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ABSTRACT
Background Post- traumatic epilepsy (PTE) is a 
severe complication of traumatic brain injury (TBI). 
Electroencephalography aids early post- traumatic seizure 
diagnosis, but its optimal utility for PTE prediction 
remains unknown. We aim to evaluate the contribution 
of quantitative electroencephalograms to predict first- 
year PTE (PTE1).
Methods We performed a multicentre, retrospective 
case–control study of patients with TBI. 63 PTE1 patients 
were matched with 63 non- PTE1 patients by admission 
Glasgow Coma Scale score, age and sex. We evaluated 
the association of quantitative electroencephalography 
features with PTE1 using logistic regressions and 
examined their predictive value relative to TBI mechanism 
and CT abnormalities.
Results In the matched cohort (n=126), greater 
epileptiform burden, suppression burden and beta 
variability were associated with 4.6 times higher PTE1 
risk based on multivariable logistic regression analysis 
(area under the receiver operating characteristic curve, 
AUC (95% CI) 0.69 (0.60 to 0.78)). Among 116 (92%) 
patients with available CT reports, adding quantitative 
electroencephalography features to a combined 
mechanism and CT model improved performance (AUC 
(95% CI), 0.71 (0.61 to 0.80) vs 0.61 (0.51 to 0.72)).
Conclusions Epileptiform and spectral characteristics 
enhance covariates identified on TBI admission and CT 
abnormalities in PTE1 prediction. Future trials should 
incorporate quantitative electroencephalography features 
to validate this enhancement of PTE risk stratification 
models.

INTRODUCTION
Post- traumatic epilepsy (PTE) is a devastating 
consequence of traumatic brain injury (TBI). Early 
stratification of PTE risk in patients with TBI would 
facilitate targeted enrollment into antiepileptogen-
esis treatment trials.1

While electroencephalography (EEG) is recom-
mended to detect early post- TBI electrographic 
seizures (ESZs),2 whether and how it benefits 
later PTE prediction remains unclear.1 3 4 Early 

investigations suggest that classifying post- TBI 
(<3 month) EEG into normal/abnormal may not 
differentiate PTE risk.3 Recently, we found that the 
presence of epileptiform abnormalities (EAs, ie, 
ESZs, sporadic epileptiform discharges (EDs), later-
alised or generalised periodic discharges (LPDs, 
GPDs), lateralised rhythmic delta activity (LRDA)) 
and focal polymorphic slowing <1 month post- TBI 
is associated with first- year PTE (PTE1).

1 Yet, acces-
sible quantitative EEG (QEEG) tools5–8 remain 
unexplored in quantifying abnormalities1 relevant 
to PTE1.

Here, we propose a quantification scheme to 
automatically calculate QEEG characteristics ≤14 
days post- TBI. We aim to evaluate the contribution 
of quantitative epileptiform and spectral features 
to PTE1 prediction beyond covariates identifiable 
on TBI admission and initial CT head abnormali-
ties.1 9–11

METHODS
In this case–control study, we collected data from 
nine centres of the Critical Care EEG Monitoring 
Research Consortium: Yale School of Medi-
cine (New Haven, Connecticut, USA), Brigham 
and Women’s Hospital (Boston, Massachusetts, 
USA), Duke University Medical Center (Durham, 
North Carolina, USA), Emory School of Medi-
cine (Atlanta, Georgia, USA), Henry Ford Health 
System (Detroit, Michigan, USA), Massachusetts 
General Hospital (Boston, Massachusetts, USA), 
University of Florida Health (Gainesville, Florida, 
USA), University of Miami School of Medicine/
Jackson Memorial Health System (Miami, Florida, 
USA) and UT Southwestern Medical Centre (Dallas, 
Texas, USA) between 2012 and 2019.

Participants
Patients with TBI were included retrospectively 
if age ≥18 years, no seizure/epilepsy history, 
EEG monitoring data ≤14 days post- TBI and 
≥12 months follow- up or developed PTE1. Patients 
were excluded per signal quality inspection 
(online supplemental methods I). Among included 
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patients, one- to- one case- control (PTE1 vs non- PTE1) match 
was performed based on admission Glasgow Coma Scale (GCS) 
score, age and sex (online supplemental methods II).

Outcome and exposures
We defined PTE1 according to our prior publication1 as an 
unprovoked seizure 1–12 months post- TBI. Eligible patients in 
this study commonly had protracted hospital courses. Hence a 
seizure >7 days post- TBI but during the acute hospitalisation 
was likely provoked by subsequent complications.11 EEGs (21 
channel, 10–20 system) were recorded for clinical indication.

Predictors
We recorded from CT reports the presence of intraparenchymal, 
subdural, subarachnoid, epidural haemorrhage (IPH, SDH, 
SAH, EDH) and skull fracture; and from EEG reports the pres-
ence of EA (ie, ESZs, EDs, LPDs, GPDs, LRDA), generalised 
rhythmic delta activity (GRDA), suppression, focal slowing and 
generalised slowing.

For QEEG analysis, we split each patient’s EEG into non- 
overlapping, 1- hour windows of homogeneous duration 
(online supplemental methods I). Each feature per patient was 
represented by the maximum (EA, GRDA features) or median 
(spectra) values across all windows. We matched outputs from 
two algorithms for ESZ (‘SPaRCNet’,8 Persyst146) and ED 
(SpikeNet,7 Persyst145) detection to reduce false- positive rates 
and computed ESZ and ED presence.1 12 We analysed EA burden 
(‘SPaRCNet’8; hourly % EA presence), GRDA burden, suppres-
sion burden (hourly % signal with amplitude <3 µV lasting 
≥0.5 s), global delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz) 
and beta (13–20 Hz) powers, theta/alpha/beta- over- delta ratios, 
power asymmetry (absolute hemispheric difference over global 
power) and power variability (hourly IQR) (Persyst14).

Statistical analysis
Univariable and multivariable (forward- selection algorithm 
applied) logistic regressions were used to evaluate the associa-
tion of unmatched covariates and QEEG features with PTE1. To 
combat overfitting, ridge logistic regressions trained and tested 
via 8- fold nested cross- validation were applied to compare 
predictive values of different feature sets (mechanism+CT, 
mechanism+CT+ QEEG, mechanism+CT+EEG- report; online 
supplemental methods III). Evaluation metrics were calculated 
by concatenating test sets.

Area under the receiver operating characteristic curve (AUC), 
accuracy (optimal operating point), odds ratio and calibration 
error were evaluated (online supplemental methods IV). p=0.05 
was the significance threshold. The 95% CIs were generated 
by bootstrapping (n=1000). Analysis was performed using R 
V.3.6.1.

RESULTS
Of 279, 205 eligible patients with high- quality EEG were 
included. Sixty- three PTE1 patients were matched with 63 non- 
PTE1 patients (online supplemental tables 1 and 2). 116 (92%) 
matched patients had CT reports.

TBI mechanism, CT and QEEG predictors of PTE1
We used univariable logistic regression to assess potential covari-
ates, including QEEG features, that predict PTE1 risk independent 
of matched variables (table 1; figure 1A,B; online supplemental 
figure S1). For TBI mechanism, penetrating injury was associated 
with an increased odd of PTE1 (OR=6.20, p=0.03) compared 

with acceleration/deceleration. For CT abnormalities, SDH 
(OR=3.34, p=0.01) and skull fracture (OR=2.48, p=0.03) 
were positively associated with PTE1 risk (n=116; online supple-
mental table S3). For QEEG, ESZ presence (OR=2.79, p=0.02), 
greater EA burden (OR per 10%-increase (OR10%)=1.15, 
p=0.01; figure 1A), LRDA burden (OR10%=1.13, p=0.02) and 
delta asymmetry (OR10%=1.29, p=0.047) were associated with 
increased odds of PTE1. Non- epileptiform GRDA burden1 13 
(OR10%=0.77, p=0.01) was negatively associated with PTE1. 
QEEG findings generally agreed with EEG- report results (EA, 
OR=2.29, p=0.03; focal slowing, OR=2.18, p=0.04) except 
for ED presence (significant in EEG- report1 (OR=2.91, p=0.02) 
but non- significant in QEEG analysis) (online supplemental table 
S3).

To examine whether QEEG predicts PTE1 risk independent 
of significant covariates, we applied a forward- selection algo-
rithm on QEEG features with p<0.1 in univariable analysis to 
construct a multivariable QEEG- only model, and then stepwise 
added penetrating injury, SDH and skull fracture. EA burden 
(aOR10%=1.17, p<0.01), suppression burden (aOR10%=1.41, 
p=0.03), and beta variability (aOR=16.17, p=0.03) jointly 
predicted PTE1 with an AUC of 0.69 (95% CI 0.60 to 0.78; 
figure 1C). The association of forward- selected QEEG features 
with PTE1 remained significant relative to penetrating injury 
alone (n=126), and more importantly, relative to all penetrating, 
SDH and skull fracture injuries combined (n=116; online 
supplemental table S4).

Additive benefits of QEEG in PTE1 prediction
To avoid overfitting in small- sample cohort, we leveraged nested 
cross- validation and regularisation (eg, ridge) techniques to eval-
uate the additive benefits of QEEG beyond TBI mechanism and 
CT abnormalities in PTE1 prediction (n=116). Compared with 
the Mechanism+CT ridge regression, Mechanism+CT+ QEEG 
demonstrated improved discrimination (test AUC, 0.71 (95% CI 
0.61 to 0.80) vs 0.61 (95% CI 0.51 to 0.72)) with a comparable 
calibration error (0.08 (95% CI 0.04 to 0.15) vs 0.06 (95% CI 
0.02 to 0.12)) (figure 1C,D; online supplemental table S5). Per 
feature importance measures (figure 1E), CT abnormalities (skull 
fracture, SDH) were the most important positive predictors, 
followed by QEEG epileptiform (ESZ presence, GPD burden, 
ESZ burden, EA burden) and spectral (suppression burden, beta 
variability) features. Penetrating injury also had strong positive 
importance. Consistent with logistic regression, GRDA burden 
had strong negative importance. A ridge algorithm utilising 
EEG- report abnormalities, instead of QEEG, (AUC (95% CI), 
0.65 (0.54 to 0.75); online supplemental table S5) demonstrated 
modest, but less robust improvement on the mechanism+CT 
model.

DISCUSSION
We demonstrate that EA burden, suppression burden and beta 
variability combined enhance PTE1 risk stratification in this case–
control cohort. Furthermore, QEEG provides added benefit in 
PTE1 prediction beyond TBI mechanism and CT abnormalities, 
especially given our data suggesting potential collinearity between 
penetrating and skull fracture (online supplemental table S4). 
Taking a PTE1 rate at 9.8% among moderate- to- severe patients 
with TBI,10 our mechanism+CT ridge model would identify 
patients with 15% PTE1, similar to the previously reported 1 year 
rates using clinical covariates.14 Our mechanism+CT+ QEEG 
model increases this PTE1 identification nearly 2- fold to 27%; 
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reducing the enrollments for anti- epileptogenesis trials by 50% 
(online supplemental table S6).

We found that a greater EA burden was associated with PTE1, 
generating hypotheses on metabolic dysregulation. EA burden 

post- TBI may increase metabolic demand when there is decreased 
metabolic supply, leading to a mismatch triggering epileptogen-
esis. Whether interventions reducing EAs post- TBI prevent meta-
bolic exhaustion and PTE development warrants exploration. 

Table 1 Univariable analysis of QEEG features associated with PTE1 development*

Univariable analysis Univariable logistic regression

Variable, descriptive statistics, unit Non- PTE1 patients (n=63) PTE1 patients (n=63) OR (95% CI) P value

Matched Variables

  Age at TBI, median (IQR), year 49 (28 to 66) 48 (28 to 65) 1 (0.98 to 1.02) 0.94

  Female, no (%) 18 (29) 17 (27) 1.09 (0.50 to 2.38) 0.84

  Admission GCS Score, no (%)

   13–15 (mild- TBI) 13 (21)† 13 (21)† 1 (Reference)

   9–12 (moderate- TBI) 15 (24)† 15 (24)† 1 (0.35 to 2.86) 1

   3–8 (severe- TBI) 35 (56)† 35 (56)† 1 (0.41 to 2.46) 1

Injury mechanism, no (%)

  Acceleration/deceleration 31 (49) 20 (32) 1 (Reference)

  Direct impact to head 3 (5) 6 (10) 3.10 (0.69 to 13.83) 0.14

  Fall from standing 16 (25) 20 (32) 1.94 (0.82 to 4.60) 0.13

  Fall from >3 ft 11 (17) 9 (14) 1.27 (0.45 to 3.61) 0.66

  Penetrating 2 (3) 8 (13) 6.20 (1.19 to 32.23) 0.03

EEG monitoring, median (IQR)

  Start time post- TBI, day 2.3 (1.5 to 4.7) 2.6 (1.6to 4.8) 1.01 (0.95 to 1.07) 0.71

  Monitoring duration, day 0.7 (0.3 to 1.7) 1.0 (0.7 to 1.8) 1.21 (0.96 to 1.53) 0.11

QEEG Features, ≤14 days post- TBI

  ESZ Presence, no (%) 9 (14) 20 (32) 2.79 (1.15 to 6.75) 0.02

  ED Presence, no (%) 41 (65) 45 (71) 1.34 (0.63 to 2.85) 0.45

  Peak EA Burden, median (IQR), %1 hour 8.2 (1.4 to 31.7) 34.3 (2 to 81.3) 1.15 (1.04 to 1.27)‡ 0.01

   ESZ 0 (0 to 0) 0 (0 to 7.7) 1.32 (0.99 to 1.75)‡ 0.06

   ED 0.1 (0 to 0.7) 0.1 (0 to 0.8) 1.04 (0.79 to 1.36)‡ 0.80

   LPD 0.1 (0 to 1.2) 0.2 (0 to 3.3) 1.09 (0.88 to 1.35)‡ 0.42

   GPD 0.1 (0 to 0.5) 0.1 (0 to 1) 11.76 (0.78 to >100)‡ 0.08

   LRDA 3.4 (0.5 to 24.2) 9.1 (0.9 to 76.9) 1.13 (1.02 to 1.25)‡ 0.02

  Peak GRDA burden, median (IQR), %1 hour 8.3 (0.3 to 32.1) 1.3 (0.1 to 9.5) 0.77 (0.64 to 0.92)‡ 0.01

  Suppression, median (IQR), %1 hour 2.9 (0.6 to 7.1) 3.8 (0.9 to 12.5) 1.29 (0.96 to 1.73)‡ 0.09

Global band power, mean (SD)

  Delta (1–4 Hz) 9.4 (2.2) 9.2 (2.4) 0.97 (0.83 to 1.13) 0.69

  Theta (4–8 Hz) 7.3 (1.8) 7.0 (1.9) 0.92 (0.76 to 1.11) 0.38

  Alpha (8–13 Hz) 6.3 (1.2) 6.1 (1.4) 0.94 (0.72 to 1.22) 0.63

  Beta (13–20 Hz) 6.0 (1.3) 6.0 (1.5) 0.99 (0.76 to 1.27) 0.92

Global X- over- delta ratios, mean (SD)

  Theta- over- delta 0.8 (0.1) 0.8 (0.1) 0.47 (0.02 to 10.91) 0.64

  Alpha- over- delta 0.7 (0.1) 0.7 (0.1) 1.82 (0.13 to 25.30) 0.66

  Beta- over- delta 0.7 (0.1) 0.7 (0.2) 2.42 (0.28 to 21.02) 0.42

Power asymmetry, median (IQR), %

  Delta 8.4 (5.7 to 18.7) 13.5 (7.3to 33.1) 1.29 (1 to 1.66)‡ 0.047

  Theta 9.0 (4.8 to 15.2) 11.7 (6.7to 28.3) 1.25 (0.98 to 1.58)‡ 0.07

  Alpha 8.4 (5.6 to 14.3) 11.7 (5.3 to 23.8) 1.25 (0.98 to 1.59)‡ 0.07

  Beta 8.0 (4.6 to 13.8) 9.7 (5.3 to 22.1) 1.27 (0.98 to 1.64)‡ 0.07

Power variability, median (IQR)

  Delta 0.6 (0.4 to 0.8) 0.7 (0.3 to 0.8) 0.96 (0.39 to 2.31) 0.92

  Theta 0.3 (0.2 to 0.4) 0.3 (0.2 to 0.5) 3.08 (0.53 to 17.87) 0.21

  Alpha 0.3 (0.2 to 0.4) 0.3 (0.2 to 0.4) 3.77 (0.42 to 33.93) 0.24

  Beta 0.2 (0.2 to 0.3) 0.3 (0.2 to 0.4) 7.24 (0.70 to 74.49) 0.096

*Predictors were included in forward- selection algorithm if p<0.10.
†Numbers may not sum to 100% due to rounding issue.
‡OR associated with 10 unit increase of features.
EA, epileptiform abnormality; ED, epileptiform discharge; ESZ, electrographic seizure; GCS, Glasgow Coma Scale; GPD, generalised periodic discharge; GRDA, generalised 
rhythmic delta activity; LPD, lateralised periodic discharge; LRDA, lateralised rhythmic delta activity; PTE1, post- traumatic epilepsy within first- year post- TBI; QEEG, quantitative 
electrocochleography; TBI, traumatic brain injury.
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The larger delta asymmetry for PTE1 versus non- PTE1 patients 
suggests that focal/hemispheric network dysfunction may be 
relevant as reported previously.1 4 Suppression burden predicts 
PTE1, perhaps reflecting injury severity independent of GCS.

Together, our data highlight the benefits of EEG monitoring for 
moderate- to- severe patients with TBI.1 2 With increased post- TBI 
EEG monitoring, our quantification scheme may reduce the cost 
of manually reviewing EEG reports without compromising PTE1 
prediction accuracy. However, ED algorithms may need further 
improvement in specificity (online supplemental tables S4 and 7).

Limitations
First, medication and state changes (sleep, awake and sedated) 
may affect EEG. These differences are highly influenced by TBI 

severity, and thereby more comparable among patients matched 
by admission GCS. However, the impacts of these and other 
TBI severity measures (lesion location/type, craniectomy/crani-
otomy) on QEEG and PTE1 risk warrant further exploration. 
Second, our study is retrospective with possible selection bias 
toward moderate- to- severe patients with TBI and/or those at risk 
for ESZ. Therefore, PTE1 incidences or prediction models here 
need further refinement to apply to the mild TBI population. 
Our findings should be validated in prospective studies. Third, 
some non- PTE1 patients here might develop >12 months PTE. If 
such patients had QEEG similar to those of PTE1 patients, their 
risk for PTE would be underestimated, and so would the contri-
butions of QEEG in PTE prediction. Studies investigating the 
association of QEEG with PTE latency are warranted. Finally, 

Figure 1 Quantitative electroencephalography (QEEG) prediction models for First- year post- traumatic epilepsy (PTE1). (A) % epileptiform abnormalities 
(EAs) for all 1- hour windows for all patients (0% corresponds to grey, higher % corresponds to darker red/blue); each block represents an 1- hour window; y- 
axis represents individual patients sorted by total recording duration (top: longest duration). (B) Same as panel A but for % suppression distribution. (C) Area 
under the receiver operating characteristic curve (AUC) comparison; AUC for forward- selected QEEG logistic regression (orange): 0.69 (95% CI 0.60 to 0.78); 
test AUC for cross- validated ridge logistic regression based on TBI mechanism and CT (mechanism+CT, grey): 0.61 (95% CI 0.51 to 0.72) and test AUC for 
cross- validated ridge logistic regression based on TBI mechanism, CT and QEEG (mechanism+CT+ QEEG, green): 0.71 (95% CI 0.61 to 0.80); shaded areas 
represent the bootstrapped (n=1000) 95% CIs. (D) same as C but showing calibration errors for QEEG logistic regression: 0.06 (95% CI 0.02 to 0.12), 
mechanism+CT ridge regression: 0.06 (95% CI 0.02 to 0.12), mechanism+CT+ QEEG ridge regression: 0.08 (95% CI 0.04 to 0.15). (E) Feature importance 
for mechanism+CT+ QEEG ridge regression; features were sorted by the importance measure; each boxplot visualises the distribution of penalised 
coefficients across eight folds.
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Epilepsy

combining QEEG with quantitative neuroimaging data15 may 
improve PTE prediction.

In summary, epileptiform and spectral features quantified by 
QEEG tools enhance covariates identifiable on TBI admission 
and CT abnormalities in PTE1 prediction. Future large- sample, 
prospective studies should validate our findings and could incor-
porate QEEG into PTE risk models.
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