUC) of the ROC values for the NM complex
volume, the total SN volume, the SN iron content, and the N1
sign were 0.960, 0.788, 0.740, and 0.891, respectively.4 Com-
bining the NM complex volume with the N1 sign led to an
AUC value of 0.983.4 The combination of SN volume, signal
intensity, and fractional anisotropy in the NM-sensitive sub-
stantia nigra gave a diagnostic accuracy (0.93) for PD.73

A longitudinal study found that the total area and con-
trast ratio of the NM-prominent SN were both negatively
correlated with disease duration in PD patients.6 Unlike that
in HCs, the volume of the SNpc progressively reduced for
increasing disease severity in PD patients. Furthermore, NM
signal changes appeared to start in the posterolateral motor
areas of the SN and then progressed to more medial
regions.74 This study also showed that the NM SNR in the
bilateral posterolateral SN was significantly negatively corre-
lated with the MDS-UPDRS-III OFF score in the early PD
cohort, which is consistent with many other studies.5,39,75

Therefore, NM-sensitive MRI could be a neuroimaging bio-
marker to monitor the nigral degeneration and disease pro-
gression in PD. Biondetti et al also investigated the
concomitant spatial changes in SNpc dopamine-iron,
dopamine-NM and NM-iron in PD patients and found that
the temporal ordering of dopaminergic changes progressively
involved first the sensorimotor, and next the associative and
limbic striatal and nigral regions.10 However, NM volume
does not appear to correlate with SN volume loss, suggesting
that SN atrophy is on a pathophysiological path different
from that which causes NM loss.4

In PD patients, the SN NM pathology correlates with
motor dysfunction, whereas the NM pathology in the LC is
related to cognitive impairment. Therefore, NM measures of
the LC could serve as a correlate of another important clinical
measure of PD progression, cognitive dysfunction in PD
patients.76 Imaging biomarkers of nonmotor features in PD
are a major unmet need for clinical trials research. Investiga-
tions of PD brains and incidental Lewy body disease have
shown that the intraneuronal-synuclein burden in the LC
occurs earlier and can be more severe than the dopaminergic

neuron loss in the same patient’s SNpc.12 Therefore, moni-
toring the contrast ratio of the LC (LC-CR) and area of the
LC may be useful in evaluating the component of PD that is
related to cognitive dysfunction. It may also be useful in eval-
uating mild cognitive impairment.77 Studies have shown that
the LC can be linked to many cognitive functions such as
short term and working memory, learning, attention, and
sleep architecture (especially rapid eye movement sleep-related
behavior).78 Consequently, changes in the LC NM might
correlate with a loss in cognitive abilities with normal ageing
or in the context of PD.79 Complicating the interpretation of
these measures are major interindividual differences found
with LC visualization and volume determinations observed
across populations of healthy subjects.80 Advanced techniques
and multisite, large sample size studies are required to evalu-
ate the reliability in measuring LC degeneration in PD using
NM-MRI.81

Differential Diagnosis Between PD and Other
Movement Disorders Using NMMRI
Recent advances in multimodal MRI techniques including
iron and NM-based sequences allow for a precise characteriza-
tion of the brain stem damage in PD and contribute to good
classification between PD and HCs. However, the more prac-
tical challenge clinically is to differentiate PD from other neu-
rodegenerative disorders with Parkinsonism. Among these,
the most challenging differentiation scenarios pertain to PSP
and the Parkinsonian and cerebellar variants of MSA. Some
classic features of regional brain atrophy from routine MRI
sequences can enhance diagnostic capabilities in MSA, but
these changes occur sometimes years into the development of
this disorder.82 The same can be said regarding PSP.

Previous studies have shown that iron content in the
SN predominantly reflects the dopaminergic degeneration
and disease progression in PD83,84 but does not allow for dif-
ferentiation between PD and MSA patients or between differ-
ent MSA variants.85 However, compared with PD, higher
iron deposition was found in the putamen in MSA
patients,86 while significantly increased susceptibility values
were found in the RN, STN and medial region of the SN in
PSP patients.86 Concerning the differential diagnosis between
PD and atypical parkinsonism’s using NM-MRI, a previous
small sample size study concluded that the contrast ratios of
NM in the ventral–lateral SNc was lower in PD (n = 30)
and MSA-P (n = 10) groups than in those with PSP syn-
drome (PSPS: n = 13) and control groups (n = 22). The LC
contrast ratio was lower in the PD group than in the other
groups. The sensitivity and specificity were 60% and 90% for
PD vs. MSA-P, 63%–88% and 77%–92% for PD vs. PSPS,
and 80% and 85% for MSA-P vs. PSP.87

One group showed that significant loss of NM and the
N1 sign in the de novo PD group than those in the ET and
control groups.88 Another study reported that ET patients
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showed no NM difference in the SN when compared with
HCs using NM-MRI.89 (See, for example, Figure 4 for the
ET case.) These findings suggest that NM-MRI may serve as
a biomarker to differentiate between PD and ET patients.

As for patients with dementia with Lewy bodies (DLB),
the NM intensity of the SN is lower than that in HCs, which
is consistent with the autopsy results that NM-containing
neurons can be lost in patients with DLB.90

NM-MRI Application in PD Subtypes and
Prodromal PD
The clinical symptoms of PD are quite heterogenous and so
are the pathological changes underlying different PD sub-
types.91 It has been reported that PIGD patients showed sig-
nificantly lower NM CNR in the lateral SN compared to
TD patients. They found a diagnostic accuracy of 79% (sen-
sitivity 76.5% and specificity 78.6%) in differentiating
PIGD from TD patients.92 This is consistent with another
PD subtype group study93 showing that NM-MRI has a
potential diagnostic value to discriminate the clinical PD
subtypes (which are important in the study of PD progres-
sion and disability).

The NM-MRI measures have also been evaluated in
prodromal PD cohorts, which are RBD patients. Sommerauer
et al94 reported that the NM in the LC decreased in patients

with PD patients with RBD as compared to PD patients lac-
king RBD. This is consistent with another study’s findings
that found NM intensity reduced more markedly in PD
patients with RBD behavior than those lacking it.78 A subse-
quent study from the same researchers showed reduced NM
signal in the LC/subcoeruleus complex of the patients with
RBD but lacking Parkinsonism, suggesting that this complex
is affected in the purely RBD subjects to the same degree as
it is affected in PD.95 These results are in agreement with the
findings of widespread noradrenergic impairment in RBD, as
detected with noradrenaline transporter imaging.94 These
studies also support the potential of NM MRI as an early
marker of PD in the prodromal phase (which often involved
RBD or impaired olfaction, or both).

In summary, a majority of studies have investigated the
value of NM-MRI and the N1 sign in PD and in related
movement disorders. In brief, NM-MRI could potentially
provide useful disease state biomarkers for clinical trials in the
preclinical and prodromal stages and also be used to monitor
the progression beginning in early-stage (recently diagnosed
or minimally symptomatic) PD.96 However, biomarkers
derived from NM-MRI alone do not seem to be able to reli-
ably distinguish PD from the atypical Parkinsonian disorders,
nor will it be sufficient to monitor the progression in patients
with moderate to late-stage PD. The reliability and

FIGURE 7: Visualizing the NM without an MTC pulse. Top row, NM in the LC: (a) From the 6� STAGE data, the spin density-weighted
short TE (7.5 msec) is good enough to visualize the NM because the surrounding CSF is sufficiently suppressed and the high water
content of the LC makes it visible. (b) Coronal reformat of the data showing the LC. Both (a) and (b) are from a resolution of
0.67 mm � 1 mm (interpolated to 0.67 mm � 0.67 mm) � 1.34 mm. (c) High-resolution MTC coronal view with a resolution of
0.67 mm � 0.67 mm. Bottom row, NM in the SN: (d) an average over two 3 minutes scans with a 3� flip angle; (e) the usual MTC NM
images as a reference (5 minutes scan); and (f) the original 3� flip angle (3 minutes scan). The resolution for figures (d–f) is the same
as the resolution in figures (a,b).
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consistency of the NM-related biomarkers need to be further
investigated in multisite studies in the future.

Conclusions and Future Directions
There is considerable ongoing effort in the MR field to find
useful imaging biomarkers for PD and related neurodegenera-
tive disorders. It has been found that either using NM
volumes and/or the N1 sign (which also is clearly related to
the presence of NM) a high sensitivity and specificity can be
found for differentiating PD patients from HCs. However, to
differentiate between the various Parkinsonian movement dis-
orders will likely require the inclusion of iron measures
throughout the DGM. In order to provide definitive assess-
ment of novel biomarkers, hundreds if not thousands of
cases should be studied across sites. This is only possible if
some level of technical standardization can be reached.
One such approach of standardizing the measure NM and
iron is STAGE (strategically acquired gradient echo) imag-
ing.97,98 With this technique, it has been possible to show
reproducibility across sites and across manufacturers for
the measures of NM and iron content.14 Once this type of
standardized imaging approach has become adopted, this
will create a big data environment, which will benefit from
the use of AI in comprehensively evaluating the data.
Machine learning and radiomics may be the way of the
future in investigating a broad variety of features to differ-
entiate PD from other forms of neurodegeneration.7

Finally, new technical developments in imaging NM and
iron simultaneously are promising. New methods such as
spin density-weighted 3D gradient echo imaging14 that do
not require an MTC pulse and rely on the increased water
content of the NM (Fig. 7) or faster imaging methods such
as wave SWI99 to image the N1 sign with longer echo
times (Fig. 8) open the door to more practical imaging of
movement disorder patients where motion can be a prob-
lem. With a concerted, collaborative effort, the radiology
and neurology research communities have the opportunity

to incorporate these methods in large collaborative studies
to begin to address these issues, which are significantly
important for the care of patients.
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