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Abstract

Adrenomyeloneuropathy (AMN), the slow progressive phenotype of

adrenoleukodystrophy (ALD), has no clinical plasma biomarker for disease pro-

gression. This feasibility study aimed to determine whether metabolomics and

micro-RNA in blood plasma provide a potential source of biomarkers for AMN

disease severity. Metabolomics and RNA-seq were performed on AMN and

healthy human blood plasma. Biomarker discovery and pathway analyses were

performed using clustering, Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis, and regression against patient's clinical Expanded Disability

Status Score (EDSS). Fourteen AMN and six healthy control samples were

analyzed. AMN showed strong disease-severity-specific metabolic and miRNA

clustering signatures. Strong, significant clinical correlations were shown for

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-HOCA) (r2 = 0.83, p < 0.00001), dehy-

droepiandrosterone sulfate (DHEA-S; r2 = 0.82, p < 0.00001), hypoxanthine

(r2 = 0.82, p < 0.00001), as well as miRNA-432-5p (r2 = 0.68, p < 0.00001). KEGG

pathway comparison of mild versus severe disease identified affected downstream

systems: GAREM, IGF-1, CALCRL, SMAD2&3, glutathione peroxidase, LDH,

and NOS. This feasibility study demonstrates that miRNA and metabolomics are

a source of potential plasma biomarkers for disease severity in AMN, providing

both a disease signature and individual markers with strong clinical correlations.

Network analyses of affected systems implicate differentially altered vascular,

inflammatory, and oxidative stress pathways, suggesting disease-severity-specific

mechanisms as a function of disease severity.
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1 | INTRODUCTION

X-linked adrenoleukodystrophy (ALD; MIM #300100)
is an inborn error of metabolism, due to defects in
the peroxisomal membrane transporter protein. Close to
900 pathogenic variants of the underlying ABCD1 gene
have been identified (https://adrenoleukodystrophy.info),
which lead to peroxisomal reduced fatty acid beta-
oxidation and hallmark impaired degradation and
accumulation of very long chain fatty acids (VLCFA) in
all tissues.1 ALD presents in males as either a rapid pro-
gressive fatal cerebral demyelination (cALD) in young
boys or adulthood or/and a slowly progressive spinal cord
myelopathy, adrenomyeloneuropathy (AMN), starting in
the 20s. AMN presents with a spectrum of slow, and vari-
ably progressive symptoms. Both central and peripheral
nervous system pathology lead to motor and sensory dys-
function: spasticity, stiffness, weakness, sensory ataxia
and gait impairment, as well as sexual and bladder dys-
function. Furthermore, peripheral neuropathy presenting
with paresthesia, pain, and adrenal insufficiency is com-
mon.1 Investigation of VLCFA and ABCD1 pathogenic
variant can confirm X-ALD diagnosis in a suspected
male patient; however, it cannot predict the clinical
course of the disease progression (AMN or cALD). In the
absence of a direct biomarker or genetic correlate, many
groups have looked toward environmental factors,
modifier genes, transcriptomics, lipidomics, and micro-
RNA (miRNA) profiling to understand the heterogeneity
of ALD and AMN.1–4 As biomarker discovery is a principal
endeavor for AMN, we measured candidate biomarkers
against the standard neurological severity variable, namely
the Expanded Disability Status Scale (EDSS), originally
designed to quantify disability in multiple sclerosis.5

Metabolomics and miRNA expression allows for the
quantification of the entire spectrum of potential markers
in biofluids, which captures the functional state of the
organism at a given time point. Omics-based markers
may serve two functions: as a wide net for biomarker dis-
covery, and to stratify AMN phenotypes through biochem-
ical signatures, which may help cluster patients yielding
insight into underlying mechanisms. MiRNAs are small,
single-stranded noncoding RNAs that play a role in regu-
lating gene expression, or in post-translational epigenetic
mechanisms.4 Specific miRNA have been implicated in
neurological disease processes, and may, in addition to
-omics-based approaches, provide discovery insight into
potential disease mechanisms.

In this feasibility study, we sought to determine
whether metabolomics and miRNA-seq-based approaches
could be used to characterize, cluster, and identify poten-
tial plasma biomarkers for disease severity in AMN.

2 | METHODS

2.1 | Patient recruitment and inclusion
criteria

All patients and controls were seen at the Kennedy Krie-
ger Institute and had a confirmed biochemical diagnosis of
ALD. Patient data and samples were collected during rou-
tine physician visits between 2015 and 2018 and stored at
�80�C until use. Male patients over the age of 18, with a
genetically confirmed diagnosis of ALD, and pure AMN
phenotype were included. At the time of sampling,
patients had AMN without cerebral involvement. Patients
with a pure AMN phenotype without cerebral involve-
ment have an EDSS of at least 1 and do not have evidence
of cerebral demyelination on brain MRI at the time of
assessment. AMN patients were categorized as mild (EDSS
1–3) or severe (EDSS 4–9). Controls were non-ALD
healthy controls with no functional neurological deficit.

2.2 | Metabolomics

Global metabolomics profiling by ultraperformance liquid
chromatography mass spectrometry (UPLC-MS; Metabo-
lon Inc.) was performed on blood plasma samples (200 μl
each) from healthy controls and AMN subjects. The per-
metabolite data were median-scaled and minimum-value
imputed. Data were log2-transformed, for interpretation as
fold change relative to the median. Analysis of variance
(ANOVA) per metabolite was used to screen for differ-
ences in mean intensity across diagnosis groups. p values
from the global F-test were converted to false discovery
rate (FDR, Benjamini–Hochberg) q-values and the thresh-
old for selection set at FDR ≤0.05. Post hoc testing of
two-group comparisons was conducted for the selected
metabolites to determine the differences (p ≤ 0.05).

2.3 | miRNA

Plasma samples (200 μl) were processed for next-
generation sequencing at the USC Norris Cancer Center

Synopsis

Micro-RNA and metabolomics markers in adre-
nomyeloneuropathy blood plasma provide a rich
potential source of biomarkers, correlating cross-
sectionally with disease progression.

594 TURK ET AL.

 21928312, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

d2.12323 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [21/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://adrenoleukodystrophy.info


Molecular Genomics Core. Samples were extracted using
QIAGEN's miRNeasy Kit following the manufacturer's
protocol. Libraries were prepared from extracted total
RNA enriched in miRNA using QIAseq miRNA Library
Kit (QIAGEN). The libraries were sequenced on the
Illumina Nextseq500 platform on 1x75 read length. Raw
miRNA-sequencing reads in FASTQ files were uploaded
to the QIAGEN GeneGlobe Data Analysis Center for
primary quantification. The 30 adapter of sequencing
reads and low-quality bases were first trimmed using
Cutadapt (https://cutadapt.readthedocs.io/en/stable/).
Reads with less than 16 bp insert sequences or less than
10 bp unique molecular index (UMI) sequences were also
removed. The insert sequence reads were then aligned to
human GRCh38 reference databases (mapping to miR-
base mature, miRbase hairpin, piRNA, rRNA, tRNA,
mRNA, and other RNA based on miRBase V21, piRNA-
Bank, and Genome Reference Consortium GRCh38)
using Bowtie (http://bowtie-bio.sourceforge.net/index.
shtml). Read and UMI counts for each RNA type were
subsequently quantified from the mapping results.
Assessment of differential expression used negative bino-
mial modeling (DESeq2 package) for each of the two-
sample comparisons of the diagnosis groups, with FDR
controlled at 5% (Benjamini–Hochberg). Normalized
counts were exported for use in graphing.

2.4 | Cluster analyses

Hierarchical clustering using Pearson's correlation and
complete linkage was used to order the substrates. Partial
least-squares discriminant analysis (PLS-DA) was
performed on metabolomics and miRNA separately.

2.5 | Pathway analysis

Metabolites: Enrichment of changes in 80 metabolic
pathways from the Kyoto Encyclopedia of Genes and
Genomes (KEGG, for homo sapiens) was assessed by
Fisher's exact test. An additional measure of the level
of impact the alterations have on a pathway was
estimated using betweenness-centrality and was per-
formed in Metaboanalyst 4.0 (July 2019). The list of
measured metabolites was imported into Ingenuity
Pathway Analysis (IPA), mapped by HMDB number,
and core analysis was performed on the differential
lists of metabolites.

miRNA: Enrichment of biofunctions and disease
pathways was performed using IPA core analysis. The
full set of miRNA was used as the reference. Terms
meeting the threshold of FDR < 0.05 were retained.

2.6 | Clinical score regression analyses

A biomarker discovery pipeline was designed: First, ordi-
nary least-squares regression and mixed-linear modeling
were conducted on all metabolites and miRNA against
the individual EDSS score of AMN only (healthy controls
excluded from regression), and biomarkers were ranked
by coefficient of determination (r2). Second, biomarkers
with any overlap with severe AMN, or over 20% overlap
range between control and any AMN were excluded.
Xenobiotics and metabolites with known exogenous or
dietary sources were excluded. Significance testing was
performed using omnibus F-testing within analyses of
variance. Adjusted R2 values are reported. Bonferroni
adjusted p values for multiple comparisons are used to
determine levels of significance. Regression analyses
were performed in python (3.8.0), with the packages
pandas (1.0.1), seaborn (0.10.0), statsmodels (0.11.0), mat-
plotlib (3.1.3), scipy (1.4.1), and numpy (1.18.1).

2.7 | Age analyses

Ordinary least squares and multiple regression analyses
were performed to determine whether biomarker perfor-
mance may be attributed to patient age, within AMN.
Controls were regressed separately. Additionally, EDSS
was regressed against age.

3 | RESULTS

3.1 | Patient characteristics

Fourteen AMN and six healthy control subjects were
included in the study. The mean age for AMN subjects
was 46.4 years (range: 30–70; SD: 13.23) and 42.2 years
for controls (range: 24–73; SD: 18.81). AMN patients were
stratified by disease severity into mild (EDSS ≤3, n = 6)
and severe (EDSS 4+, n = 8). Mean EDSS of the mild
group was 2 (1–3) and severe group was 5.5 (4–7). All
AMN patients had a diagnosis of adrenal insufficiency.
Demographic data are shown in Table S1.

3.2 | Molecular signatures in categoric
analyses by disease severity

Untargeted metabolomics were performed on plasma
samples using UPLC-MS. A total of 826 metabolites were
identified and quantified by LC/MS. Of these, 170 were
identified as Xenobiotics and excluded. When examined
by partial least squares discriminant analysis (PLS-DA),

TURK ET AL. 595
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metabolic phenotypes of plasma from control and AMN
patients demonstrate that strong clustering by disease
severity group can be achieved (Figure 1A). Analysis of
differential mean intensity between controls, mild AMN,
and moderate/severe AMN plasma samples identified
402 metabolites (ANOVA F-test, FDR < 0.05). Most iden-
tified metabolites were increased in the AMN groups,
though the patterns were not exclusively monotonic with
severity (Figure 1B).

Profiling for miRNA in control and AMN plasma
was performed using high-throughput RNA-seq, with
2545 miRNAs identified for analysis in the plasma
samples. PLS-DA analysis of miRNA revealed a good
separation between control and AMN plasma samples
(Figure 1C). Two-group comparisons of miRNA
counts between controls, mild AMN, and severe AMN
plasma samples identified 101 differential miRNAs
(negative binomial modeling, FDR < 0.05). Clustered
metabolites and miRNA expression are shown for
each group in Figure 1B,D. The miRNAs miR-134-5p,
miR-186-5p, and miR-409-3p are significantly differ-
ent between all three groups: control, mild, and
moderate/severe AMN (FDR < 0.05; Figure 2A–C).
MiR-409-3p shows lower AMN expression creating a
monotonic trend (Figure 2C).

3.3 | Identifying potential biomarkers
by EDSS

In a first step, linear regression between molecular
intensity and EDSS score (range: 1–7) in AMN was per-
formed. Then, to identify potential biomarkers of dis-
ease severity which only show abnormal levels in
AMN, those molecules that had intensity (expression)
level overlap of more than 20% between control and
AMN cases were excluded. Exogenous- and dietary
metabolites were also excluded. There were three
metabolites and one miRNA retained with strong clini-
cal correlations (Figure 2D–G): 7-alpha-hydroxy-3-oxo-
4-cholestenoate (7-HOCA) (r2 = 0.83, p = 0.0002),
dehydroepiandrosterone sulfate (DHEA-S) (r2 = 0.82,
p = 0.0002), hypoxanthine (r2 = 0.82, p = 0.0002), and
miRNA: 432-5p (r2 = 0.68, p = 0.007). A selected set of
metabolites and miRNAs identified in the primary cate-
goric ANOVA group analysis (control vs. mild
vs. moderate/severe AMN) were regressed against
EDSS and are shown in Figure S1.

These include asparagine (r2 = 0.63, p = 0.002),
aspartate (r2 = 0.78, p = 0.0002), cystein-glutathione
disulfide (r2 = 0.79, p = 0.0002), glutamate (r2 = 0.80,
p = 0.0002), glutamine (r2 = 0.02, p = 0.63),

FIGURE 1 Partial least-squares discriminant analysis (PLSDA) shows metabolite (A) and micro-RNA (C) clustering. Clustered

heatmaps of differential (B) metabolomics and (D) micro-RNA between control, mild, and moderate/severe adrenomyeloneuropathy (AMN)

596 TURK ET AL.
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FIGURE 2 Micro-RNAs (A) 134-5p, (B) 186-5p, and (C) 409-3p significantly differentiate control, mild, and moderate/severe AMN.

Linear regression analyses of molecular intensity within AMN against the Kurtzke Expanded Disability Status Scale (EDSS; range 1–7
included). Scatterplots are shown for molecules with significant linear association and minimal overlap with control (EDSS 0): (D) 7-alpha-

hydroxy-3-oxo-4-cholestenoate (7-HOCA), (E) dehydroepiandrosterone sulfate (DHEA-S), (F) hypoxanthine, and (G) micro-RNA 432-5p.

The estimated linear relationship is plotted with a solid black and the 95% confidence bands on this line are shown in gray. The range of

observed molecular intensity for controls is denoted with green-dashed lines

TURK ET AL. 597
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glycine (r2 = 0.49, p = 0.01), sarcosine (r2 = 0.73,
p = 0.0005), threonine (r2 = 0.30, 0.06), miR-134-5p
(r2 = 0.52, p = 0.69), miR-186-5p (r2 = 0.44,
p = 0.98), miR-409-3p (r2 = 0.66, p = 0.28), and
miR-451-a (r2 = 0.57, p = 0.7).

3.4 | Biomarkers as a function of age

To assess if age is confounding the molecular relation-
ships with EDSS, we modeled the linear relationship
between age and EDSS (range: 1–7) within AMN. There
was a trend to a positive correlation (r2 = 0.25,
p = 0.06; Figure S2). No significant correlations
between age and metabolite were found in AMN or
controls.

3.5 | Follow-up analyses for phenotype-
switch to cerebral disease

Clinical records for AMN patients were obtained from
the sample date to Jan 2021. One mild AMN patient with
EDSS 3 was sampled at age 63 in 2014. Only this patient
saw diagnosis of cerebral ALD in 2019. All regression
analyses were repeated excluding the cerebral patient in
order to assess the sensitivity of the analysis to this pre-
progression patient sample. The top metabolites identi-
fied by the regression models with and without this case
remained the same (Figure 2D–G). Excluding the patient
from regression analyses does not alter the significant
correlation between 7-HOCA and EDSS versus excluded
patient 7-HOCA and EDSS (r2 = 0.83, p < 0.00001;
Figure 3A,B). However, after excluding the patient that

FIGURE 3 Sensitivity analyses regression modeling within AMN for EDSS versus 7-HOCA (A) with all patients, (B) excluding potential

outlier. (C) Age versus 7-HOCA with all patients and (D) excluding outlier. Arrow indicates potential phenotypic outlier diagnosed with

cerebral disease 4 years after the sample date

598 TURK ET AL.
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progressed to cALD, we see that 7-HOCA was identified
as strongly correlated with age (r2 = 0.50, p = 0.007),
which was not the case when the patient was included in
the model (r2 = 0.25, p = 0.08), shown in (Figure 3C,D).
The patient's 7-HOCA value is similar to those in
young AMN.

3.6 | Pathway analysis as a function
of disease severity

KEGG enrichment was assessed for metabolites that dif-
fered between mild and moderate/severe AMN (ANOVA
FDR < 0.05, follow-up two-group test p < 0.05), in order

FIGURE 4 Combined micro-RNA and metabolite network analyses identify downstream systems and targets (yellow). Upregulated

(red) and downregulated (blue) substrates are linked directly (solid gray arrow), or indirectly (dotted gray arrow)

TURK ET AL. 599
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to determine which pathways are affected as a function
of disease severity. KEGG analysis identified the follow-
ing systems significantly altered by highest impact, that
is the changed metabolites sit in key junction points of
the pathway (Figure S3A): (1) taurine and hypotaurine;
(2) D-glutamine and D-glutamate; (3) phenylalanine,
tyrosine, and tryptophane biosynthesis; (4) vitamin B6;
(5) alanine, aspartate, and glutamate; (6) glycine, serine,
and threonine; and (7) beta-alanine. To examine biologi-
cal functions related to altered miRNA between mild and
moderate/severe AMN, pathway enrichment was con-
ducted using the ingenuity knowledgebase. Inflammatory
disease, inflammatory response, and neurological disease
toped the ranked list of affected functions (Figure S3B).

We then conducted integrated network analyses to
generate a pathway map that combined both significantly
changed miRNAs and metabolites between mild and
moderate/severe AMN. Central to altered miRNA were
signaling pathways SMAD 2/3, SMAD 6/7, CALCRL,
IGF1-R, and GAREM1. Central to the altered metabolites
were inflammatory pathways NOS, LDH complex, and
glutathione peroxide. ERK1/2 was identified as a path-
way node joining the miRNA and metabolites networks
(Figure 4).

4 | DISCUSSION

Recent advances in drug discovery have resulted in iden-
tification of several potential therapeutics for adult men
with AMN; however, clinical trials have been hampered
by the rarity of the disease, resulting in limited availabil-
ity of natural history data and a highly variable rate of
progression in AMN, with some subjects progressive over
years and others remaining stable for decades. There is a
great need to identify markers that correlate with disease
severity in AMN, which could be used for stratification of
patients for clinical trials but also may serve as predictors
of outcome in future prospective studies.

In this feasibility study, UPLC–MS-based metabolo-
mics and RNAseq-based quantification of miRNA expres-
sion performed in blood plasma of a cohort of well
phenotyped AMN patients demonstrate that these blood
parameters have the potential to serve as biomarkers
reflecting disease severity. Encouragingly, both metabo-
lites and miRNA showed strong clustering within groups,
as confirmed by PLS-DA. This first step identified poten-
tial metabolic and miRNA signatures, not just separating
AMN from healthy controls but differentiating mild from
severe AMN, as shown in Figure 2.

7-HOCA is the main metabolite of oxysterol
27-hydroxycholesterol (27-OHC) in the brain.6 An increase
in 7-HOCA has been shown to reflect damage to the

blood–brain barrier when measured in cerebrospinal fluid.7

In our data, plasma 7-HOCA is high in mild, and low in
severe in AMN (r2 = 0.83, p < 0.0001). However, regressed
against age, 7-HOCA first showed a trend toward a weak
inverse correlation (r2 = 0.25, p = 0.08). Upon closer exam-
ination of these data, we identified an outlier patient
greatly reducing the strength of the correlation. The mild
AMN outlier (EDSS 3, age 63) demonstrated a much higher
7-HOCA value than his later-age counterparts, similar to
those of young AMN patients. Interestingly, the outlier
patient was the only patient in this cohort found to have
developed cerebral disease, diagnosed in 2019, 4 years after
the sample date in 2015. Repeat sensitivity analyses exclud-
ing the outlier showed a significant correlation with age
(r2 = 0.50, p = 0.04) within AMN, without affecting the sig-
nificant correlation to EDSS. In controls, there was no sig-
nificant correlation between 7-HOCA and age. Further
studies are needed to determine whether 7-HOCA has any
predictive value in identifying individuals who are at risk
of developing cALD later in life.

DHEA-S is an endogenous androstane steroid and
regulator of peroxisomal function, shown to induce pro-
liferation and stimulate peroxisomal enzyme activity
involved in fatty acid metabolism.8–10 AMN patients com-
monly present with primary adrenocortical insufficiency,
showing low levels of cortisol, DHEA and DHEA-S.
Decreased testosterone levels have also been reported in
ALD.11 We show low DHEA-S in severe AMN, and no
correlation with age (r2 = 0.11, p = 0.16). However,
DHEA-S is transiently high in blood plasma following
DHEA administration, and our patients may be on DHEA
supplementation, which may be a confounder.12

Hypoxanthine is oxidized by xanthine oxidase to uric
acid, a process which generates radical oxygen species
(ROS).13,14 Hypoxanthine has been shown to induce
endothelial dysfunction via ROS production and induce
apoptosis preventable by N-acetylcysteine pretreatment.14

We have previously shown that antioxidant function of
peripheral blood cells shows a phenotype-specific
response between different ALD phenotypes.15,16 While
plasma hypoxanthine is also shown to increase with
physical activity which we have not measured in our
patients,17 our sample data shows higher levels of hypo-
xanthine in patients with an EDSS of 6+. Considering
the severe gait impairment of these patients, we cau-
tiously assume that the physical activity level of these
patients may be lower than those with mild disease. In
summary, we believe that there is strong rationale for the
abnormal elevation of hypoxanthine as a function of dis-
ease severity, supporting the potential of this metabolite
as a plasma biomarker in AMN.

We have previously shown alterations in glutathione
peroxidase metabolism, previous attempts to discriminate

600 TURK ET AL.
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between ALD phenotypes.15 While our metabolomics
panel does not capture total glutathione, we report
increased cysteine-glutathione disulfide, the oxidized
form, in severe versus mild AMN.

Two previous studies, including one from our group,
have reported miRNA changes in patient cells.4,18

However, no plasma miRNA has been reported for AMN
or ALD phenotypes. Our categorical analysis identified
three miRNAs driving the signatures differentiating
controls and AMN severity: miR-134-5p, miR-186-5p, and
miR-409-3p, as well as miR-432-5p.

MiR-134-5p is shown to contribute to synapto-
dendritic plasticity.19 MiR-134-5p decrease is reported in
a neuropathic pain rat model of chronic sciatic nerve
injury.20 Inducing miR-134-5p overexpression alleviated
neuropathic pain and decreased the expression of inflam-
matory cytokines.20–22 Future analysis will be needed to
compare this miRNA with clinical outcome measures
such as pain scales in AMN subjects to determine
whether the MiR-134-5p reduction seen in severe AMN is
associated with severe peripheral neuropathy.

MiR-409-3p is a reported biomarker in CSF for Parkin-
son's disease,23 and in plasma differentiating the phenotypes
of Rett syndrome.24 Overexpression is shown to downregu-
late inflammatory cytokine production by astrocytes in the
autoimmune encephalitis mouse model by reducing SOCS3
expression,25 a protein also found elevated in AMN patient
PBMCs.26 We show low miR-409-3p in severe AMN.

High miR-186-5p is associated with improved neuro-
logical outcomes in the spinal cord ischemia–reperfusion
injury model.27 We show decreased miR-186-5p in AMN
versus control, with lower expression in the mild versus
the moderate/severe group.

We show decreased miR-432-5p in severe AMN. A
reported downstream target is CXC Chemokine ligand
5 (CXCL5),28 a leukocyte chemokine and potential
inducer of microglial activation, increased BBB damage,
and white matter injury.29

Combined IPA and KEGG network comparative ana-
lyses between mild and moderate/severe disease patients
identified downstream pathways, previously implicated
in ALD pathology literature: IGF-1 dysfunction has been
observed in both neonatal and early childhood (noncer-
ebral) ALD patient fibroblasts30 and in reduced insulin
signaling in the ABCD1-KO mouse spinal cord.31 SMADs
2/3 is downstream of the TGFβ family, which is increased
in ABCD1-deficient vascular endothelia.32 We also show
reduced miR-17-5p, the inhibitory mediator of SMAD 2/3
in severe AMN. GAREM is a ubiquitously expressed sig-
nal in the endothelial growth factor (EGF) pathway and
contributes to neurite outgrowth in neuroblastoma
cells.33 We also show reduced MiR-16-5p in severe AMN,
an upstream effector of GAREM.

While network analyses comparing disease severity
profiles implicate interesting vascular, inflammatory, and
oxidative stress pathways, these differences must be
explored in cellular models for mechanistic studies in the
future. One limitation of the study are exogenous effects
on the human metabolome. Dietary effects were not
accounted for in these patients and should be considered
in future studies, as well as menstrual cycle in female
heterozygote AMN.

In summary, our data adds to previous reports show-
ing differences between AMN patients and healthy
controls,26 and demonstrates the feasibility of using meta-
bolomics and miRNA to identify potential biomarkers of
clinical disease severity in AMN. This first step in identi-
fying potential biomarkers should be followed by longitu-
dinal validation studies in larger cohorts. Future -omics
and RNA-seq-based studies should also include asymp-
tomatic AMN patients as well as asymptomatic and
symptomatic heterozygote female AMN patients.
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