Computed Tomography-Derived 3D Modeling to Guide Sizing and Planning of Transcatheter Mitral Valve Interventions

Joris F. Ooms
Dee Dee Wang
Ronak Rajani
Simon Redwood
Stephen H. Little

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/cardiology_articles
Authors
Computed Tomography-Derived 3D Modeling to Guide Sizing and Planning of Transcatheter Mitral Valve Interventions

Joris F. Ooms, MD, Dee Dee Wang, MD, Ronak Rajani, MD, Simon Redwood, MD, Stephen H. Little, MD, Michael L. Chuang, MD, Jeffrey J. Popma, MD, PhD, Gryn Dahle, MD, Michael Pfeiffer, MD, Brinder Kanda, MD, Magali Minet, MSc, Alexander Hirsch, MD, PhD, Ricardo P. Budde, MD, PhD, Peter P. De Jaegere, MD, PhD, Bernard Prendergast, MD, William O’Neill, MD, Nicolas M. van Mieghem, MD, PhD

ABSTRACT

A plethora of catheter-based strategies have been developed to treat mitral valve disease. Evolving 3-dimensional (3D) multidetector computed tomography (MDCT) technology can accurately reconstruct the mitral valve by means of 3-dimensional computational modeling (3DCM) to allow virtual implantation of catheter-based devices. 3D printing complements computational modeling and offers implanting physician teams the opportunity to evaluate devices in life-size replicas of patient-specific cardiac anatomy. MDCT-derived 3D computational and 3D-printed modeling provides unprecedented insights to facilitate hands-on procedural planning, device training, and retrospective procedural evaluation. This overview summarizes current concepts and provides insight into the application of MDCT-derived 3DCM and 3D printing for the planning of transcatheter mitral valve replacement and closure of paravalvular leaks. Additionally, future directions in the development of 3DCM will be discussed. (J Am Coll Cardiol Img 2021; n-n-n) © 2021 by the American College of Cardiology Foundation.

Pre-procedural planning with 3-dimensional (3D) multidetector computed tomography (MDCT) has proven to be a prerequisite planning tool for successful transcatheter aortic valve replacement (TAVR) in elderly patients with degenerative tricuspid aortic valve stenosis (AS) who are at elevated operative risk (1).

A plethora of catheter-based strategies aim to tackle mitral valve defects. Whereas the aortic root arguably represents a relatively straightforward tubular structure, the mitral valve features a more complex confluence of surrounding structures and introduces patient-specific particularities. This requires individualized advanced planning. Traditionally,
echocardiography has been the mainstay of imaging. However, there are limitations to using single-modality imaging for transcatheter pre-procedural evaluation. Two-dimensional echocardiography is often unable to visualize the trajectory for intra-cardiac devices in relation to surrounding anatomic structures. 3D transesophageal echocardiography (TEE) has limited spatial resolution and may be hampered by dropout artifacts that may mimic perforations or leaks (2). It is this spatial resolution that is essential in complex catheter-based mitral interventions, as it enables adequate device sizing and detailed assessment of the valve and its surroundings.

Improvements in MDCT spatial resolution, acquisition speed, and reconstruction algorithms enable the derivation of accurate virtual 3D reconstructions of cardiac structures to virtually test catheter-based procedures. Compared with echocardiography and cardiovascular magnetic resonance imaging (CMR), MDCT has superior spatial resolution and allows for isotopical imaging. 3-dimensional printing (3DP), based upon MDCT-derived 3D computational models, complements virtual modeling and offers the opportunity to implant devices in life-sized casts of the cardiac anatomy (3). The 3D-printed modeling facilitates hands-on procedural planning, device training, and retrospective procedural evaluation. Ultimately, physicians may better understand a patient’s unique anatomy and can bench test future catheter-based interventions (4–6). A clear distinction has to be made between 3D computational models and simulation, the latter using tissue/device properties and their respective interactions to predict structural/functional outcome. Furthermore, by adding computational fluid dynamics to these models, blood flow is simulated (7).

Herein, we provide a comprehensive overview of MDCT-derived 3D modeling in transcatheter mitral valve procedures including computational (virtual) modeling and printing. We place this technology in the perspective of transcatheter mitral valve replacement (TMVR) and mitral paravalvular leakage (PVL) closure.

BASIC PRINCIPLES OF MDCT-DERIVED 3D COMPUTATIONAL MODELING

The cornerstone of MDCT-derived 3D computational modeling (3DCM) and 3DP is based upon the following individual guidelines for MDCT-acquisition, segmentation, and understanding of the proposed cardiac intervention using available cardiac imaging applications (4,8).

MDCT ACQUISITION. A detailed overview of MDCT image acquisition is beyond the scope of this paper, but in general, MDCT 3D modeling requires contrast-enhanced, electrocardiography-gated MDCT acquisition without too stringent electrocardiographic dose modulation. iodinated contrast is injected intravenously at a rate of ≤4 ml/s. However, this may vary, as protocols between scanners, hospitals, and patients differ. The use of a saline/contrast flush should be determined based on indication. Image reconstruction should be performed for the entire cardiac cycle at 5% to 10% increments of the R-R interval resulting in 10 to 20 datasets per cardiac cycle. The reconstructed slice thickness should be <1 mm. Depending on the intracardiac region of interest and the procedure to be performed, specific phases in the cardiac cycle are selected for segmentation. The mid to late diastolic phase is required for maximal mitral annulus dimensions. Conversely, annular dimensions in the mid to late systolic phase are required for minimal mitral annular dimensions (8).

IMAGE SEGMENTATION. Image segmentation is a process in which an anatomic label is assigned to a set of pixels that share similar characteristics. Geometric analysis and sizing become possible as different anatomic structures emerge in the digital image. MDCT is the only modality able to isotopically image the heart, meaning that volume pixels (voxels) are identical in size in the x, y, and z planes. Manual segmentation of cardiac chambers, valves, and great vessels is time-consuming and has high interobserver variability. Specialized software packages offer (semi) automated segmentation processes (9,10) (Figure 1). In semiautomated segmentation, users label the cardiac structures and indicate thresholds for the gray value range in which those structures are optimally visualized. With this input, segmented 3D models of the heart chambers and great vessels are automatically obtained from MDCT images using either volume rendering (VoR) or computational modeling (CM) (Figure 2). In VoR, a grid of voxels is visualized using transparency and coloring. In CM, voxels are used to derive a mesh structure of a multitude of triangles (the amount depends on the level of convexity and detail requested). Although a VoR model allows rapid visualization of the grayscale in 3D, it has limited capabilities for downstream operations such as automated quantification. CM enables automated analysis of anatomic structures, provides enhanced spatial insight, and can be converted to a 3D-printed model. A
3D computational model can be converted to files with different extensions, serving different purposes. For example, the model might be saved as a stereolithographic file (.STL), facilitating 3D printing, or as an object file (.OBJ), enabling assessment in virtual reality. Most models in this paper are created using the CM method; alternative techniques are highlighted where applicable. Once cardiac structures are virtually modeled, a broad spectrum of clinical applications becomes available, including assessment of ventricular and atrial dimensions, characterizing heart defects, procedural planning, and the design and geometric validation of medical devices (10–13).

Various (semi)automated segmentation packages are available including but not limited to: Mimics Innovation Suite, 3D Slicer, Vitrea, TeraRecon, 3Mensio, Solidworks, and Vascular Modeling Toolkit (4). In this paper, the Mimics software package (Materialise NV, Leuven Belgium) was used unless stated otherwise.

GENERAL CONCEPTS IN 3D COMPUTATIONAL MODELING. *Sizing an asymmetrical 3D orifice.* As existing devices in structural heart disease are generally symmetrical and available in specific sizes, the key to pre-operative assessment is to match asymmetrical patient anatomy with symmetrical device shape. Sizing an asymmetrical 3D orifice can be challenging, and 2 methods are generally used.

The conventional method uses MDCT images (axial thin sections) to obtain a plane at the level of basal insertion of the mitral leaflets into the mitral annular ring creating a hinge-point during the mid to late diastolic phase of the ventricular cycle. Subsequently, using the double oblique view, the mitral annular dimensions are captured. This completely manual technique, which is de facto planimetry, relies heavily on operator experience to provide the accurate annular size and landing zone for a virtual transcatheter heart valve (THV) (10) (Figures 2A and 2B). This technique does not accurately reflect the 3D structure of the saddle-shaped mitral annulus. Its height, in particular, is challenging to incorporate.

In an alternative VoR-based method, the analyst tracks the mitral annulus using reference points in multiple planes around a user-defined center point (centrally located in the mitral orifice), which creates a 3D reconstruction of the mitral annulus (Figures 2C and 2D). In a method based on 3DCM, mesh models of the left atrium (LA), left ventricle (LV), and calcium (if present) are used to position mitral annular reference points.
points (Figures 2E and 2F). From these references, dedicated software constructs a smooth 3D virtual annulus derived from a series of Fourier approximations for each of the spatial coordinates (x, y, z) (semiautomated). The contour of the annulus is then projected onto its best-fit plane, which is calculated using the least squares method (14) (Figure 2D). This projected annulus is used to derive the annular area and diameters. Consequently, the best-fit plane serves as the landing zone for the virtual THV implant. Compared with the conventional method in general, both the VoR and the 3D computational method allow for a 3D reconstruction of the mitral annulus. 3DCM further provides a full mesh model of the surrounding structures allowing detailed assessment of asymmetrical structures in a sole model. Furthermore, it enables semiautomated measurement of asymmetrical structures, volumes, and orifices reducing variability and potentially lessening processing time.

Virtual device implantation. MDCT-derived 3DCM allows fitting of a geometric shape or a digitalized 3D virtual device. An empirical starting point for device and size selection is the area-derived diameter of the reconstructed annulus or orifice. The selected device is automatically centered around the geometric midpoint of the best-fit plane. Given the asymmetrical shape of anatomic structures, it is essential to visually assess fitting of the device in multiple angles. Spatial interaction with surrounding structures can also be tested, thereby identifying possible malposition or obstruction (9) (Figure 3). This concept of an adequate visual fit is essential in MDCT-derived 3DCM, but lacks any appreciation of tissue and device characteristics to interpret device-host interactions. Specialized models that incorporate tissue and device properties in virtual models are under development and have reasonable accuracy in TAVR simulation of implants and prediction of residual
paravalvular leaks, conduction disorders, and calcium displacement (7,15).

3D PRINTING

MDCT-derived 3D computational models incorporate spatial relationships on a 2-dimensional screen and might impair complete understanding of the detailed 3D reality. Consequently, a full understanding of the model requires meticulous and time-consuming assessment from multiple angles. However, transformation of these computational (virtual) models into physical form by means of 3D printing can resolve these limitations. The availability of a patient-specific physical model can facilitate medical teaching, exploration of valve function, and pre-procedural planning (11). In congenital heart disease, 3D printing has been shown to be helpful in pre-procedural planning of surgical correction (16). Subsequently, this technique has been gradually adopted to help plan different catheter-based interventions for structural heart disease (4). In the mitral space, 3D printing models have been instrumental in the identification of defects, device sizing, and procedure execution (Figure 4) (11,17).

A recent systematic review on 3D printing in adult heart valve disease identified MDCT as the first choice modality for 3D printing (62%), followed by ultrasound (28%), computer-aided design with separate manual creation of model parts (7%), and CMR (3%) (4). MDCT offers excellent spatial resolution, allowing clear depiction of pathological calcium and does not generally require image quality adjustment before anatomic segmentation (17). The TEE-derived 3D printing is limited by suboptimal detection of the subvalvular apparatus, left ventricular geometry, tissue differentiation, or calcium deposits. Additionally, because spatial resolution of ultrasound is best along the longitudinal plane, views from different angles need to be fused to capture 2 perpendicularly aligned structures and master resolution issues. Resolution is also limited by the probe-specific properties of the piezoelectric crystal. Ultimately, TEE does not allow for isotropic imaging and is therefore less suitable for 3D printing. CMR avoids radiation exposure and has excellent tissue characterization abilities, but is hampered by inferior spatial resolution that may impair detection of small intracardiac defects. However, it has been successfully applied to 3D-printed modeling in congenital heart disease (8).

3D-printed models in cardiovascular disease are typically composed of a variety of rigid and/or flexible materials (4,18,19). Rigid material, such as polybutylene terephthalate, acrylonitrile-butadiene styrene, and polyamide, are suited for mimicking prostheses and calcium. They can also be used if the goal of the print is to acquire complementary anatomic insight (educational purposes), regardless of the imaging modality.
Flexible materials, including, but not limited to, thermoplastic elastomers (i.e., Tango Plus, Agilus, HeartprintFlex) and printable silicones, are increasingly developed to mimic human tissue and are more suitable for fitting actual devices. Other materials, such as resins, can be used to yield either solid or flexible models depending on the printing technique used. By combining materials of different rigidity in 3D-printed models, valve calcification or the presence of a prosthetic valve can be replicated.

In practice, both healthy and diseased native valve tissue is highly heterogeneous with variable physical properties (20). Currently available 3D printed material does only slightly approach the properties of arterial tissue, and is still far away from reliably representing the human heart (17). The mechanical properties of the ideal printed model would resemble tissue-specific characteristics under different circumstances. In reality, however, a trade-off between practicality and cost determines the final 3D print. As such, 3D printed heart models are still in their infancy and under further development.

CLINICAL APPLICATIONS OF 3D COMPUTATIONAL MODELING: TRANSCATHETER MITRAL VALVE REPLACEMENT

Mitral regurgitation and mitral stenosis are the second and third most frequently clinically relevant valve diseases (21). The advent of catheter-based techniques for mitral repair and replacement presents new treatments for a significant number of patients who would otherwise be denied conventional surgery (21). TMVR is beset by complex anatomic challenges, including its central cardiac location; elliptical, saddle-shaped annulus; and associated chordal apparatus. Additionally, it introduces the risk of left ventricular outflow tract (LVOT) obstruction (22,23) and valvular foreshortening in the LA. TMVR can be performed in previously surgically implanted annular rings, bioprostheses, and the native annulus (24-26).

A failing bioprosthesis, mitral ring, or excessive mitral annular calcification may provide anchoring opportunities for THV designs that were originally developed for aortic valve implantation (24,27). In the native noncalcified mitral annulus, the implanted valve uses other anchor opportunities and typically dominates its direct surroundings, which has consequences for the risks of PVL and left ventricular outflow tract obstruction (LVOTO). To address this, multiple dedicated designs for TMVR are under development or have entered clinical trials (25,28).

MDCT-derived 3DCM may prove particularly helpful for TMVR, as various TMVR sizes and designs can be evaluated in virtual implants, generating information to enhance procedural efficacy and patient safety.

VIRTUAL ANNULUS CREATION AND VALVE SIZING

A surgical prosthesis is traceable on MDCT planimetry. Additionally, implanted prosthesis type and size can be deducted from these images, leading to a
relatively straightforward THV sizing and provision of a ready-made best-fit plane (29). However, blooming artifacts may affect measurements (30). Sizing the native mitral annulus (with/without annular calcium) proves more challenging as its borders are asymmetrical and less pronounced. In such cases, planimetry may omit important information. Additionally, the native annulus varies in size during the cardiac cycle, which warrants careful selection of cardiac phase when creating and measuring the virtual annulus. Its complex shape and close relation with the ventricle ideally require virtual 3D reconstruction as described in the section “General concepts in 3D computational modeling.”

In the native mitral annulus, the trigone-to-trigone connection represents an additional landmark in this process (31). If necessary, subtle adjustments in the virtual mitral annulus shape can be made. The original annular anatomy may be severely distorted by mitral annular calcification (MAC), allowing limited use of common structural landmarks (9). However, calcification can be used as a landmark for annular sizing. In MDCT-derived 3DCM, calcium is segmented as a separate structure and integrated in the structural model, thereby facilitating virtual reconstruction of the mitral annulus (Figures 2E, 2F, and 3). Still, caution must be taken with annulus reconstruction based on MAC, as calcium may cause blooming artifacts and potentially affect adequate prosthesis sizing (32).

The virtually reconstructed mitral annulus facilitates automated calculation of the reference plane (best-fit plane, “General concepts in 3D computational modeling” section) on which a virtual prosthetic valve can be projected. Selecting multiple valve sizes/types, and shifting their position within the reconstructed annulus, helps to obtain an adequate visual fit (Figure 3C). However, as this is a virtual model without incorporation of tissue and device characteristics, in vivo malapposition still poses an important risk, especially in MAC (33).

NEO-LVOT. TMVR may cause LVOT deformation as a result of strut protrusion and anterior mitral leaflet (AML) displacement (34). This leads to the formation of a new elongation of the native LVOT, which is referred to as the neo-LVOT (35). Acquired LVOTO (narrow/blocked neo-LVOT) is associated with procedure-related death, conversion to surgery, or emergency percutaneous reintervention (22). MDCT-derived 3DCM can estimate the neo-LVOT using various valves with different implantation heights, guiding TMVR (35).

According to the latest Mitral Valve Academic Research Consortium criteria, LVOTO is classified as an increase in LVOT gradient of ≥ 10 mm Hg compared with baseline (36). In previous studies, which used MDCT for prediction of the minimal neo-LVOT area, 2 methods of neo-LVOT estimation were described. In 2 reports, manual planimetry was performed on cross-sectional images with a THV projected on the mitral annulus in the mid to late systolic phase, when the neo-LVOT area is smallest (22,35). Using this method, the suggested cut-off value for the neo-LVOT area with greatest discriminatory value for LVOTO was $\leq 170.0 \text{ mm}^2$ (22).

The other method uses an MDCT-derived 3D computational model of the left heart with a virtual THV implant that allows semiautomated calculation of the minimal neo-LVOT area through volumetric assessment. With the neo-LVOT identified, its 3D relation to the implanted THV, LV, and original LVOT becomes clear. Repeated fitting using various virtual implants and manipulating device type, size, cardiac phase, implant depth, and co-axiality within the mitral annular plane is possible (Figure 5). Because volumetric data concerning the LV and THV can be derived from the computational model, obstruction can be expressed as a fraction of the original LVOT. Other predictors for LVOTO in TMVR, such as the angle between the native LVOT and aorta, AML length, and septal wall thickness, may be evaluated in these models, allowing review of complex 3D structures in different hypothetical situations (22,37). Furthermore, strategies can be planned to tackle projected obstruction (e.g., simultaneous LVOT balloon inflation, LVOT post-dilatation, or alcohol septal ablation). As such, the model serves as a patient-specific, virtual training ground allowing serial testing prior to the planned high-risk procedure without clinical consequences. A study using this method found a cut-off value for the MDCT-derived neo-LVOT area of $\leq 189.4 \text{ mm}^2$ to have the greatest discriminatory value for post-TMVR LVOTO (9).

Direct comparisons of the clinical accuracy of neo-LVOT prediction in pre- and post-TMVR MDCT datasets using 3D computational models have demonstrated excellent correlation with high reproducibility and accuracy (9). Comparing predicted and post-TMVR neo-LVOT by manual planimetry of MDCT images has also shown reproducibility with low intraobserver and interobserver variability (22). Of note, performance of neo-LVOT prediction with MDCT planimetry and semiautomated MDCT-derived 3DCM have yet to be compared.

MULTIPHASE PLANNING IN LVOT ASSESSMENT. As experience with LVOTO in TMVR expands, it becomes evident that pre-procedural planning based on
a single cardiac phase might be too crude. As LVOT dimensions are smallest in the end-systole, around 40% of the R-R interval, any geometric LVOTO after TMVR would first occur in that phase. However, the vast majority of the stroke volume is ejected in the early and mid-systolic phase, implying that a functional, clinically relevant LVOTO should occur at that time. A report on pre-procedural multiphase neo-LVOT assessment in screening for TMVR using a dedicated THV showed that patients with predicted end-systolic obstruction performed well after TMVR when there was no predicted early systolic obstruction (38). These findings underpin the relevance of a multiphase approach when evaluating TMVR eligibility. The creation of full-cycle MDCT-derived 3D computational models, or 4D computational models, will add to effective patient/device selection in TMVR.

EVALUATING THE TRANSSEPTAL APPROACH. Transvenous transseptal TMVR is less invasive than the transapical approach and rapidly becoming the access strategy of first choice (25). Superior and
posterior puncture through the interatrial septum facilitates catheter manipulation in the LA for device orientation and positioning within the mitral apparatus. MDCT can provide a roadmap and help determine optimal C-arm angles that may be fused with live fluoroscopic imaging (39). MDCT-derived 3D computational models enhance appreciation of the anatomic relations among the inferior vena cava, interatrial septum, and mitral annulus. Additionally, by printing a 3D model of the right atrium, LA, and mitral annulus, the operator can undertake hands-on assessment of the transeptal puncture site. The optimal puncture site can be pre-determined followed by evaluation of the consequences for catheter manipulation when approaching the mitral valve. Furthermore, catheters can be tested in terms of flexibility, crossability, and deliverability toward the region of interest.

OPTIMAL FLUOROSCOPIC PROJECTIONS. Efforts have been made to determine MDCT-derived optimal fluoroscopic projections for TMVR (40). However, adequate visualization of the mitral annulus sometimes requires impractical angles in the catheter laboratory setting. Furthermore, optimal projections are device-specific and vary greatly between subjects. MDCT-derived 3DCM helps to compromise and determine the best workable fluoroscopic views for the respective TMVR-related manipulations (Supplemental Figure 1). Determining optimal projections prior to procedure commencement potentially reduces fluoroscopy time and therefore radiation exposure as well as contrast dosage (41).

PLANNING WITH DEDICATED DEVICES. Numerous dedicated devices that have proprietary anchoring mechanisms with unique spatial orientations in the LA, LV, and LVOT are being developed for TMVR (25). Planning TMVR with MDCT-derived 3D computational models may add substantially to determining the appropriate device for an individual patient.

For example, the Tendyne device (Abbott, Abbott Park, Illinois) utilizes an apical tethering mechanism for device stabilization (28) (Supplemental Figure 2). The anchoring zone of the tether is in a coaxial position with the LV apex. Deviations from that position could lead to loss of or excessive traction on the valve, resulting in suboptimal placement or dislocation of the valve. Identifying the optimal anchoring zone relies on 3D MDCT imaging with subsequent confirmation by procedural TEE and manual examination (42). In MDCT, the mitral annulus is manually traced using both short- and long-axis views leading to the formation of a virtual segmented annulus.

From this 3D annulus, a best-fit annular plane is computed using the least-squares method. This plane can be used to derive the geometric centroid of the mitral annulus (Supplemental Figure 2A). The ideal anchoring point is obtained by drawing a line perpendicular to the annular plane down to the epicardium of the LV. The suggested anchoring point for the tether is referred to as the orthogonal LV access point (Supplemental Figures 2B to 2D) (43). Once the anchoring site is determined, the device can be virtually implanted and assessed for adequate fit and relation to the LVOT. 3D modeling provides an overview of complex interlinked structures that determine suitability for a dedicated THV.

CLINICAL APPLICATIONS OF 3D COMPUTATIONAL MODELING: MITRAL PARAVALVULAR LEAKAGE CLOSURE

Significant prosthetic PVL after surgical mitral valve replacement is relatively common and reported in up to 17% of patients at 15 years of follow-up (44). Risk factors include annular calcification, infection, suture technique, tissue integrity, and myocardial contraction (45).

Echocardiography is the first step to reveal PVL location and quantification (46). Accurate orifice sizing is difficult as a result of dropout artifacts and may lead to underestimation of severity. Pre-procedural MDCT assessment helps define PVL characteristics, strategy planning, and device/size selection. All MDCT imaging is associated with blooming and device-related artifacts that may impede accurate evaluation of valve integrity or leak sizing (12,47). However, when MDCT data is segmented to create a 3D model, it has the potential to partially bypass excessive artifacts (at the cost of variability). MDCT-derived 3DCM and virtual transcatheter closure device may improve accuracy and offer complementary insights into interstructural relations and sizing.

Determination of the cardiac phase is essential for PVL analysis and is in systole for mitral PVL. Finding the optimal phase is refined by additional TEE information (48). To obtain a 3D computational model from MDCT images, manual segmentation of the cardiac walls is required based on subtle differences in pixel gray value of the raw dataset. This is performed in the double oblique setting. From this segmentation, a 3D computational model is created. After manual adjustment, a patient-tailored model is created in which prosthesis shadowing and blooming artifacts are reduced to reveal essential details for
complex lesion sizing. Additionally, MDCT-derived 3DCM provides information on PVL location in relation to the inter-atrial septum and determination of an optimal catheter trajectory. Indeed, such modeling can determine whether percutaneous PVL closure is feasible at all (49). However, detailed knowledge about normal appearances as well as suture appearances is essential. To further clarify anatomic relations, the virtual model can be printed allowing bench testing (Figure 4B).

Figures 6A to 6C provide TEE illustration of PVL affecting a mechanical prosthetic mitral valve. Because the dimensions of the leak could not be adequately appreciated on these images, a
complementary MDCT-derived 3D computational model was obtained, allowing measurements from different angles to enable appropriate sizing and closure device selection. Procedural results are depicted in Figures 6D to 6H.

In our experience, compared with TEE, MDCT-derived 3DCM provides superior information concerning location, sizing, and structural interactions of the lesion at hand when planning transcatheter PVL closure.

LIMITATIONS OF MDCT-DERIVED PRE-PROCEDURAL MODELING

MDCT ACQUISITION. MDCT has its inherent limitations. Its acquisition can be limited by arrhythmias or low cardiac output resulting in reduced luminal contrast. Additionally, it exposes patients to nephrotoxic contrast and could evoke allergic contrast reactions. In patients with renal dysfunction, prophylactic fluid administration prior to scan acquisition might induce variability in loading conditions. MDCT-derived modeling requires image acquisition throughout the entire cardiac cycle, and thus comes with additional ionizing radiation dose exposure.

MDCT-DERIVED 3D COMPUTATIONAL AND PRINTED MODELS. An MDCT-derived 3D computational model represents a static model and therefore only approximates real-time cardiac dynamics. Each segmented model is derived from 1 cardiac phase, which stresses the importance of adequate phase selection (i.e., expected dimensions being minimal/maximal). Currently, MDCT-derived 3D models do not allow for
shifting between phases once segmentation has been performed. Consequently, acquiring a model of the whole cardiac cycle requires laborious separate model segmentation and construction of each phase. Automation in segmentation could solve these issues. 3Dp relies on a single cardiac phase, making it less suitable for the evaluation of dynamic obstruction. Furthermore, important hemodynamic concepts and procedural hemodynamic filling status are not considered in a static model and may result in inaccurate sizing in vivo. The lack of incorporation of specific device and tissue properties in current MDCT-derived geometric models poses a problem when devices are implanted in real life. Although virtual device implantation may suggest a proper fit, in vivo implantation may cause marked tissue shift or altered device configuration leading to malapposition or rotation. Moreover, the absence of standardized protocols for device sizing in virtual 3D models could lead to interobserver variability. 3D-printed models are increasingly acquired to assist in pre-procedural planning of transcatheter structural heart interventions. However, cautious interpretation of their significance is necessary because these models still are a relatively raw representation of reality. Additionally, they lack standardized, reproducible methods for measuring distances/areas. However, efforts for structured verification have been made.

FUTURE DIRECTIONS

Several developments could further enhance MDCT-derived 3D modeling and will contribute to a future of patient-tailored valve replacement.

INCORPORATION OF TISSUE AND DEVICE PROPERTIES IN COMPUTATIONAL MODELING. In vivo implanted devices will affect the geometry/configuration of surrounding tissue and vice versa. Incorporation of tissue/device mechanical properties and their geometry and dimensions in a computational model predicts these geometric/configurational changes and, thereby, assists in the selection of the optimal device type and size. Patient-specific geometry is derived from ex vivo stress-strain analyses. These experiments assess the changes in configuration/dimension of a structure upon exposure of stress. The changes in configuration depend on the amount and direction of the stress, the composition, and the reference state of the material. Computer modeling and simulation use finite element analysis to allow modeling of the whole (complex) structure. In TMVR, several cases are described in which a finite element model was used to predict outcome and aid pre-procedural planning. By incorporation of mechanical properties of the annulus, its calcium, the leaflets, and the selected THV, a simulation could be run predicting valve-fit and potential LVOTO. The current experience is proof of concept. Larger-scale validation studies are needed.

COMPUTATIONAL FLOW DYNAMICS AND FLUID-STRUCTURE INTERACTION MODELING. Incorporation of computational fluid dynamics (CFD) into MDCT-derived 3D computational models allows the assessment and quantification of PVL. These models can also be used to evaluate the effect of valve size, type, and depth of implantation on hemodynamics and therefore, the degree of functional LVOTO. It should be acknowledged that the CFD models are based on a number of assumptions such as pressure gradients, viscosity, and flow characteristics. Laminar and/or turbulent flow patterns are incorporated.

In addition to the above, analysis of the Fluid Structure Interaction (FSI) can conceptually be used for the assessment of the effects of the interaction between a fluid and adjacent structures (i.e., blood vs. valve/cardiatic tissue). Resulting in the analysis of the changes in flow and flow patterns, pressures, and the subsequent effects on cardiac structures. For instance, it might facilitate prediction of the effect of dimensional changes in LVOT after TMVR, inducing a systolic anterior motion of the aortic valve due to pressure differences (Venturi effect) that in turn affect neo LVOT flow. In addition of the prediction of hemodynamics, FSI may be of particular value of the assessment of valve durability as (unwanted) flow patterns may induce endothelial cell changes. Although progress has been made in creating FSI models of individual components associated with mitral valve replacement, full TMVR models are experimental, are scarce, and cover only part of the interactions.

A TMVR model fully incorporating tissue and device properties; flow dynamics; fluid-structure interaction models; and coupling of LV, LA, and aorta may further improve hemodynamic prediction after structural heart interventions and will lead to an ultimate form of patient-tailored medicine, in which a valve is selected (or created) based on individual simulations. However, given the complex nature of these models and the computational power...
required to create them, there is still a long road ahead for clinical adoption.

BIOPRINTING. Most 3Dp materials aim to mimic cardiac tissues. However, using actual (vivo) cardiovascular tissue might provide a solution for the crude biomechanical representation of the human heart in 3Dp. 3Dp using vivo tissue is referred to as bioprinting and the material used for printing is called bioink. This material comprises a viscoelastic medium (mostly hydrogels) together with cells. Depending on the cardiac structure required, bioink is often printed on a scaffold (3D geometric structure), which can be either biological or synthetic and could be modelled according to a patient’s anatomy (60). Although the recreation of a fully functioning, patient-specific, biological 3D print of the heart is somewhat futuristic at this point, progress has been made on separate parts (61,62). Future incorporation of tissue into the patient-specific anatomy could greatly enhance the performance and authenticity of physical 3D-printed models in valvular heart disease leading to increased reliability in pre-procedural bench testing.

VIRTUAL REALITY AND HOLOGRAPHIC PROJECTION. 3D virtual models are presented on a 2D screen. Moreover, while 3Dp introduces a true 3D representation, it is time-consuming, expensive, and limited by the intrinsic characteristics of the material used (4). Visualizing virtual 3D models as holograms could bypass the need for physical printing, while still assessing the model in 3D space as if it were directly in front of the viewer (Supplemental Figure 3). Measurements can be made and the optimal strategy determined (63) while a connection to surgical tools or catheter wires may allow live integration of the intended procedure (64).

LIVE FUSION OF IMAGES. Integration or live-fusion of the MDCT-derived model with fluoroscopy may further optimize complex structural heart interventions. Fusion of the pre-procedural, 3D MDCT model and real-time procedural fluoroscopy may accelerate procedure execution, limit radiation, and increase safety (i.e., femoral and transseptal puncture, embolic protection placement, and valve deployment) (65).

HIGHLIGHTS

- Catheter-based interventions for complex defects of the mitral valve apparatus are evolving.
- MDCT-derived 3D computational modeling and 3D printing enhance risk evaluation and planning of complex transcatheter procedures.
- Incorporation of multiple cardiac phases, tissue/device properties, and hemodynamics should optimize 3D modeling.

CONCLUSIONS

MDCT-derived 3D CM, and physical printing generate unprecedented anatomic insights to help test, plan, and execute complex transcatheter mitral valve interventions (Central Illustration). Further research is needed to establish these advanced techniques in clinical practice.

FUNDING SUPPORT AND AUTHOR DISCLOSURES

Dr. Wang has served as a consultant for Edwards Lifesciences, Boston Scientific, and Materialise. Dr. Redwood has served as a proctor and consultant for Edwards Lifesciences. Dr. Popma has received institutional grants from Medtronic, Boston Scientific, Edwards Lifesciences, and Abbott; and is a member of the Medical Advisory Board of Edwards Lifesciences. Dr. Little has served as a consultant for Abbot Cardiovascular and Medtronic; and has received a research grant from Siemens Health. Dr. Pfeiffer has served as a consultant for LivNova Inc.; and has served as a speaker and proctor for Edwards Lifesciences and Abbott Cardiovascular. Dr. Dahle has served as a proctor for Abbot Cardiovascular. Mrs. Minet is a former employee of Materialise NV. Dr. O'Neill has served as a consultant for Boston Scientific. Dr. Van Mieghem has received research grant support from Abbott, Boston Scientific, Edwards Lifesciences, and Medtronic; and has served as a consultant for Abbott, Boston Scientific, Edwards Lifesciences, Medtronic, Pie Medical, and Materialise NV. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

ADDRESS OF CORRESPONDENCE: Dr. Nicolas M. Van Mieghem, Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Room Nt-645, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands. E-mail: n.vanmieghem@erasusmc.nl.

REFERENCES

prosthetic heart valves: a report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2016;17:589-90.

KEY WORDS 3D printing, computational modeling, mitral annular calcification, multidetector computed tomography, paravalvular leakage closure, transcatheter mitral valve replacement

APPENDIX For supplemental figures, please see the online version of this paper.