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Exercise in patients with left ventricular devices: The interaction
between the device and the patient

Dennis J. Kerrigan ⁎, Jennifer A. Cowger, Steven J. Keteyian
Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA

a b s t r a c ta r t i c l e i n f o

Available online xxxx Advances in the engineering of surgically implanted, durable left ventricular assist devices (LVAD) has led to im-
provements in the two-year survival of patients on LVAD support, which is now comparable to that of heart
transplant (HT) recipients. Andwith the advent of magnetic levitation technology, both the survival rate and av-
erage time on LVAD support are expected to improve even further. However, despite these advances, the func-
tional capacity of patients on LVAD support remains reduced compared to those who received a HT. A few
small clinical trials have shown improvement in functional capacity with exercise training. Peak oxygen uptake
improves modestly (10%–20%) with exercise training, suggesting a possible celling-effect linked to the ability of
the LVAD to increase flow during exercise. This paper reviews both (a) the effect of the LVAD on the cardiorespi-
ratory responses during a single, acute bout of exercise up tomaximum and (b) the central and peripheral adap-
tations that occur among patients with an LVADwho undergo an exercise training regimen. We also address the
tenets of the exercise prescription that are unique to patients with a durable LVAD.

© 2021 Elsevier Inc. All rights reserved.
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Durable left ventricular (LV) assist device (LVAD) support is indi-
cated for carefully selected individualswith advanced systolic heart fail-
ure (HF) refractory to medical optimization (American Heart
Association/American College of Cardiology Stage D systolic heart
failure).1 To date, over 28,000 individuals have undergone Food and

Drug Administration (FDA) approved LVAD implanted in the United
States, as either a bridge to heart transplantation (HT) or for permanent
(“Destination Therapy”) support.2 Currently, durable LVmechanical cir-
culatory support (MCS) improves cardiac output (CO) and perfusion to
vital organs using an electronically powered, continuous flow pump
that removes blood from the LV via an inflow cannula, imparts kinetic
energy as the blood traverses a motor, and then expels it through an
outflow graft into the patient's ascending aorta (Fig. 1). Phasic blood de-
livery occurs during both the systolic and diastolic periods of the cardiac
cycle, by means of either an axial (HeartMate II, Abbott, Inc) or centrif-
ugal (HVAD, Medtronic, Inc.; HeartMate 3, Abbott, Inc) flow pathway
within the pump casing. The early generation, FDA approved devices
(HeartMate II and HVAD) were plagued by complications, including
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pump thrombosis and strokes, with average survival rates of 84% at
1 year and 46% at 5 years following implant. These early generation
pumps were replaced by third generation HeartMate 3 (Abbott, Inc)
continuous flow technology that uses magnetic levitation to move im-
pellers within a pump housing that is located external to the pericar-
dium. Clinical trial and registry data of patients on HeartMate 3 LVAD
support demonstrate average survival rates of 88% at 1 year and 84%
at 2 years, effectively mirroring that of HT over the short term.3,4 The
HeartMate 3 pump design has effectively eliminated pump thrombosis,
reduced risk for stroke, and is expected to allow for an average survival
time well beyond 5 years.5

Given the improvements in LVAD survival and the increased use of
LVADs in the United States, the number of patients on LVAD support re-
ferred for exercise-based cardiac rehabilitation (CR) has commensu-
rately increased. However, despite HF with reduced LV ejection
fraction (HFrEF) representing a diagnosis covered by Medicare, in
2016 only 42%of eligible LVADpatients attended CR.6 One potential bar-
rier to CR in the LVAD patient population is the medical complexity of
these patients, including difficulties with the monitoring of vital signs,
equipment management, and small increases in the risk of complica-
tions (e.g., arrhythmias, hypotension) during exercise. Additionally, a
survey of European CR facilities cited a lack of properly trained staff
and staff safety concerns as two other reasons why patients on LVAD
support are not enrolled into their CR facility.7 It is likely that the
above concerns, coupled with the complex interaction between the
LVAD and the native cardiovascular system during exercise, both con-
tribute to staff hesitancy and low enrollment into CR. In this paper we
address the exercise physiology of the LVAD patient to a single bout of
exercise, the central and peripheral of adaptations to an exercise train-
ing regimen, and how to establish an effective exercise prescription
that mitigates potential safety concerns in these unique patients.

The exercise physiology of the LVAD

Continuous flow LVADs provide resting flow rates of 3–6 L/min,
peaking at ~10 L/min with exercise.8 Present FDA approved continuous
flow LVADs operate at a fixed speed, independent of rest or exercise.8

Therefore, any increase in flow through the pump or through the aortic
valve is dependent on augmentation of native right and left heart func-
tion. Durable LVAD technology is typically set at a speed (measured in
revolutions per minute) that can provide adequate end organ perfusion
at rest that is indexed to body surface to yield a flow rate of 2.2–2.4mL/
min/m2. This approach results in an appropriate unloading of the LV and
does so without adverse impact on the neighboring right ventricle (RV)
or instigation of LV suction.

Despite the discordance between the device and the body's native
CV system, LVAD flow does increase with exercise but via mechanisms
that differ from that of a healthy control (Figure 1). In patients without
LVAD support, heart rate (HR) is a main determinate of CO in the native

LV, increasing in a linear fashion during higher intensity aerobic-type-
exercise (i.e., >50% peak oxygen uptake, VO2).9 In patients on LVAD
support, augmentation of pump flowduring exercise is reliant on native
heart contractility and LVAD flow is only moderately correlated to HR
during exercise.10 This observation was reported by Muthiah et al.,
who showed that the contribution of various paced HRs on LVAD flow
rate was negligible.10 This suggests that among patients with an LVAD,
it is likely that other factors have a greater impact on exercise capacity
than chronotropic response.11,12 Right heart dysfunction and pulmo-
nary hypertension, for example, can critically limit LVAD output during
exercise due to impairment in rapid LVAD filling. Additionally, many pa-
tients on continuous flow LVAD support have acquired aortic valve ste-
nosis and/or complete aortic valve leaflet fusion (i.e., acquired aortic
valve closure), preventing an increase in native CO via the aortic valve,
and/or aortic insufficiency (AI) which leads to ineffective pump flow
due to recirculation.13 If systemic blood pressure (BP) substantially in-
creases during exercise, the gradient driving this recirculation is in-
creased, potentially contributing to exertional intolerance in the LVAD
patient with AI.

Pump speed has a proportional relationship to pump flow, leading
many to speculate about increasing speed as a method to bolster VO2

peak.14–16 However, there are limitations when increasing LVAD speed
with respect to initiating potential RV complications. Additionally, exer-
cise testing studies that adjusted pump speed have not consistently
found improvements in peak VO2, suggesting there are still other
factors influencing peak VO2.

17 Thus, since pump speed is fixed in
contemporary LVADs, the largest contributor to pump flow both at
rest and during exercise is the pressure gradient across the pump
(i.e., pump head or differential pressure). The two main determinates
affecting the pressure gradient across the pumpare (a) systemic arterial
BP and (b) LV end diastolic pressure.18,19 Elevation of systemic arterial
BP can lead to a marked reduction in LVAD pump flows in patients on
modern centrifugal flow, continuous LVADs20. During exercise, total pe-
ripheral resistance, however, is usually reduced, leading to a subsequent
increase in LVAD output. While this relationship between afterload and
forward flow also happens in the non-LVAD supported native LV, the in-
fluence of afterload is 3–4 timesmore impactful relative toflow through
the LVAD pump.19 This findingwas shown by Salamonsen et al. who re-
ported that the afterload sensitivity of various continuous flow-LVADs
was 0.09±0.034 L/min/mmHg, compared to the known average values
measured in the human LV of 0.03 ± 0.01 L/min/mmHg21.

With respect to the LV end diastolic pressure during exercise, this is
primarily driven by blood returning to the LV (i.e. preload) through a
combined effect from the skeletal muscle pump and residual RV and
LV contractility.17 The influence of the skeletal muscle pump on preload
was illustrated during a tilt-table study that found active ankleflexion in
patients on LVAD support increased LVAD flow rate regardless of body
position (i.e., supine versus upright).10 Patient volume status also mod-
ulates LV end diastolic pressure, and LVAD flows can markedly drop
when patients with centrifugal flow LVADs (HeartMate 3 and HVAD)
are intravascularly volume depleted.

The exercise physiology of the native LV acting in concert with LVAD
support

Adding to the complexity of the response of the LVAD during exer-
cise is the contribution of the native LV during exercise. Specifically, re-
sidual contraction of the native LV contributes to pump flow in a
variable manner, both at rest and during exercise. Residual LV contrac-
tion leads to increased LV filling pressures, which peaks during systole,
resulting in LVAD flow rates during systole that are 3 times higher than
during diastole.8

If LV pressure exceeds aortic pressure during systole, aortic valve
opening will occur in LVAD patients without fused/stenotic aortic
valves. In this scenario, the LVAD works in parallel with the native
heart, contributing up to an additional 3 L/min of CO from the native

Fig. 1. Factors influencing exercise capacity in patients with a left ventricular assist device.
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heart (via ejection through the aortic valve).22 Evidence of this parallel
blood flow, which was also reported in first generation pulsatile
LVADs, is supported by exercise studies showing CO values that exceed
the known parameters of the device.22–24

In patients with fixed/fused aortic valve leaflets or marginal residual
LV contractility, the LVAD continues to work in series with the heart
during exercise. In this scenario, residual isovolumic LV contraction
does not allow for aortic valve opening during exercise, but the pressure
gradient between the LVAD inflow and aorta is still reduced, promoting
increased flow through the pump during ventricular systole.

The effect of mechanical LVAD support on exercise capacity

Peak VO2 is an important predictor of survival in patients on LVAD
support.25 A recent analysis found survival cut-off values for risk strati-
fication in LVAD patients that are similar to patients with HFrEF (i.e. ≤
12 mL/kg/min on a beta-blocker or ≤ 14 mL/kg/min without a beta-
blocker).25 Despite several studies examining peak VO2 before and
after LVAD implant, uncertainty remains whether continuous flow-
LVADs alone improve peak exercise capacity (Table 1). In one of the
largest cohorts of patients to perform cardiopulmonary exercise testing
before and after LVAD implant (n = 49), Rosenbaum et al. reported a
non-significant increase in peak VO2 of 0.6 mL/kg/min (p = 0.26) at
12 months following implant.26 While clinically and/or statistically
significant increases in peak VO2 were not observed, significant
improvements in peak exercise time (+0.7 min), six-minute walk test
(6MWT) distance (+49 m), and ventilatory efficiency [minute ventila-
tion / volume of carbon dioxide expired slope] were noted. Other
smaller studies have demonstrated significant improvements in peak
VO2 after LVAD implant; however, the reported increases were modest
at best17.27,28

One factor likely contributing to persistently low age-predicted peak
VO2 levels is the presence of peripheral maladaptations seen in patients
with advancedHF, such as reducedmuscle capillary density, endothelial
dysfunction, myocyte atrophy, and downregulation in aerobic enzyme
activity (e.g., citric synthase, etc.).29–31 Additionally, extended hospital-
ization before and after LVAD implant (16–20 day postoperative and
20–30 days for total length of stay) can markedly exacerbate decondi-
tioning and lead to delays in starting CR. In fact, a report by Richey
et al. found that the average time to begin CR following LVAD implant
was 140 days, which was 90 days longer than the average delay for pa-
tients undergoing coronary artery bypass graft surgery and 74 days lon-
ger than observed for HT patients.6 Serial exercise testing after LVAD
implant suggests there may be a small increase in peak VO2 within the
first fewmonths following LVAD implantation, but over a longer period
peak VO2 remains relatively unchanged.32–34 Therefore, important
implications arise relative to the potential role for exercise training in
helping partially restore peak VO2 and other measures of functional
capacity.

Measures of submaximal functional capacity after LVAD implant

Despite the mixed results for improvement in peak VO2 after LVAD,
improvements in submaximal measures of exercise tolerance and qual-
ity of life have consistently been noted in clinical trials.35–38 In a recent
clinical trial of patients on HM3 LVAD support, average 6MWT distance
increased by 94 m by 6 months postoperative.37

One challenge with such comparisons is that many patients are sim-
ply unable to perform any assessment of exercise tolerance or func-
tional capacity just prior to LVAD implant. This limitation was
illustrated by Rogers et al. (2010) and Cowger et al. (2018), both of
which utilized 6MWT distance to measure functional improvements.
In these two studies, if a patient was unable to perform a 6MWT prior
to LVAD implant, they were assigned a 6MWT distance of zero at
baseline, thus potentially inflating the magnitude of improvement in
functional capacity after LVAD implant. However, because the vastTa
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majority of LVAD patients are intensive care unit confined prior to LVAD
implant due to various degrees of cardiogenic shock, it is likely that the
gains noted in 6MWTdistance following LVAD implant are clinically rel-
evant.

The effects of exercise training in patients with LVAD support

While limited by a small number of single site trials, aerobic exercise
training does appear to improve peak VO2 by roughly 10%–20% in this
population.32,39–41 Most of the training studies to date that measured
peak VO2 in patients on LVAD support have involved 6–12 weeks of su-
pervised, continuous aerobic-type exercise at a moderate intensity uti-
lizing either cycle ergometers or treadmills (Table 2). A meta-analysis
of 4 randomized trials involving 74 patients on LVAD support reported
improvements in peak VO2 (+1.94 mL/kg/min, 95% CI 0.63–3.26, p =
0.004).42 However, not all training studies in LVAD patients have
noted similar gains in peak VO2. Additionally, some trials reported
improvements in peak VO2 based on paired analysis within the
training groups but found no significant change when measured
against a comparison group. This may be a result of small sample
sizes, variable patient phenotypes, or to the timing of the intervention,
which if it occurred shortly after implant, might have masked changes
in peak VO2 unique to exercise training because of improvements
attributable to the LVAD itself. As mentioned earlier, another possibility
as towhy peakVO2 has been foundnot to improve or improvemodestly
with training may be due to the limitations of the LVAD, as well as con-
comitant right heart dysfunction.

However, despite absent or modest improvements in peak VO2

following exercise training, gains in muscular strength, quality of life,
and improvements in measures of submaximal exercise have been
noted in LVAD patients who have entered exercise training programs
(Table 2). A qualitative meta-analysis of three randomized exercise
training trials showed an average 60 m increase in the 6MWT (95% CI,
22.61–97.50, P=0.002) following training43 with or without improve-
ments in peak VO2.34,36,39 In a prospective, non-randomized trial of pa-
tients on long-term LVAD support (i.e. time on LVAD support
~18 months), Villela et al. reported no change in peak VO2 but a
significant improvement in VO2 at ventilatory threshold [7.1 (6.5, 9.1)
to 8.5 (7.7, 9.3) mL/kg/min, P = 0.04] following 5 weeks of higher
intensity interval training.36 Similarly, in a long-term study of LVAD pa-
tients who participated in CR, Marko et al. also showed improvements
in ventilatory threshold (5%) and time to exhaustion (33%) despite the
absence of any significant change in peak VO2.

34

Patient reported health outcomes has also improved with exercise
training and such changes are independently associated with clinical
outcomes. And while there are many reports showing improvement in
these measures following LVAD implantation alone, there is evidence
that exercise training further improves patient reported health out-
comes. In a randomized trial comparing usual care to 18 visits in CR
(i.e., 3 days/wk. for 6 weeks), the CR group reported improved scores
on the Kansas City Cardiomyopathy Questionnaire (mean increase =
14.4 points compared to no change in the usual care group).39 Laoutaris
et al. found similar improvements using the Minnesota Living with
Heart FailureQuestionnaire, while a training study byKarapolat et al. re-
ported reductions in symptoms of depression in patients with LVADs as
measured by the Beck depression questionnaire, showing an average
improvement from 11.3 ± 7.4 to 5.0 ± 6.0.44 What is presently un-
known about these improvements in patient reported health outcomes,
is if a particular exercisemode or intensity of exercisemodifies or accen-
tuates the response. Additionally, presently unknown is the influence
that social support, such as occurs in CR, has on patient reported out-
comes.

Muscular strength, which is a known correlate to patient reported
health outcomes and disability, is also associated with improved KCCQ
scores in patients on LVAD support.38,45 In addition, muscular strength
(as measured by a hand grip test) was found to be associated with

reduced hospital length of stay in patients hospitalized for LVAD
implantation.46,47 Despite the positive associations between strength
and outcomes, resistance training studies in this patient population
are sparse. The few exercise training studies that did incorporate resis-
tance exercises did not report any issues and reported improvements
in muscular strength and endurance similar to other HF patients.32,34,40

To our knowledge there has not been a comparison study between aer-
obic exercise training and strength training.

Prescribing exercise in patients with LVAD support

Based on the above training studies, exercise seems to be well toler-
ated and safe in patients on LVAD support.Whilemany exercise trials in
the LVADpopulation have not disclosed adverse effects, those that have,
report very few untoward events.39,41 Examples of these is a study by
Karapolat et al. that reported only 1 occurrence (i.e., non-sustained ven-
tricular tachycardia) in over 1600 exercise hours and another study by
Kerrigan et al., reporting a single syncopal episode after exercise out of
313 training sessions.39,41

The training stimulus needed to improve functional capacity appears
to be the same as patients with HFrEF not on LVAD support. Thus, per-
forming aerobic exercise 3–5 days/week, for 20–60 min, at intensities
starting as low as 40% of peak VO2 reserve (depending on exercise
capacity) and gradually progressing up to 80% peak VO2 reserve
would be appropriate for patients on LVAD support. Heart rate reserve
(HRR) can be used as a surrogate measure of peak VO2 reserve to
guide exercise intensity, despite the discordance between the LVAD
and native heart. An exception to this would be in patients who display
chronotropic incompetence or rely on a permanent pacemaker to in-
crease rate.48 For these patients there is a weaker association between
VO2 and HR during exercise; therefore, the use of other methods to
guide intensity such as the Borg rating of perceived exertion (6–20
scale) or the Talk Test method would be more appropriate.48

Resistance training is also recommended for patients on LVAD sup-
port, although due to the lack of research, there are no specific guide-
lines relative to repetitions, sets, and load (i.e., percent of one-
repetition maximal). Studies in non-LVAD populations show that
when compared to aerobic exercise, resistance exercises show a less
pronounced reduction in total peripheral resistance and thus poten-
tially, can negatively impact LVAD flow due to the device's sensitivity
to afterload. Because of this, as well as other unknowns in this popula-
tion, the resistance or intensity of work (i.e., amount of weight lifted)
is generally conservative. This usually equates to performing resistance
bands or light hand weights that can be done 10–15 repetitions, at an
RPE of 11–13 on the 6–20 scale.

Due to the device itself, there are important precautions to consider
beyond the standard wait of 8–12 weeks following sternotomy and
LVAD implant.49 One of these precautions includes restricting extensive
trunk flexion (e.g., sit-ups, leg lifts), which may disrupt the integrity of
LVAD powerline (aka driveline) at the site where it exists in the skin
(i.e., a risk for infection) or increase intra-abdominal pressure (which
can reduce LVAD flow rate). None of the equipment should be exposed
to high levels of moisture (dampening from sweat is generally okay) or
submersion inwater. Another precaution needed for all LVADpatients is
reliable driveline stabilization (e.g., abdominal binder or extensive
driveline skin anchoring) to reduce the risk of trauma where the drive-
line exits the skin or distally, including entanglement of the driveline on
exercise equipment.50 While it is highly unlikely a patient will experi-
ence disconnection of powerwhen power sources are securely fastened
per device instructions for use, severe or repetitive kinking of the power
line can damage wire integrity, leading to rare interruptions in power
supply. Careful attention to fall risk is important for this population
due to the extra weight of the device equipment (i.e., batteries and de-
vice controller) which can affect the center of gravity in the LVAD pa-
tient. As a result, choosing alternative exercises such as a sit-to-stand
or wall squats, as opposed to a regular squat can help build leg strength
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Table 2
Measures of functional capacity and other cardiopulmonary measures before and following exercise training in patients with an LVAD.

Study Participants
Age (n)

Device type
(n)

Study design Time following
LVAD implant
(days)

Before training exercise
metrics

After training exercise metrics P Value
(within
group)

Laoutaris et al. (2011) TG = 38 ± 18
CG = 42 ± 15

4 INCOR
10 pulsatile
LVADs
17 EXCOR
11 BiVAD

Randomized control design. Combined home and
supervised exercise on a cycle ergometer or
treadmill for 45 min 3–5 day/wk.

TG = 198 ± 132
CG = 168 ± 114

TG
pVO2 = 16.8 ± 2.9 mL/kg/min
VT = 12.0 ± 5.6 mL/kg/min
Ex time = 9.7 ± 2.2 min
VE/VCO2 = 40 ± 6.5
6 MW = 462 ± 88 m
CG
pVO2 = 14.9 ± 4.0 mL/kg/min
VT = 12.2 ± 4.4 mL/kg/min
Ex time = 8.0 ± 2.9 min
VE/VCO2 = 41.4 ± 6.5
6 MW = 430 ± 41 m

TG
pVO2 = 19.3 ± 4.5 mL/kg/min
VT = 15.1 ± 4.2 mL/kg/min
Ex time = 10.1 ± 1.9 min
VE/VCO2 = 35.9 ± 5.6
6 MW = 527 ± 76
CG
pVO2 = 14.8 ± 4.2 mL/kg/min
VT = 12.9 ± 3.4 mL/kg/min
Ex time = 8.4 ± 2.9 min
VE/VCO2 = 40.2 ± 7.3
6 MW = 448 ± 55 m

0.008
0.001
0.3
0.009
0.005

0.5
0.6
0.2
0.9
0.1

Hayes et al. (2012) 47 ± 15 14 VentrAssist Randomized control design. Supervised training,
8 weeks on a cycle ergometer and treadmill for
30 min, 3 days/wk. 6 strength training exercises

Combined TG and
CG = 32

TG
pVO2 = 10.5 ± 2.3 mL/kg/min
Peak work = 42.0 ± 15.4 W
6 MW = 351 ± 77 m
CG
pVO2 = 12.4 ± 1.7 mL/kg/min
Peak work = 50.4 ± 21.6 W
6 MW = 367 ± 77 m

TG
pVO2 = 14.8 ± 4.9 mL/kg/min
Peak workload = 74.5
± 31.3 W
6 MW = 531 ± 131 m
CG
pVO2 = 15.3 ± 4.4 mL/kg/min
Peak workload = 79.4
± 45.0 W
6 MW = 489 ± 95 m

<0.05
<0.05
<0.05

<0.05
<0.05
<0.05

Karapolat et al. (2013) 46 ± 14; 3 EXCOR
8 HVAD

Retrospective study. 8-week training period. 90 mins,
3 days/wk. using various aerobic modalities and
8 upper and lower body resistance exercise.
Aerobic exercise was at 60%–70% peak VO2

TG = 84 ± 64 TG
pVO2 = 14.7 ± 3.6 mL/kg/min

TG
pVO2 = 15.1 ± 3.4 mL/kg/min

<0.05

Kerrigan et al. (2014) TG = 53 ± 13
CG = 60 ± 12

20 HM II
6 HVAD

Randomized control design. Supervised training, six weeks
30 mins, 3 days/wk. of stationary cycling, treadmill, or
recumbent stepper. Aerobic exercise was at 60% heart rate
reserve.

TG = 91 ± 33
CG = 73 ± 32

TG
pVO2 = 13.6 ± 3.3 mL/kg/min
VT = 10.0 ± 2.1 mL/kg/min
Ex time = 7.9 ± 1.6 min
VE/VCO2 = 36.8 ± 8.7
6 MW = 350 ± 65 m
CG
pVO2 = 11.2 ± 2.0 mL/kg/min
VT = 9.1 ± 0.7 mL/kg/min
Ex time = 6.6 ± 2.7 min
VE/VCO2 = 38.8 ± 8.0
6 MW = 337 ± 59 m

TG
pVO2 = 15.3 ± 4.4 mL/kg/min
VT = 10.9 ± 2.1 mL/kg/min
Ex time = 11.0 ± 2.1 min
VE/VCO2 = 37.8 ± 8.8
6 MW = 402 ± 89 m
CG
pVO2 = 11.8 ± 2.0 mL/kg/min
VT = 9.3 ± 1.0 mL/kg/min
Ex time = 7.4 ± 2.9 min
VE/VCO2 = 37.2 ± 8.4
6 MW = 356 ± 52 m

<0.05
<0.05
<0.05
>0.05
<0.05

>0.05
>0.05
>0.05
>0.05
>0.05

Marko et al. (2015) TG = 55 ± 12 9 HM II
32 HVAD

Retrospective analysis.
~32 Cardiac rehabilitation sessions using a
combination of stationary cycling and free
walking at an RPE of 13 on the Borg scale.
Lower extremity strength training 2 sets, 12 reps

TG = 48 ± 38 TG
pVO2 = 11.3 ± 4.1 mL/kg/min
Peak work = 37.8 ± 17.6 W
VE/VCO2 = 37.8± 7.9

TG
pVO2 = 14.5 ± 5.2 mL/kg/min
Peak work = 61.5 ± 24.6 W
VE/VCO2 = 33.7± 5.8

0.007
0.004
0.022

Marko et al. (2017) TG = 57 ± 9; 7 HM II
8 HVAD

Retrospective analysis of individuals who participated
in CR twice, separated by over a year.
Training was conducted within of cardiac rehabilitation

TG = 547 ± 197 TG
pVO2 = 12.3 ± 3.2 mL/kg/min
Peak work = 55.7 ± 24.5 W

TG
pVO2 = 12.2 ± 4.0 mL/kg/min
Peak work = 82.9 ± 26.2 W

0.906
<0.001

Villela et al. (2021) TG = 51
(29–71)

12 HM II
3 HM 3

Prospective, observational study.
5 wk. Supervised training period, 3 days wk. of high
intensity exercise training on a cycle ergometer. HIIT
protocol: 30 s warm-ups
Six 30-s-high intensity intervals followed by
4-min active recovery.

TG = 540
(90–1920)

TG
pVO2 = 11.9 (9.5–14.8) mL/kg/min
VT = 7.1 (6.5–9.1) mL/kg/min
Peak work = 99 (25–141) Watts
VE/VCO2 = 40 (35–44)

TG
pVO2 = 12.0 (10–15)
mL/kg/min
VT = 8.5 (7.7–9.3) mL/kg/min
Peak work = 100 (67–124)Watts
VE/VCO2 = 42 (37–43)

0.6
0.04
0.18
0.88

Abbreviations: 6MWT, six-minutewalk test; CG, Control group; EXCOR, extracorporeal; HMII, HeartMate II; HM3, HeartMate 3; HVAD, HeartWare; INCOR, Intracorporeal; LVAD, Left ventricular assist device; pVO2, peak oxygen consumption; %pVO2,
Percent predicted peak oxygen consumption; TG, treatment group; VE/VCO2, Ratio of minute ventilation to carbon dioxide production; RPE, Rating of perceived exertion; VT, Ventilatory threshold. Bold values indicate a p value < 0.05
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while reducing the risk of falls. Finally, extended cool down periods and
hydration during recovery are recommended to avoid provocation of
hypotension, dizziness/orthostasis, or device low flow alarms related
to BP dysregulation or dehydration. All patients should have an emer-
gency bracelet or their LVAD labeled with clear information to contact
their physician or LVAD coordinator for questions or urgencies that
may arise.

Future considerations addressing exercise in patients on LVAD support

Exercise training has been shown to have short-term benefits for
patients on LVAD support. As LVAD technology and outcomes con-
tinue to improve and the number of patients on long-term MCS in-
creases, there will be more opportunities to look at the long-term
effects of regular exercise on both patient-centered outcomes and
LVAD function. Additionally, there is a need to examine the effects
of CR participation and clinical outcomes in these patients; although
a retrospective analysis by Bachmann et al. showed participation in
CR was associated with a 23% lower adjusted one-year hospitaliza-
tion risk (95% CI 11%–33%, p < 0.001) and a 47% lower adjusted
one-year mortality risk (95% CI 18%–66%, p< 0.01), a data deficit re-
mains relative to the impact of CR on risks for hospitalization and/or
mortality51 in patients with an LVAD.

In addition to exploring more potential benefits of exercise for pa-
tients on LVAD support, there is also a need to reduce common exercise
barriers. The delivery of home-based CR is an opportunity to circumvent
a common barrier to exercise in this population. In a non-randomized
trial by Kugler et al. patients on continuous flow LVADs were given
cycle-ergometers and asked to follow a home-based exercise and nutri-
tion programwith telephone follow-ups.52 Compared with a usual care
control group, the home-based exercise group showed improvements
in both predicted peak workload and percent predicted peak VO2.

52 At
minimum, this study demonstrated the feasibility of performing a
home-based model in this population and with the recent expansion
of telehealth strategies due the COVID pandemic, the capabilities to pro-
vide additional virtual methods of CR continue to expand.

Another importantfinding from the study by Kugler et al. was the at-
tenuation of body mass index in the exercise group, while the control
group reported 5-unit increase. This is important and an untapped
area of research, because many studies report substantial increases in
body mass index following LVAD implant, which can effect transplant
status and potentially lead to further complications.53 The above illus-
trates yet another need and opportunity to provide exercise and life-
style interventions in the LVAD population. Future interventions will
need to take into account the uniqueness of the LVAD population, con-
sidering both the interaction between the device and human physiology
and the specific needs and characteristics of the patient supported by it.
Lastly, as the LVAD technology evolves somust the exercise and lifestyle
strategies used to improve the health and well-being of these patients.
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