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ORIGINAL RESEARCH

Phenotyping Cardiogenic Shock
Elric Zweck , MD; Katherine L. Thayer , MPH; Ole K. L. Helgestad , MD, PhD; Manreet Kanwar , MD; 
Mohyee Ayouty, MSc; A. Reshad Garan , MD; Jaime Hernandez-Montfort , MD; Claudius Mahr , MD; 
Detlef Wencker , MD; Shashank S. Sinha, MD; Esther Vorovich , MD; Jacob Abraham, MD; William O’Neill, MD;  
Song Li , MD; Gavin W. Hickey , MD; Jakob Josiassen , MD; Christian Hassager, MD, DMSci;  
Lisette O. Jensen , MD, PhD, DMSci; Lene Holmvang, MD, DMSci; Henrik Schmidt, MD, DMSci;  
Hanne B. Ravn, MD, PhD, DMSci; Jacob E. Møller, MD, PhD, DMSci; Daniel Burkhoff , MD, PhD;  
Navin K. Kapur , MD

BACKGROUND: Cardiogenic shock (CS) is a heterogeneous syndrome with varied presentations and outcomes. We used a 
machine learning approach to test the hypothesis that patients with CS have distinct phenotypes at presentation, which are 
associated with unique clinical profiles and in-hospital mortality.

METHODS AND RESULTS: We analyzed data from 1959 patients with CS from 2 international cohorts: CSWG (Cardiogenic Shock 
Working Group Registry) (myocardial infarction [CSWG-MI; n=410] and acute-on-chronic heart failure [CSWG-HF; n=480]) 
and the DRR (Danish Retroshock MI Registry) (n=1069). Clusters of patients with CS were identified in CSWG-MI using the 
consensus k means algorithm and subsequently validated in CSWG-HF and DRR. Patients in each phenotype were further 
categorized by their Society of Cardiovascular Angiography and Interventions staging. The machine learning algorithms re-
vealed 3 distinct clusters in CS: "non-congested (I)", "cardiorenal (II)," and "cardiometabolic (III)" shock. Among the 3 cohorts 
(CSWG-MI versus DDR versus CSWG-HF), in-hospital mortality was 21% versus 28% versus 10%, 45% versus 40% versus 
32%, and 55% versus 56% versus 52% for clusters I, II, and III, respectively. The "cardiometabolic shock" cluster had the 
highest risk of developing stage D or E shock as well as in-hospital mortality among the phenotypes, regardless of cause. 
Despite baseline differences, each cluster showed reproducible demographic, metabolic, and hemodynamic profiles across 
the 3 cohorts.

CONCLUSIONS: Using machine learning, we identified and validated 3 distinct CS phenotypes, with specific and reproducible 
associations with mortality. These phenotypes may allow for targeted patient enrollment in clinical trials and foster develop-
ment of tailored treatment strategies in subsets of patients with CS.

Key Words: cardiogenic shock ■ clusters ■ heart failure ■ hemodynamics ■ machine learning ■ myocardial infarction ■ phenotypes

Cardiogenic shock (CS) is a heterogeneous clini-
cal syndrome with increasing incidence and high 
mortality.1–3 Two primary causes of CS include 

acute myocardial infarction (AMI-CS) and acute-on-
chronic heart failure (HF-CS).3,4 Previous clinical trials 
designed to reduce mortality in CS have focused on 
the use of temporary mechanical circulatory support 
devices in AMI-CS.4 However, up until now, trials of 
temporary mechanical circulatory support in AMI-CS 
have not shown any significant improvement in clinical 

outcomes.3,5–7 In fact, there has been little impact on 
the 30-day mortality associated with CS in the past 
20 years, which remains between 30% and 60%.2,3,8,9

One factor that has potentially limited our ability to 
prove benefit of new therapies through randomized 
studies is our inability to "characterize" patients with 
CS beyond cause.10 The lack of large, comprehen-
sive, and contemporary databases for all-cause CS 
has further limited our ability to develop evidence-
based therapeutic approaches, especially in HF-CS. 
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As a result, attempts at staging CS have been based 
on expert opinions and consensus.11–14 To avoid com-
plexity, some of these classification systems include 
only a few variables and rely on specific, although 
arbitrary, cutoffs that introduce bias and fail to cap-
ture the full variability of patient profiles. The recently 
proposed Society of Cardiovascular Angiography 

and Interventions (SCAI) staging provides discrimina-
tory potential for morbidity and mortality.15,16 It can be 
used to track the severity of shock over the course of 
a hospital stay.

Thus, a means of appropriately phenotyping pa-
tients with CS at admission remains a much-needed 
critical step in the development of treatment algorithms 
and prospective clinical studies to improve patient out-
comes. New insights to subclassify patients with CS 
may be gained by using an unbiased, algorithmic ap-
proach to data analysis using machine learning (ML). 
Clustering algorithms (a form of unsupervised ML) have 
been effectively used for classification and phenotyp-
ing of other clinical syndromes and diseases, including 
diabetes mellitus, HF with preserved ejection fraction, 
and sepsis.17–20

The objective of this investigation was to identify 
and evaluate CS phenotypes in large, contemporary 
CS data sets. We hypothesized that the use of ML 
algorithms can mathematically reduce routine clini-
cal information at the time of presentation to discrete, 
reproducible phenotypes of CS. These phenotypes 
could further our understanding of shock physiology, 
inform patient selection for clinical trials, and be incor-
porated into clinical practice as an enhancement to our 
approach to risk assessment.

METHODS
Overview
This study involved 2 data sets and a multistep sta-
tistical approach. The CSWG (Cardiogenic Shock 
Working Group Registry) includes data from patients 
with both AMI-CS (CSWG-MI) and acute-on-chronic 
systolic HF (CSWG-HF), whereas the DRR (Danish 
Retroshock MI Registry) gathers data on patients 
with AMI-CS. The CSWG-MI cohort data were used 
as a derivation cohort for the CS phenotypes using 
consensus k-means clustering applied to relevant 
clinical variables. We then assessed phenotype re-
producibility in the DRR data set with further subse-
quent validation in both the DRR and the CSWG-HF 
cohort. We assessed the association of pheno-
types with mortality and clinical profiles across both 
causes: AMI and HF. Last, we studied the associa-
tion between ML-derived phenotypes and in-hospital 
mortality within individual SCAI stages.

Data Sources and Study Populations
The CSWG is a multicenter database initiated in 2016 
and currently includes 16 clinical sites across the 
United States, contributing data on patients with CS.15 
For the purpose of this analysis, all available data by 
the 8 initial participating sites at the time of initial pres-
entation for patients with CS between years 2016 and 

CLINICAL PERSPECTIVE

What Is New?
•	 Using an unbiased machine learning approach, 

we were able to identify 3 distinct cardiogenic 
shock (CS) clinical phenotypes ("noncon-
gested," "cardiorenal," and "cardiometabolic" 
shock) with specific characteristics and asso-
ciations with outcomes.

•	 These phenotypes were identified and validated 
in CS attributable to myocardial infarction as 
well as acute-on-chronic heart failure in 2 differ-
ent data sets.

•	 Our data validate the clinical assumption that 
hemometabolic shock is associated with a 
higher mortality and stress the importance of 
renal function, systemic congestion, and meta-
bolic failure for CS outcomes.

What Are the Clinical Implications?
•	 The identified phenotypes of CS may be used 

by clinicians in the intensive care unit or in the 
catheterization laboratory to quickly assess pa-
tients with CS since only 6 baseline variables 
were required.

•	 This approach could improve risk stratifica-
tion, particularly by defining subsets of mor-
tality risk within the Society of Cardiovascular 
Angiography and Interventions shock staging 
system.

•	 These data may enhance clinical trials by devel-
oping treatment strategies tailored to a shock 
phenotype instead of aiming for a one-size-fits-
all solution, thereby paving the way for more in-
dividualized health care.

Nonstandard Abbreviations and Acronyms

CS	 cardiogenic shock
CSWG	 Cardiogenic Shock Working Group 

Registry
DRR	 Danish Retroshock MI Registry
ML	 machine learning
SCAI	 Society of Cardiovascular Angiography 

and Interventions
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2019 were included. Patients admitted to respective 
hospitals’ catheterization laboratories and intensive 
care units were screened by the clinical coordinators 
(retrospectively) if they met the predefined criteria for 
CS. The screening processes were physician adjudi-
cated, and any patient who met the inclusion criteria 
was included. The registry includes a standardized 
set of data elements that were predefined by principal 
investigators and collected retrospectively. These in-
clude patient demographics, clinical presentation, pro-
cedural factors, and hospital characteristics. Patients 
from the CSWG with myocardial infarction (MI) as un-
derlying cause of shock represented our derivation co-
hort (CSWG-MI), whereas those with acute-on-chronic 
HF serve as a validation cohort (CSWG-HF). Quality 
assurance was achieved through monitoring at each 
site by the respective clinical coordinators and prin-
cipal investigator. Values were centrally audited and 
screened by the CSWG research team for any discrep-
ancies or major outliers and resolved with the submit-
ting site. Data collection at each US clinical site and 
data sharing were approved by individual site’s insti-
tutional review boards. The need for informed consent 
was waived because of the retrospective deidentified 
nature of data collection. The CSWG is housed and 
analyzed by the lead operational team (E.Z., M.A., and 
K.T.) at Tufts Medical Center.

The DRR database is derived from the DNPR 
(Danish National Patient Registry), which records all 
patient contacts within the Danish healthcare system. 
For this study, baseline data on patients with AMI-CS 
hospitalized between 2012 and 2017 were collected 
retrospectively from 2 tertiary academic facilities in 
Denmark (Odense University Hospital and Copenhagen 
University Hospital Rigshospitalet) that cover nearly two 
thirds of the entire Danish population.1 In all cases, data 
were collected from medical records after being evalu-
ated for the diagnosis of CS. The DRR was approved 
by the Danish Patient Safety Authority (file number: 3-
3013-1133/1) and the Danish Data Protection Agency 
(file numbers: 16/7381 and 18/23756). The need for in-
formed consent was waived. Further information on the 
data sources can be found in previous publications.1,15

Definition of CS

CS diagnosis was physician adjudicated at each site 
based on criteria defined by the CSWG.15 CS was de-
fined retrospectively if at least 1 of the following 3 con-
ditions were met: (1) a sustained episode of systolic 
blood pressure ≤90 mm Hg for at least 30 minutes or 
the need for vasoactive agents to maintain such blood 
pressure; (2) a cardiac index <2.2 L/min per m2 deter-
mined to be secondary to cardiac dysfunction, in the 
absence of hypovolemia; or (3) the use of a temporary 
mechanical circulatory support device for suspected 

CS. Only adult (aged ≥18 years) patients with a known 
clinical outcome and sufficiently complete data for 
common variables in both data sets were considered 
for analyses. All data were recorded at an available time 
point as close to index hospital admission as possible.

Data Processing and Variable Handling
To derive the phenotypes, we first assessed the candi-
date variables’ distribution, missingness, and correla-
tion (Data S1). Within the CSWG cohorts, variables and 
patients with high proportions of missing data were 
removed from the derivation data set, to ensure that 
overall missingness did not exceed 10% for imputation 
(Data S1). Any remaining missing values were imputed 
with random forest imputation. For the validation DRR 
cohort, only patients with complete data for cluster-
ing were included, to exclude any bias introduced by 
imputation. To rule out any potential bias introduced 
because of the exclusion step, we performed sensitiv-
ity analyses of CSWG-HF and DRR without removal of 
any patients. To reduce variable collinearity and to limit 
complexity and dimensionality, we used a classification 
algorithm to select variables from continuous clinical 
and laboratory data (Data S1).21 Concretely, we used 
a random forest classifier to identify demographic and 
laboratory variables that predicted in-hospital mortal-
ity in the CSWG-MI derivation cohort because it does 
not assume linear relationships between variables and 
removed highly correlated variables (|r|>0.6), leaving 6 
variables to be included in the final analyses (Data S1).

Cluster Analyses and Validation
Clustering is an ML technique used to identify homo-
geneous subgroups within data, such that data points 
in each cluster are as similar as possible while being 
as different from other clusters as possible. K-means 
clustering is one of the most common unsupervised 
algorithms that iteratively tries to partition the data 
set into distinct, nonoverlapping subgroups (clusters) 
where each data point belongs to only one group. We 
deployed semisupervised consensus k-means cluster-
ing on the 6 identified variables with highest predictive 
value using the ConsensusClusterPlus package22 for 
R 3.6.0 and defined the optimal number of clusters (k) 
using several metrics (Data S1). We selected various 
methods to visualize the clusters (t-distributed sto-
chastic neighbor embedding plots,23 chord diagrams, 
and rank plots) and their characteristics which are de-
tailed in the Supplemental Material.

For validation, first, cases in the DRR were clustered 
independently using the same variables and cluster al-
gorithm as in the derivation cohort to assess external 
reproducibility. Phenotype characteristics were then 
scrutinized within and between these cohorts to as-
sess whether a similar pattern can be seen when the 2 
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cohorts are clustered completely independently. Finally, 
cases in DRR and CSWG-HF were assigned to a re-
spective cluster using the centroids from the clusters in 
the CSWG MI derivation cohort (Data S1) to validate ap-
plicability of the clusters in external data sets and future 
clinical practice. Distribution, mortality, and characteris-
tics of the clusters in the validation cohorts were com-
pared with those in the derivation CSWG-MI cohort.

Application of SCAI Shock Classification 
Scheme
To put the novel phenotypes into clinical context, we 
assessed the SCAI shock stages in the CSWG co-
hort and combined this established method of CS 
classification to our proposed phenotypes. Each 
patient was categorized into the most severe SCAI 
stage encountered during his/her hospital stay, 
using a method previously described by Thayer et 
al.15 Of note, the phenotypes were derived from data 
at the time of initial presentation, whereas the SCAI 
staging was denoted as the "highest stage" during 
hospitalization.

Statistical Analysis
P values were calculated using ANOVA, Kruskal-Wallis 
test, or χ2 test. Continuous data are displayed as mean 
and SD or as median and interquartile ranges, depend-
ing on distribution. All statistical tests were performed 
using SAS Enterprise Guide 9.4 (SAS Institute Inc, Cary, 
NC) and Python 3.7.4 (Python Software Foundation, DE). 
Figures were created using Python 3.7.4 and GraphPad 
Prism 8.2.1 (GraphPad Software, Inc, San Diego, CA). 
Statistical significance threshold was P<0.05.

RESULTS
A total of 1959 patients (410 in CSWG-MI cohort, 
1069 in DRR cohort, and 480 in CSWG-HF cohort) 
were eligible for final analyses (Figure S1). Mean ages 
at presentation were 65±13, 66±11, and 57±14 years, 
whereas male sex represented 68%, 77%, and 75% 
patients in the CSWG-MI, DRR, and CSWG-HF co-
horts, respectively (Table  1). The in-hospital mor-
tality from CS was noted to be 39% in CSWG-MI 
cohort, 45% in DRR cohort, and 26% in CSWG-HF 
cohort. The AMI-CS cohorts (CSWG-MI and DRR) 
were similar on various clinical variables but differed 
in age and treatment strategy, especially in use of 
temporary mechanical circulatory support (Table 1). 
CSWG-HF differed from the MI cohorts on several 
clinical features, including younger age, higher body 
weight, more severe kidney and liver injury, and lower 
lactate levels (Table 1).

The 8 clinical variables that were most associated 
with in-hospital mortality were: glomerular filtration rate, 

serum bicarbonate, serum lactate, alanine aminotrans-
ferase, platelet count, serum creatinine, white blood 
cell count, and blood urea nitrogen levels (Figure S2). 
Of these, glomerular filtration rate, lactate, serum bi-
carbonate, and alanine aminotransferase were the 
most predictive ones (Figure S2).

Phenotypes in CS
Consensus k-means clustering in the CSWG-MI der-
ivation cohort identified 3 as the optimal number (k) 
of clusters, based on the calculated silhouette score, 
cluster consensus, and other metrics (Figure  1 and 
Figure  S3). These clusters demonstrated important 
differences beyond the variables used to design them, 
suggesting that the clustering algorithm successfully 
identified 3 discrete clusters of CS that were able to 
identify as distinct clinical phenotypes. On the basis 
of their clinical characteristics, we labeled the 3 phe-
notypes as "noncongested (I)," "cardiorenal shock (II)," 
and "cardiometabolic shock (III).”

The 3 phenotypes differed from one another on var-
ious demographic and clinical parameters (Table 2). 
Radar plots were used to display the deviation of 
metabolic and hemodynamic values from the mean 
value (derived from the total derivation cohort average 
values) (Figure 2), and chord plots were used to reveal 
the sources of phenotype differences (Figure S4). The 
noncongested phenotype (I) exhibited lower heart 
rate, filling pressures (right atrial and pulmonary cap-
illary wedge pressures), and a higher blood pressure 
relative to the other phenotypes. This represents a 
relatively stable profile of a noncongested patient with 
CS. In contrast, the patients in the cardiorenal shock 
(II) group were older, with multiple comorbidities. They 
exhibited a lower heart rate, elevated pulmonary arte-
rial and pulmonary capillary wedge pressures, as well 
as lower glomerular filtration rate, suggesting renal 
involvement from shock. Last, the patients in the car-
diometabolic shock (III) group exhibited elevated lac-
tate, alanine aminotransferase, heart rate, and right 
atrial pressure, along with low blood pressure, car-
diac power output, and index. This suggested a mul-
tiorgan involvement, featured by transaminases and 
lactic acidosis in a patient with CS.

Validation of Phenotypes
First-pass validation of the derived phenotypes was 
performed to test external reproducibility by using 
the same consensus k-means clustering algorithm 
de novo in the DRR validation cohort. Using this ap-
proach, similar patterns of the clusters were identi-
fied compared with the derivation cohort (Figures S5 
and S6). In the second validation procedure, we as-
signed patients from DRR and CSWG-HF to the 
derived phenotypes using a classifier based on the 
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Table 1.  Cohort Characteristics

Characteristics

CSWG-MI Cohort DRR Cohort CSWG-HF Cohort

No. (%) No. (%) No. (%)

Nonsurvivors 161 39.27 478 44.71 127 26.46

Men 279 68.05 819 76.61 362 75.42

IABP 249 60.73 127 11.88 200 41.67

ECMO 128 31.22 43 4.02 93 19.38

Impella 170 41.46 152 14.22 109 22.71

Any t-MCS 395 96.34 288 26.99 325 67.71

No t-MCS 15 3.66 799 73.01 155 32.29

Multiple t-MCS 134 32.68 34 3.19 76 15.83

Mechanical ventilation 242 59.02 Not captured Not captured 163 33.96

Vasopressor/inotrope use 318 77.56 1032 96.54 384 80

Vasodilators 62 15.12 Not captured Not captured 201 41.88

History of hypertension 281 68.54 512 47.9 216 45

History of CKD (any stage) 73 17.8 Not captured Not captured 169 35.21

History of COPD 24 5.85 104 9.73 49 10.21

History of CVA/TIA 57 13.9 85 7.95 76 15.83

Prior HF 92 22.44 Not captured Not captured 363 75.63

Prior MI 110 26.83 152 14.22 132 27.5

History of PCI 138 33.66 Not captured Not captured 94 19.58

History of CABG 33 8.05 Not captured Not captured 45 9.38

History of diabetes mellitus 179 43.66 173 16.18 142 29.58

History of PVD 20 4.88 77 7.2 18 3.75

Mean SD Mean SD Mean SD

Age, y 65.12 13.27 66 11.04 56.87 14.38

Weight, kg 81.9 18.81 81.11 15.77 86.69 22.24

Laboratory Values 
(Normal Range) Mean SD % OOR Mean SD % OOR Mean SD % OOR

Sodium, mEq/L 137.16 4.2 137.88 4.52 134.22 5.53

Potassium, mEq/L (3.6–5.1) 4.3 0.73 23.82 4.07 0.78 36.84 4.26 0.69 23.48

HCO3, mEq/L (21–28) 20.2 4.79 55.00 18.47 4.69 73.71 24.65 4.95 36.25

BUN, mg/dL (6–24) 27.83 16.65 55.40 24.6 16.14 33.84 37.86 22.73 68.00

Creatine, mg/dL (0.6–1.3) 1.61 1.08 50.64 1.48 1.07 44.43 1.84 1.18 64.77

WBC, 103/mm3 (4–11) 14.59 7.09 64.19 16.39 6.71 81.01 10.77 5.69 35.61

Hemoglobin, g/dL (11–16) 12.52 2.58 39.34 13.54 2.11 21.68 11.98 2.34 37.35

Hematocrit, % (32–47) 37.33 7.53 34.81 39.04 7.33 31.59 36.79 6.76 29.92

Platelets, 103/mm3 
(150–400)

217.94 88.94 24.79 247.27 89.01 14.13 198.95 78.57 30.42

ALT, U/L (<55) 173.17 392.18 43.49 198.81 464.87 34.80 237.83 774.43 65.44

Total bilirubin, mg/dL 
(0.2–1.1)

0.88 0.55 23.97 0.77 0.93 19.15 1.78 2.05 46.80

INR (0.9–1.3) 1.38 0.47 67.83 1.27 0.51 21.12 1.95 1.18 37.85

GFR, mL/min per 1.73 m2 
(>90)

55.37 26.83 88.49 58.29 23.55 89.71 50.48 26.33 94.30

Lactate, mEq/L (0.5–2.2) 4.54 3.99 35.46 5.76 4.37 81.67 3.94 4.14 51.30

pH (7.35–7.45) 7.28 0.15 68.20 7.26 0.13 82.76 7.35 0.14 60.38

Hemodynamic Values Mean SD Mean SD Mean SD

MAP, mm Hg 74.72 16.71 64.09 11.79 73.06 13.14

 (Continued)
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cluster centroids of the derivation cohort to test for 
potential future clinical application (Figure  S7). Both 
validation cohorts revealed a similar trend in mortal-
ity and comparable clinical profiles across the 3 clus-
ters, as was seen in the independent clustering of the 
CSWG-MI and DRR cohorts (Table S1 and Figure S8). 
These trends were consistent in all sensitivity analy-
ses, including the imputation of all missing values in 
CSWG-HF and DRR instead of removing cases with 
a large number of missing values (Tables S2 and S3 
and Figure S9).

Association of Phenotypes With 
Outcomes
In-hospital mortality rates differed among phenotypes 
but were similar within a given phenotype, even across 
cohorts. Relative to phenotype I, patients in phenotype 
II had a higher mortality (CSWG-MI odds ratio [OR], 
3 [95% CI, 1.8–5.1]; DRR OR, 2 [95% CI, 1.4–2.8]), 
whereas those in phenotype III (CSWG-MI OR, 4.6 
[95% CI, 2.7–5.1]; DRR OR, 3.5 [95% CI, 2.5–4.9]) were 
at highest risk of dying (Figure 3).

Phenotypes and Shock Stages
We compared the distribution of each phenotypes’s 
patients with regard to their most severe SCAI shock 

stage encountered during the hospital stay (Figure 4). 
The risk of developing stage D or E shock during the 
hospital stay was lowest in phenotype I and highest in 
phenotype III for patients with both CS-MI and CS-HF. 
Within each phenotype, the SCAI staging (C-E) further 
stratified mortality. Similarly, within each SCAI stage, 
the 3 phenotypes further stratified mortality. In a bivari-
ate logistic regression model, both SCAI stage (C-E) 
and phenotype were significant predictors (P<0.0001) 
of in-hospital mortality in CSWG-MI, CSWG-HF, and 
CSWG-MI and CSWG-HF combined (Table S4).

DISCUSSION
This is the first study using ML approaches in large, 
multicenter cohorts of patients with CS. Using this 
novel approach, we identified 3 distinct clusters of CS 
patient profiles in our derivation cohort of patients with 
MI-CS from the CSWG. Next, we tested the reproduc-
ibility of our analysis in an independent, Danish regis-
try of patients with MI-CS and in patients with HF-CS 
from the CSWG and identified the same 3 clusters 
with matching rates of in-hospital mortality. These CS 
phenotypes exhibited distinct demographic, hemo-
dynamic, and metabolic signatures and correlated 
with inpatient mortality. The "noncongested" (phe-
notype I) group represented lowest mortality, and 

Hemodynamic Values Mean SD Mean SD Mean SD

Cardiac index, L/min per m2 1.88 0.59 1.91 0.58

Cardiac output, L/min 3.71 1.49 4.04 2.8

CPI, W/m2 0.31 0.13 0.31 0.11

CPO, W 0.61 0.3 0.66 0.43

LVEDD, mm 4.79 0.92 6.5 1.18

Heart rate, 1/min 91.21 22.35 86.02 23.99 91.65 22.44

DBP, mm Hg 60.41 15.91 52.94 11.31 61.73 12.89

SBP, mm Hg 100.85 23.85 83.71 14.27 94.47 16.16

PCWP, mm Hg 24.39 9.38 24.12 8.76

PADP, mm Hg 23.69 7.71 26.15 8.45

PASP, mm Hg 43.84 13.92 48.87 14.37

Mean PAP, mm Hg 30.41 9.16 33.74 9.82

RAP, mm Hg 14.72 6.63 12.56 5.07 13.68 7.28

PAPI, arbitrary units 1.83 2.48 2.7 3.42

RVSWI, mm Hg×mL/m2 4.67 2.98 5.9 3.24

Table displays only nonimputed data. The proportions of patients with abnormal values are calculated using the normal values from the laboratory at Tufts 
Medical Center and do not necessarily represent the normal ranges for each participating site. ALT indicates alanine aminotransferase; BUN, blood urea 
nitrogen; CABG, coronary artery bypass grafting; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CPI, cardiac power index; 
CPO, cardiac power output; CSWG, Cardiogenic Shock Working Group Registry; CVA, cerebrovascular accident; DBP, diastolic blood pressure; DRR, Danish 
Retroshock MI Registry; ECMO, extracorporeal membrane oxygenation; GFR, glomerular filtration rate; HCO3, sodium bicarbonate; HF, heart failure; IABP, 
intra-aortic balloon pump; INR, International Normalized Ratio; LVEDD, left ventricular end-diastolic dimension; MAP, mean arterial pressure; MI, myocardial 
infarction; OOR, out of range; PADP, pulmonary artery diastolic pressure; PAP, pulmonary artery pressure; PAPI, pulmonary artery pulsatility index; PASP, 
pulmonary artery systolic pressure; PCI, percutaneous coronary intervention; PCWP, pulmonary capillary wedge pressure; PVD, peripheral vascular disease; 
RAP, right atrial pressure; RVSWI, right ventricular stroke volume index; SBP, systolic blood pressure; TIA, transient ischemic attack; t-MCS, temporary 
mechanical circulatory support; and WBC, white blood cell count.

Table 1.  Continued
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the "cardiometabolic shock" (phenotype III) group 
resulted in highest mortality across all cohorts. We 
further identified that these 3 clusters were directly as-
sociated with mortality within individual SCAI stages. 
Accordingly, these findings may improve risk stratifi-
cation and enable the development of treatment al-
gorithms tailored to each phenotype of CS and inform 
patient selection in future clinical trials in CS.

Major discriminators of phenotype membership 
included glomerular filtration rate, lactate, serum bi-
carbonate, and alanine aminotransferase, which have 
all previously been associated with risk of mortality in 
CS.24,25 Previously, SCAI staging was shown to have 
a strong correlation with mortality in a heterogeneous 
intensive care unit population.16 Patients with refrac-
tory shock (SCAI shock stage E) were shown to have 

a significantly higher in-hospital mortality than other 
stages, regardless of cause.16 Identifying the clinical 
CS phenotypes that impact outcomes could allow for 
early classification into treatment groups. In our anal-
ysis, SCAI stage C had the lowest and stage E, the 
highest, mortality in each individual phenotype cluster. 
These findings support that the 3 phenotypes of CS re-
flect clinically relevant features that are expected to be 
associated with mortality. Therefore, the phenotypes 
seem to be compatible with the SCAI staging system 
and provide further support to it in guiding even more 
individualized therapy. Unlike the SCAI staging sys-
tem, whose aim is to characterize disease severity as 
it evolves over the course of a hospital stay, the aim of 
the current analysis was the identification of CS pheno-
types at the time of admission.

Figure 1.  Derivation of the clusters: consensus k-means clustering.
A, Representative plots illustrating the method of consensus k-means clustering in the CSWG (Cargiogenic Shock Working Group 
Registry) myocardial infarction derivation cohort. Each column represents one patient, whereas each row displays the assigned 
clusters. Well-defined (ie, segregated) squares indicate stable clusters. Compared with k (number of clusters)=2 and k=4, k=3 shows 
highest cluster stability, suggesting that 3 may be a good choice for the number of clusters. B, A t-distributed stochastic neighbor 
embedding (TSNE) plot for visual representation of the clusters in a 2-dimensional space. The algorithm uses probability estimates 
to calculate the similarity of data points in the high-dimensional space (ie, identifies the “neighbors”) and then calculates the distance 
of these “neighbors” in a lower-dimensional space (in this case, 2 dimensions).23 The wider the different clusters separate in the plot, 
the larger is the difference between them.

Table 2.  Selection of Outstanding Characteristics of the Phenotypes

Characteristics
Cluster/Phenotype I  
“Noncongested” CS

Cluster/Phenotype II  
“Cardiorenal” CS

Cluster/Phenotype III  
“Cardiometabolic” CS

Mean age, y ≈60  ≈70  ≈65 

Comorbidities Few DM2, CKD, hypertension… Few

Blood pressure ↓ ↓ ↓↓

Congestion None Left ventricular Right ventricular

Heart rate ↔ ↔ ↑↑

Hemoglobin ↔ ↓ ↔

Transaminases ↔ ↔ ↑↑

Lactate ↔ or ↑ ↓ ↑↑

Kidney function ↔ ↓↓ ↓

CKD indicates chronic kidney disease; CS, cardiogenic shock; and DM2, type 2 diabetes mellitus.
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Although “labeling” phenotypes with 1-dimensional 
titles (noncongested, cardiorenal, and cardiometabolic) 
may obscure the fascinating mathematical interactions 
of the entirety of variables defining the phenotypes,21 
each phenotype was composed of strikingly different 
characteristics: young patients with few comorbidities, 
normal hematocrit, low lactate, and good kidney func-
tion in phenotype I; older patients with chronic kidney 
disease, diabetes mellitus, hypertension, and anemia 
in phenotype II; and patients with lactic acidosis, in-
flammation, and elevated liver enzymes in phenotype 
III. Hemodynamically, phenotype I was characterized 
by relatively high cardiac output and blood pressures; 
phenotype II exhibited pulmonary congestion (high 
wedge pressure); phenotype III displayed systemic 
congestion (high central venous pressure but low 
wedge pressure, suggesting involvement of right-sided 
HF), high heart rate, and low cardiac output and arte-
rial blood pressure. Taken together, these findings sug-
gest that phenotype I represents the noncongested 
patient with high likelihood of salvage. Phenotype II, 
on the other hand, may involve more left-sided HF with 

worsening kidney function (cardiorenal), whereas phe-
notype III represents worsening venous congestion, 
liver damage, and likelihood of multiorgan involvement. 
Identifying these distinct phenotypes may change the 
way we classify patients with CS, each of whom may 
benefit from a different management strategy that 
could be tested in prospective trials.

Reproducibility and external validity are import-
ant measurements of cluster quality.21 A strength 
of this study is the finding that similar phenotypes 
evolved when we clustered 2 completely indepen-
dent AMI-CS cohorts on the same variables, es-
pecially as these cohorts represent patients from 
2 countries on different continents with different 
healthcare systems and treatment strategies. Future 
studies may validate these phenotypes globally, even 
further supporting the universal existence of 3 dis-
tinct groups of CS with sufficiently nonoverlapping 
characteristics and prognosis, such that patients can 
be classified on presentation. In addition, many of 
the phenotypes’ clinical characteristics align with ex-
isting clinical consensus, including the concepts that 

Figure 2.  Metabolic and hemodynamic profiles of the different phenotypes.
Radar plots illustrate the association of each phenotype with hemodynamic and metabolic variables in CSWG( Cargiogenic Shock 
Working Group Registry) myocardial infarction cohort. Data were normalized across all phenotypes to a mean of 0 and an SD of 1. The 
dashed black line marks the mean (0), whereas every concentric gray line signifies a 0.1-SD difference from the overall mean. Values 
that were higher than the mean are drawn outside, whereas values that were lower than the mean are drawn inside the dashed line for 
each variable. ALT indicates alanine aminotransferase; BUN, blood urea nitrogen; CI, cardiac index; CO, cardiac output; CPI, cardiac 
power index; CPO, cardiac power output; DBP, diastolic blood pressure; GFR, glomerular filtration rate; HCO3, sodium bicarbonate; 
Hgb, hemoglobin; INR, International Normalized Ratio; LVEDD, left ventricular end-diastolic dimension; MAP, mean arterial pressure; 
PADP, pulmonary artery diastolic pressure; PAP, pulmonary artery pressure; PAPI, pulmonary artery pulsatility index; PASP, pulmonary 
artery systolic pressure; PCWP, pulmonary capillary wedge pressure; RAP, right atrial pressure; RVSWI, right ventricular stroke work 
index; SBP, systolic blood pressure; and WBC, white blood cell count.
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venous congestion and high lactate are associated 
with increased mortality, making their incorporation 
into practice more feasible.

The phenotypes of CS may also allow for the stratifi-
cation of patients in clinical trials, both past and future, 
which could improve their design and interpretation. 
The inability of randomized controlled trials in CS to 
demonstrate significant differences in outcomes, 
despite technological advances and improvement 
in hemodynamic markers, implicates heterogeneity 
as a potential confounder. Previous work with ML in 
sepsis (another clinically heterogeneous population) 
has shown clinical phenotypes within large, random-
ized trials derive harm or benefit from an intervention, 
which may be opposite from the larger population 
when all patients are grouped together.18

Although the 3 phenotypes of CS were derived from 
patients with AMI-CS, these were equally applicable to 
patients with HF-CS. Despite baseline differences be-
tween the HF-CS and AMI-CS cohorts, the clinical pre-
sentation and mortality trends of the phenotypes were 
consistent, regardless of whether they were derived from 
patients with HF-CS or AMI-CS. This finding indicates 
applicability in both the 2 most common forms of CS.

Creating phenotypes in CS through ML has the poten-
tial to address both implicit biases and identify subgroups 
within large populations that may derive harm or ben-
efit from a certain therapeutic intervention. Information 
gained from this type of data analysis may also impact 
future clinical trials. Although we found similar treatment 
protocols across all phenotypes in our analysis, the vast 
differences in mortality we report between these phe-
notypes stress the importance of more granularity in 

defining patient characteristics and phenotypes in future 
treatment protocols and clinical trial designs.

Limitations
Major limitations of this study include the retrospective 
nature of the data sources, limited number of patients 
and clinical variables, and the inability to assess long-
term outcomes. ML algorithms tend to perform better 
on larger data sets, and the sample size may limit the 
complexity of a cluster model. However, there is cur-
rently a lack of large, comprehensive, contemporary 
multicenter CS databases that represent all causes 
of CS. Within these limitations, we were able to dem-
onstrate and validate reproducible, clinically relevant 
phenotypes in CS using ML algorithms, which were 
associated with mortality. Future studies may collect 
comprehensive data in a prospective manner and may 
allow for enhanced, even more nuanced examination of 
the CS phenotypes.

In addition, the clusters in this article are semisu-
pervised. Operating on the assumption that variables 
driving mortality are clinically the most relevant vari-
ables in CS, we identified important variables using 
supervised ML based on mortality association be-
fore applying an unsupervised clustering algorithm 
(semisupervised learning). However, because the 
phenotypes differed in several clinical features, even 
beyond the variables included in the clustering algo-
rithm, this is likely to be the case for characteristics 
not captured in our data sets as well, thus providing 
a comprehensive classification. The selected ML al-
gorithm, (consensus) k means, is a well-established 
algorithm in unsupervised learning,17,18 particularly 

Figure 3.  In-hospital mortality in the 3 distinct phenotypes of cardiogenic shock (CS).
Phenotype I (noncongested), phenotype II (cardiorenal), and phenotype III (cardiometabolic) are 
associated with in-hospital mortality across 2 international multicenter registries of CS attributable to 
acute myocardial infarction (MI) and a multicenter registry of CS attributable to acute-on-chronic heart 
failure. CSWG indicates Cardiogenic Shock Working Group Registry; and DRR, Danish Retroshock MI 
Registry.
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in medical research, but is not simply applicable to 
categorical data; thus, only continuous variables 
were used for clustering. Renal impairment had a 
major impact on cluster assignment but did not dis-
criminate between acute and chronic kidney injury. 
Furthermore, although it may be a limitation that the 
calendar time frames of data collection for the CSWG 
and DRR cohorts were not identical, they do overlap 
and changes in CS treatment protocol were not sig-
nificant enough to introduce any bias in our results. 
Although we were able to assess the maximum SCAI 
stage across the patients’ hospital course, based on 
drug and device escalation, the initial SCAI stage at 
admission could not be validly identified retrospec-
tively because there was only admission data for 
most patients in CSWG, and for patients to be as-
signed SCAI stage D or E, they would have to fail 
to respond to initial interventions first.15 Taken to-
gether, these limitations identify the need for new, 
larger, prospective CS registries that account for 
temporal changes in patient variables and treatment 
to improve our understanding of the nature of these 
phenotypes.

CONCLUSIONS
We report that using an ML approach to define un-
biased clusters in the complex and heterogeneous 
clinical syndrome of CS is feasible. Our analysis of 
multicenter cohorts of patients with CS identified 3 dis-
tinct phenotypes of CS with unique clinical profiles that 
are associated with different risks of in-hospital mor-
tality. These clusters exhibited clinically relevant differ-
ences in hemodynamic and metabolic profiles and are 
equally applicable to patients with CS attributable to MI 
or acute-on-chronic HF. Future studies are needed to 
evaluate the clinical implications of these phenotypes 
as they relate to prognosis and optimal treatment.
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Supplements 

Data S1. Supplemental Methods 

Imputation and Data Processing 

Imputation was carried out in the CSWG-MI and CSWG-HF cohorts using the 

MissForest function from the missingpy package for Python.26 Random forest imputation has 

been shown to perform well in epidemiological datasets and is able to deal with categorical 

variables.27 Before random forest (RF) imputation, we removed variables and patients with 

high missingness (cutoffs: more than 40% missingness for CSWG-MI and 34% for CSWG-HF, 

which was picked to ensure that overall missingness in the dataset did not exceed 10%) from 

the derivation dataset to ensure that our results are not driven by patients or variables with 

most missingness. Hemodynamic variables were gathered for patients in the CSWG but 

excluded from cluster analysis because the full set of hemodynamics was solely available in 

the CSWG registry (with a degree of missingness that was acceptable for descriptive statistics 

but insufficient for clustering which requires complete data), but not in the DRR registry thus 

using them for clustering would have prevented us from thoroughly validating the clusters. 

Hemodynamics are also hardly imputable in patients with all hemodynamic variables missing. 

We performed a sensitivity analyses of the clustering results by deriving the clusters 

from CSWG MI datasets imputed with five different random seeds. After imputation, outliers, 

defined by adapted Tukey’s criteria (>3 interquartile ranges away from the 1st or 3rd quartile), 

were removed from further analyses and visual representation (Supplemental Figure 1). 

Variables with log-normal distributions were log-transformed. For cluster analyses, all 

continuous variables were normalized to the minimum of 0 and the maximum of 1. Only for 

the parallel coordinate plots and radar plots, variables were subsequently standardized to a 

mean of 0 and an SD of 1. 

Variable selection 

Correlating (non-orthogonal) variables can distort clustering, as several algorithms 

tend to weigh these variables higher than orthogonal variables, so they are important to 

identify and remove when running these analyses.21 Furthermore, especially in small datasets, 

clustering on too many variables can add too much granularity to the algorithm without 

achieving model generalizability.28 While no strict threshold exists to identify the optimal 
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number of variables to cluster on for a specific number of cases, a possible hint may be 

deduced from latent class analysis, where similar dimensionality problems occur29: Formann 

proposed the minimal sample size to include no less than 2^n cases (n = number of variables), 

preferably 5*2^n.30 For datasets of approximately 400-500 cases, this suggests that the 

maximum number of variables to cluster on is eight, preferably six variables. Therefore, to 

eliminate non-orthogonal variables and appropriately reduce the dimensionality of our model, 

we employed a classification algorithm to variable selection. 

Based on the assumption, that variables driving mortality are clinically the most 

interesting variables in CS, we identified important variables by supervised ML based on 

mortality association prior to applying an unsupervised clustering algorithm (semi-supervised 

learning). We used a random forest classifier to predict in-hospital mortality in 10 

bootstrapped samples of 75% of the CSWG-MI derivation cohort. Unlike most regression 

models the random forest classifier does not assume linear relationships between variables. 

We identified mortality-predicting variables as variables with the highest average predictive 

importance in the 10 samples using the RandomForestClassifier function from 

sklearn.ensemble for Python. In a first run we used all continuous variables (including clinical 

and laboratory data) that remained after preprocessing independent of their correlation 

(Supplemental Figure 2). We then trained the random forest classifier again after removal of 

correlating variables and identified the six most predictive ones for the actual clustering 

process. Of note, based on the lab values collected, abnormal renal function did not 

discriminate between acute and chronic kidney injury. 

Clustering Procedures 

Before clustering, variables were normalized to a minimum of 0 and a maximum of 1. 

Distance measurement for all clustering algorithms was Euclidean distance. Consensus k 

means clustering was performed on 1000 bootstrap samples of the whole cohorts of the size 

of 80% of the overall cohort in CSWG-MI and DRR. Consensus clustering provides several 

benefits including comprehensive cluster visualization, assessment of cluster stability, and 

estimation of an optimal k (number of clusters).18, 22 The optimal k was determined as the k 

achieving highest consensus of the derivation cohort samples, as well as using the Silhouette 

score, the Calinski-Harabasz criterion, the Davies-Bouldin index and the elbow method for k 

Means clustering in the total derivation cohort. For sensitivity analyses we tested if k, cluster 
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consensus, and cluster distribution remained stable when (a) between five and eight variables 

were chosen for clustering instead of the identified six and (b) when imputed datasets with 

five different random seeds were used. 

To be of clinical use, clusters would need assignable to patients individually without 

de-novo clustering of a full cohort.17, 20 We validated the applicability of our cluster assignment 

in individual patients using the centroids of the clusters in the derivation cohort to assign 

clusters to patients in the DRR and CSWG-HF validation cohorts to their respective nearest 

centroid using the NearestCentroid classifier from the sklearn.neighbors package.  

Composition of phenotypes and outcomes was compared in the different cohorts to externally 

validate the phenotypes gathered by the classifier. 
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Figure S1: Flow Chart of Study Populations and Data Processing 

CSWG: Cardiogenic Shock Working Group (Registry); DRR: Danish Retroshock Registry; MI: Myocardial 

Infarction; HF: Heart Failure 
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Figure S2: Variable Importance in Random Forest Classifier 

A Random Forest Classifier was trained on in-hospital mortality in the derivation cohort 

to identify the most mortality-driving variables. A and C: Variable importance was calculated 

as average importance of a variable in the random classifier in 10 runs with different seeds. 

Importance of the most predictive variable was set to 100%, and the others relative to this 

variable. A) shows the result using all variables (including correlating variables). Out of the 

most predictive variables, the correlating (i.e. “non-orthogonal”) variables were identified 

using a correlation matrix (B). In pairs of correlating (|r|>0.6) variables the variable with lower 

predictive value than the respective other variable was removed. The result is shown in C: The 

six variables with the highest predictive importance were the same in both instances, before 

and after removal of the non-orthogonal variables. ALT: Alanine Aminotransferase; BUN: 

Blood urea nitrogen; Crea: Serum Creatinine; GFR (CKDEPI): Glomerular Filtration Rate; Hgb: 

Hemoglobin; INR: International Normalized Ratio; WBC: White Blood Cell Count. 
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Figure S3: Specifying the Optimal Number of Clusters (k) from the CSWG-MI Derivation 

Cohort 

A: Cluster-Consensus Plot showing the cluster-consensus values of clusters at each k. 

High values indicate cluster stability22. B: Cumulative Distribution Function (CDF) plot for each 

k to determine where the CDF reaches a maximum without expense of consensus. Higher and 

“flatter” curves are favorable22. C: Tracking plot for each k showing the cluster assignment of 

each case. Changing colors within a column indicate unstable cluster assignment, as these 

samples are changing clusters often in repeated runs22. D: Different metrics for the quality of 

the clustering to determine the optimal k. Unlike A-C, this panel depicts the scores/criteria for 

k Means clustering on the full cohort and not the consensus k Means clusters. The scores 

determine, how well the variables entered in the clustering are clustered with different k. 

Higher silhouette scores and lower Davies-Bouldin scores indicate better clustering and 

relatively higher Calinski-Harabasz scores estimate the optimal k. Finally, the “elbow” in the 

elbow plot can be used to estimate the optimal k. The Silhouette, the Davies-Bouldin criterion 

and the elbow plot indiciate an optimal k of 3 clusters. The Calinski-Harabasz suggests an 

optimal k at 2 or 3. 
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Table S1: Patient Characteristics in the Clusters of CSWG-MI, DRR and CSWG-HF 

Table displays only non-imputed data. Mean (SD) or n (%). ALT: Alanine Aminotransferase; BUN: Blood urea nitrogen; CI: Cardiac Index; CO: Cardiac Output; COPD: Chronic obstructive pulmonary disease; CPI: 

Cardiac Power Index; CPO: Cardiac Power Output, CSWG-HF: Cardiogenic Shock Working Group registry Heart Failure cohort; Creatinine: Serum creatinine; CSWG-MI: Cardiogenic Shock Working Group registry 

Myocardial Infarction cohort; CVA/TIA: Cerebrovascular accident/Transient Ischemic Attack; DBP: Diastolic blood pressure; DM2: Type 2 Diabetes Mellitus; DRR: Danish Retroshock Registry; ECMO: Extracorporeal 

membrane oxygenation; GFR: Glomerular Filtration Rate; Hgb: Hemoglobin; HTN: Hypertension; IABP: Intra-Aortic Balloon Pump; INR: International Normalized Ratio; LVEDD: Left ventricular end-diastolic dimension; 

MAP: Mean arterial pressure; PA Sat: Pulmonary Arterial Saturation; PADP: Pulmonary Artery Diastolic Pressure; PAP: Pulmonary Artery Pressure; PAPI: Pulmonary Artery Pulsatility Index; PASP: Pulmonary Artery 

Systolic Pressure; PCWP: Pulmonary Capillary Wedge Pressure; PVD: Peripheral vascular disease; RAP: Right atrial pressure; SBP: Systolic blood pressure; WBC: White Blood Cell Count. 

CSWG MI DRR INDEPENDENTLY CLUSTERED DRR WITH ASSIGNED CLUSTERS CSWG HF 

I II III I II III I II III I II III 

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) 

Non-Survivors 30 20.55 65 45.14 66 55 101 29.36 147 45.51 230 57.21 90 28.21 83 40.29 305 56.07 19 10.5 74 31.76 34 51.52 

Male 103 70.55 95 65.97 81 67.5 271 78.78 232 71.83 316 78.61 247 77.43 151 73.3 421 77.39 131 72.38 191 81.97 40 60.61 

IABP 89 60.96 88 61.11 72 60 44 12.79 43 13.31 40 9.95 43 13.48 29 14.08 55 10.11 59 32.6 110 47.21 31 46.97 

ECMO 36 24.66 38 26.39 54 45 8 2.33 6 1.86 29 7.21 10 3.13 0 0 33 6.07 22 12.15 41 17.6 30 45.45 

Impella 55 37.67 67 46.53 48 40 40 11.63 33 10.22 79 19.65 37 11.6 18 8.74 97 17.83 27 14.92 58 24.89 24 36.36 

Mechanical ventilation 77 52.74 79 54.86 86 71.67 42 23.2 75 32.19 46 69.7 

Vasopressor/Inotrope Use 98 67.12 116 80.56 104 86.67 329 95.64 307 95.05 396 98.51 302 94.67 201 97.57 529 97.24 139 76.8 192 82.4 53 80.3 

Vasodilators 23 15.75 20 13.89 19 15.83 93 51.38 96 41.2 12 18.18 

History of HTN 84 57.53 119 82.64 78 65 129 37.5 209 64.71 174 43.28 132 41.38 134 65.05 246 45.22 57 31.49 119 51.07 40 60.61 

History of CKD (any stage) 2 1.37 56 38.89 15 12.5 33 18.23 116 49.79 20 30.3 

History of COPD 6 4.11 13 9.03 5 4.17 30 8.72 42 13 32 7.96 27 8.46 23 11.17 54 9.93 18 9.94 23 9.87 8 12.12 

History of CVA/TIA 17 11.64 23 15.97 17 14.17 24 6.98 37 11.46 24 5.97 23 7.21 25 12.14 37 6.8 28 15.47 41 17.6 7 10.61 

Prior HF 35 23.97 39 27.08 18 15 144 79.56 181 77.68 38 57.58 

Prior MI 30 20.55 52 36.11 28 23.33 39 11.34 60 18.58 53 13.18 37 11.6 41 19.9 74 13.6 36 19.89 77 33.05 19 28.79 

History of PCI 41 28.08 50 34.72 47 39.17 28 15.47 56 24.03 10 15.15 

History of CABG 8 5.48 17 11.81 8 6.67 10 5.52 28 12.02 7 10.61 

History of Diabetes 40 27.4 89 61.81 50 41.67 41 11.92 60 18.58 72 17.91 39 12.23 42 20.39 92 16.91 36 19.89 82 35.19 24 36.36 

History of PVD 6 4.11 8 5.56 6 5 17 4.94 29 8.98 31 7.71 22 6.9 14 6.8 41 7.54 3 1.66 12 5.15 3 4.55 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Age (years) 61.95 13.94 69.03 11.56 64.28 13.27 62.84 10.86 71.29 9.16 64.44 11.09 63.44 10.8 71.38 9.15 65.46 11.17 51.4 15.26 60.41 12.1 59.39 14.87 

Weight (kg) 82.02 20.38 82.47 18.22 80.97 17.43 79.56 15.21 80.37 16.17 83.13 15.75 79.23 14.8 80.59 16.37 82.43 16 83.17 21.31 88.55 21.54 90.64 26.62 

Sodium (mEq/L) 137.17 3.85 136.52 4.47 137.81 4.25 137.65 4.49 137.63 4.42 138.28 4.59 137.61 4.5 137.41 4.08 138.22 4.66 135.01 5.19 133.22 5.59 135.34 5.77 

Potassium (mEq/L) 4.16 0.57 4.44 0.71 4.31 0.89 3.88 0.6 4.15 0.82 4.17 0.85 3.88 0.6 4.21 0.83 4.13 0.83 4.12 0.57 4.26 0.65 4.78 0.93 

HCO3 (mEq/L) 22.4 4.2 21.48 3.83 16.55 4.11 20.95 3.93 19.61 3.72 15.45 4.34 21.5 3.88 20.15 3.38 16.07 4.23 26.38 3.59 25.18 4.12 16.61 4.08 

BUN (mg/dL) 18.21 7.56 42.01 19.29 24.9 10.93 17.92 7.67 31.03 19.85 25.13 15.98 6.56 2.79 12.49 7.93 8.68 5.37 24.31 10.54 49.55 24.3 37 21.22 

Creatinine (mg/dL) 0.94 0.22 2.49 1.39 1.47 0.5 0.94 0.2 2.01 1.51 1.53 0.85 83.37 18.25 194.23 148.99 135.31 79.16 1.09 0.25 2.38 1.33 2.02 1.06 

WBC (103/mm3) 12.36 5.54 13.94 5.87 18 8.58 15.09 5.89 15.93 6.81 17.86 7.03 14.53 5.82 15.61 6.57 17.77 6.95 9.48 4.4 10.07 4.82 16.57 7.68 

Hgb (g/dL) 13.21 2.37 11.27 2.3 12.98 2.67 13.78 1.79 12.99 2.06 13.77 2.31 8.52 1.12 7.98 1.25 8.5 1.4 12.5 2.27 11.68 2.25 11.51 2.57 

Hematocrit (%) 39.05 7.05 33.74 7.08 39.01 7.27 39.58 6.88 37.45 6.97 39.84 7.79 0.39 0.07 0.37 0.07 0.39 0.08 38.48 6.39 35.52 6.36 35.9 8.29 

Platelets (103/mm3) 218.5 70.53 187.96 75.91 248.58 109.59 250.06 87.37 263.2 96.3 232.08 81.75 249.07 87.3 241.19 96.71 248.51 87.01 219.49 75.66 182.16 76.08 197.26 82.32 

ALT (U/L) 73.57 121.42 147.98 316.97 290.73 561.28 109.77 151.8 69.39 122.74 378.98 700.65 97.88 150.87 123.74 268.22 286.41 607.24 61.23 103.66 166.85 476.27 1106.4 1798.8 

Total bilirubin (mg/dL) 0.89 0.53 0.91 0.56 0.82 0.55 0.74 1.09 0.72 0.53 0.85 1.03 12.53 18.97 12.95 9.71 13.72 15.95 1.7 2.41 1.67 1.78 2.33 1.81 

INR 1.24 0.29 1.44 0.51 1.49 0.54 1.2 0.35 1.27 0.53 1.33 0.59 1.19 0.31 1.27 0.58 1.31 0.57 1.82 1.01 1.88 1.03 2.48 1.78 

GFR (mL/min/1.73 m2) 81.47 16.47 30.34 13.8 50.72 16.98 81.93 14.31 39.79 15.27 52.93 18.18 80.95 15.37 36.65 15.27 53.2 18.94 76.26 20.66 33.14 12.4 39.37 17.4 
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CSWG MI DRR INDEPENDENTLY CLUSTERED DRR WITH ASSIGNED CLUSTERS CSWG HF 

I II III I II III I II III I II III 

Lactate (mEq/L) 3.45 3.15 2.17 1.27 7.89 4.21 3.81 2.61 3.54 2.2 9.21 4.69 3.54 2.4 2.36 1.24 8.35 4.43 2.17 1.21 2.15 1.27 9.9 4.82 

pH 7.3 0.13 7.35 0.12 7.21 0.16 7.31 0.11 7.29 0.1 7.18 0.14 7.32 0.1 7.3 0.09 7.2 0.14 7.41 0.1 7.38 0.1 7.26 0.16 

MAP (mmHg) 79.63 16.5 74.98 15.7 68.42 16.21 66.07 11.44 63.4 11.96 62.9 11.76 65.78 11.85 63.95 11.21 63.12 11.88 72.92 10.48 74.09 13.89 69.64 16.41 

DBP (mmHg) 64.71 15.46 58.46 14.47 57.25 16.91 54.82 10.54 52.32 12.03 51.86 11.16 85.11 13.72 84.3 13.34 82.69 14.86 62.03 10.64 62.55 13.63 57.84 15.33 

SBP (mmHg) 104.65 23.76 103.57 23.97 93.19 22.2 85.35 13.8 83.59 13.79 82.42 14.94 54.32 10.89 52.56 10.75 52.31 11.7 92.79 13.66 96.65 16.54 91.24 20.08 

CI (L/min/m2) 1.92 0.62 1.93 0.55 1.76 0.57 1.84 0.42 1.96 0.65 1.92 0.72 

CO (L/min) 3.72 1.3 3.88 1.67 3.45 1.41 3.81 2.86 4.22 2.73 4.08 2.95 

CPI (W/m2) 0.33 0.14 0.32 0.11 0.27 0.14 0.30 0.07 0.32 0.13 0.30 0.12 

CPO (W) 0.64 0.27 0.64 0.29 0.53 0.31 0.61 0.42 0.69 0.41 0.67 0.58 

LVEDD (mm) 4.88 0.93 4.98 0.95 4.45 0.77 6.66 1.12 6.5 1.2 5.93 1.11 

Heart rate (1/min) 87.97 22.03 89.84 19.48 96.39 24.64 86.37 24.97 86.2 24.25 85.56 22.94 86.42 25.66 83.43 22.67 86.78 23.44 90.41 20.34 91.86 23.23 94.54 25.27 

PCWP (mmHg) 23.91 8.66 25.78 9.95 23.36 9.45 23.16 9.3 24.4 8.01 26.48 9.31 

PADP (mmHg) 22.67 7.84 24.82 6.85 23.65 8.38 25.07 8.36 26.68 8.14 27.53 9.65 

PASP (mmHg) 42.6 13.9 47.12 13.53 41.57 13.86 47.14 13.47 50.47 14.64 47.91 15.57 

mean PAP (mmHg) 29.29 9.19 32.32 8.42 29.6 9.69 32.46 9.48 34.61 9.71 34.32 11.04 

RAP (mmHg) 12.98 5.77 14.8 7.13 16.81 6.48 12.31 5.19 12.48 5.3 12.83 4.79 12.39 5.48 11.99 5.11 12.86 4.79 11.4 6.91 14.68 6.87 16.81 8.06 

PAPI (arbitrary units) 2.38 3.84 1.82 1.03 1.11 0.59 3.46 4.51 2.36 2.55 1.65 1.46 

RVSWI (mmHg * ml/m2) 5.00 2.84 5.33 2.78 3.41 3.07 5.99 2.71 6.03 3.63 4.86 3.06 
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Figure S4: Sources of Each Cluster’s Baseline Differences from the Other Clusters 

Chord Plots illustrate the association between clusters and clinically relevant groups of 

variables based on organ system function. A connection (or “chord”) from a cluster to 

a category signifies that at least one variable in this cluster was different from the other 

two clusters combined. Relative chord thickness corresponds to the relative influence of 

each organ system in determining the characteristics of each phenotype. Only non-imputed 

data was used for these graphs. Panel A shows all the phenotypes and panels B-D highlight 

each phenotype individually. 
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Figure S5: Independent de novo Consensus k-Means Clustering in DRR 

To assess external reproducibility of the derived clusters we applied consensus k-Means 

clustering to patients in the DRR validation cohort independently on the same variables. In 

these representative plots, each column represents one patient while each row displays the 

assigned clusters. Well-defined squares indicate stable clusters. These figures suggest stability 

of the clusters when 3 is picked as the number of clusters (k). DRR: Danish Retroshock Registry. 
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Figure S6: Similarity of Clusters in the CSWG-MI Derivation and the DRR Validation Cohort 

Parallel coordinate plots comparing the tendencies of clinical parameters throughout 

the CSWG MI and DRR validation cohorts with respect to different clusters. A value of 1 

signifies that the mean value for one cluster was one standard deviation higher than the 

mean value of the two cluster that are compared in the respective graph. The plots indicate 

how similar the properties of the clusters in CSWG-MI and DRR were, when clustered 

and analyzed separately. Furthermore, they reveal the resemblance of the clusters 

assigned to the validation cohort using the nearest centroid classifier (“DRR predicted”) as 

compared to the clusters from independent consensus K means clustering (“DRR 

clustered”). CSWG: Cardiogenic Shock Working Group; DRR: Danish Retroshock Registry. 
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Figure S7:  Distribution of Patients in the Clusters by Cohort 

Top panel: Pie charts depicting the percentage of patients per cluster in each cohort. For DRR, the 

results are shown twice: “DRR clustered” depicts the clusters of the patients when DRR was 

independently de novo clustered, while “DRR predicted” depicts the clusters when they were applied 

based on the centroids of the clusters in the CSWG MI derivation cohort. Patients in “DRR clustered” 

and “DRR predicted” were in the same cluster in 82% of the cases, indicating the similarity of the two 

methods. Bottom Panel: The t-distributed stochastic neighbor embedding (t-SNE) plots for a visual 

representation of the clustering in each cohort. For these plots, the 6 variables that were used for 

clustering were reduced to 2 variables which enables plotting the results in a two-dimensional graph. 

CSWG: Cardiogenic Shock Working Group (Registry); DRR: Danish Retroshock Registry; MI: Myocardial 

Infarction; HF: Heart Failure 
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Figure S8:  Phenotype Characteristics in the Validation Cohorts 

Radar plots illustrate the specific characteristics of the cardiogenic shock phenotypes in the 

validation cohorts DRR and CSWG HF. Data was normalized across all phenotypes to a mean of 0 and 

an SD of 1. The dashed black line marks the mean (0), while every concentric gray line signifies a 0.1 

SD difference from the overall mean. ALT: Alanine Aminotransferase; BUN: Blood urea nitrogen; CI: 

Cardiac Index; CO: Cardiac Output; CPI: Cardiac Power Index; CPO: Cardiac Power Output; CSWG HF: 

Cardiogenic Shock Working Group Registry Heart Failure Cohort; DBP: Diastolic Blood Pressure; DRR: 

Danish Retroshock Registry; GFR: Glomerular Filtration Rate; Hgb: Hemoglobin; INR: International 

Normalized Ratio; MAP: Mean Arterial Pressure; LVEDD: Left ventricular end-diastolic dimension; PA 

Sat: Pulmonary Arterial Saturation; PADP: Pulmonary Artery Diastolic Pressure; PAP: Pulmonary Artery 

Pressure; PAPI: Pulmonary Artery Pulsatility Index; PASP: Pulmonary Artery Systolic Pressure; PCWP: 

Pulmonary Capillary Wedge Pressure; RAP: Right atrial pressure; RVSWI: Right ventricular stroke work 

index; SBP: Systolic blood pressure; SVI: Stroke Volume Index WBC: White Blood Cell Count 
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Table S2: Sensitivity Analysis of DRR including all Patients 

No patients were excluded for this analysis but missing values (overall missingness 4717 values = 8.1%) 

in DRR were imputed. The results resemble the results of the main analysis. ALT: Alanine 

Aminotransferase; BUN: Blood urea nitrogen; CABG: Coronary artery bypass graft; COPD: Chronic 

obstructive pulmonary disease; CVA/TIA: Cerebrovascular accident/Transient Ischemic Attack; DM2: 

Type 2 Diabetes Mellitus; DRR: Danish Retroshock Registry; ECMO: Extracorporeal membrane 

oxygenation; GFR: Glomerular Filtration Rate; Hgb: Hemoglobin; HTN: Hypertension; IABP: Intra-Aortic 

Balloon Pump; INR: International Normalized Ratio; MI: Myocardial infarction; PCI: Percutaneous 

coronary intervention; WBC: White Blood Cell Count.  

Non-congested Cardiorenal Cardiometabolic 

variable level 

n 512 316 888 

Age 65.0 (12.0) 72.6 (10.1) 66.9 (11.9) 

Gender 386 (75.4) 222 (70.3) 670 (75.5) 

Weight 78.2 (14.2) 78.6 (15.3) 81.2 (14.9) 

DM2 59 (11.5) 64 (20.3) 150 (16.9) 

Prior MI 69 (13.5) 59 (18.7) 124 (14.0) 

HTN 242 (47.3) 216 (68.4) 440 (49.5) 

CVA/TIA 38 (7.4) 37 (11.7) 61 (6.9) 

COPD 50 (9.8) 40 (12.7) 87 (9.8) 

Prior PCI 483 (94.3) 300 (94.9) 842 (94.8) 

Prior CABG 38 (7.4) 16 (5.1) 47 (5.3) 

Pressors or Inotropes 437 (85.4) 275 (87.0) 780 (87.8) 

IABP 64 (12.5) 40 (12.7) 84 (9.5) 

ECMO 13 (2.5) 45 (5.1) 

Mortality 183 (36.6) 155 (50.3) 558 (63.9) 

Lactate mEq/L 3.7 (2.6) 2.5 (1.3) 8.7 (4.6) 

HCO3 mEq/L 21.5 (3.8) 20.3 (3.5) 16.2 (4.2) 

GFR mL/min/1.73 m2 80.2 (16.3) 35.8 (15.4) 52.5 (18.7) 

Creatinine mg/dL 0.9 (0.2) 2.3 (1.8) 1.5 (0.9) 

BUN mg/dL 18.4 (7.4) 36.4 (23.2) 24.7 (15.2) 

Platelets 103/mm3 246.3 (86.5) 240.5 (92.1) 248.6 (87.8) 

Total bilirubin mg/dL 0.7 (0.9) 0.7 (0.5) 0.7 (0.8) 

WBC 103/mm3 14.1 (5.9) 15.1 (6.1) 17.2 (6.5) 

Hematocrit % 38.7 (6.5) 36.9 (6.4) 39.2 (7.2) 

Potassium mEq/L 3.9 (0.6) 4.2 (0.8) 4.2 (0.9) 

Sodium mEq/L 137.7 (4.5) 137.3 (4.1) 138.2 (4.6) 

Hemoglobin g/dL 13.5 (1.9) 12.6 (2.0) 13.5 (2.2) 

ALT U/L 89.5 (132.1) 106.7 (225.3) 255.5 (556.0) 

INR 1.2 (0.4) 1.3 (0.5) 1.3 (0.6) 
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Table S3: Sensitivity Analysis of CSWG HF including all Patients 

No patients were excluded for this analysis but missing values (overall missingness 6161 values = 

20.4%) in CSWG HF were imputed. The results resemble the results of the main analysis. ALT: Alanine 

Aminotransferase; BUN: Blood urea nitrogen; CABG: Coronary artery bypass graft; COPD: Chronic 

obstructive pulmonary disease; CSWG-HF: Cardiogenic Shock Working Group registry Heart Failure 

cohort; CVA/TIA: Cerebrovascular accident/Transient Ischemic Attack; DM2: Type 2 Diabetes Mellitus; 

ECMO: Extracorporeal membrane oxygenation; GFR: Glomerular Filtration Rate; Hgb: Hemoglobin; 

HTN: Hypertension; IABP: Intra-Aortic Balloon Pump; INR: International Normalized Ratio; MI: 

Myocardial infarction; PCI: Percutaneous coronary intervention; WBC: White Blood Cell Count. 

Non-congested Cardiorenal Cardiometabolic 

variable level 

n 227 379 80 

Age Years 52.1 (15.0) 60.5 (12.3) 61.2 (15.0) 

Gender Male 169 (74.4) 300 (79.2) 52 (65.0) 

Weight kg 81.5 (19.7) 86.5 (19.8) 88.4 (22.4) 

DM2 49 (21.6) 136 (35.9) 30 (37.5) 

Prior MI 52 (22.9) 128 (33.8) 25 (31.2) 

HTN 75 (33.0) 207 (54.6) 53 (66.2) 

CVA/TIA 28 (12.3) 49 (12.9) 7 (8.8) 

COPD 20 (8.8) 31 (8.2) 10 (12.5) 

Prior PCI 51 (22.5) 124 (32.7) 15 (18.8) 

Prior CABG 11 (4.8) 48 (12.7) 11 (13.8) 

Pressors or 
Inotropes 

177 (78.0) 319 (84.2) 66 (82.5) 

IABP 103 (45.4) 234 (61.7) 39 (48.8) 

ECMO 22 (9.7) 44 (11.6) 34 (42.5) 

Mortality 36 (16.4) 89 (24.3) 40 (50.6) 

Lactate mEq/L 2.3 (1.0) 2.1 (1.0) 9.2 (4.6) 

HCO3 mEq/L 26.0 (2.9) 25.0 (2.9) 17.2 (4.0) 

GFR mL/min/1.73 m2 76.1 (20.1) 33.6 (12.2) 39.3 (17.7) 

Creatinine mg/dL 1.1 (0.2) 2.3 (1.2) 2.1 (1.2) 

BUN mg/dL 24.7 (9.3) 48.5 (20.6) 37.6 (20.0) 

Platelets 103/mm3 216.7 (66.9) 186.4 (60.2) 200.1 (78.1) 

Total bilirubin mg/dL 1.6 (1.9) 1.5 (1.3) 2.1 (1.5) 

WBC 103/mm3 9.4 (3.8) 10.2 (4.2) 18.5 (13.7) 

Hematocrit % 37.7 (5.5) 35.9 (4.8) 36.2 (6.9) 

Potassium mEq/L 4.1 (0.5) 4.3 (0.5) 4.9 (0.9) 

Sodium mEq/L 134.8 (4.6) 133.3 (4.2) 135.3 (5.4) 

Hemoglobin g/dL 12.4 (1.9) 11.8 (1.7) 11.8 (2.4) 

ALT U/L 82.9 (122.8) 163.4 (428.6) 838.1 (1344.1) 

INR 1.8 (0.9) 1.7 (0.9) 2.4 (1.6) 
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Figure S9: Sensitivity Analysis of DRR including all Patients 

Patients in the Danish Retroshock Registry were excluded if missing any of the six values that were 

necessary for clustering (n=633). Depicted in this figure is the comparison of de novo consensus k 

means clustering and the cluster assignment based on the nearest centroids of the CSWG derivation 

cohort within the full (partially imputed) DRR cohort (n=1716). Cluster distribution differed between 

both methods, but the tendencies of the variables that were clustered on remained stable, underlining 

the external validity of the clusters. 
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Table S4. Odds of Mortality Associated with SCAI Stage and Phenotypes.  

 

 
CSWG MI CSWG HF CSWG MI+HF 

OR (95% CI) aOR* (95% CI) OR (95% CI) aOR* (95% CI) OR (95% CI) aOR* (95% CI) 

SCAI 
 

           

B 0 - 0 - 0 - 0 - 0 - 0 - 

C 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 

D 3.8 (1.9-7.7) 3.4 (1.7-6.9) 6.1 (2.8-13.0) 5.6 (2.6-12.2) 4.8 (2.8-8.0) 4.3 (2.6-7.2) 

E 7.9 (3.7-16.8) 6.3 (2.9-13.6) 14.2 (5.7-35.4) 9.3 (3.6-23.7) 10.9 (6.1-19.4) 8.2 (4.5-14.7) 

Phenotypes 
 

           

I 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 

II 3.3 (2.3-4.8) 2.9 (1.7-4.9) 3.2 (1.9-5.3) 2.9 (1.6-5.2) 3.3 (2.3-4.8) 2.7 (1.9-4.0) 

III 6.6 (4.3-10.0) 4.0 (2.3-7.1) 4.7 (2.8-8.1) 6.1 (2.9-12.7) 6.6 (4.3-10.0) 4.8 (3.0-7.5) 
 

 

*aORs adjusted by SCAI stage and CSWG derived clusters. aOR: adjusted odds ratio; CSWG: Cardiogenic Shock Working Group (Registry); HF: Heart 

Failure; MI: Myocardial Infarction; OR: odds ratio 
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