Femoral Expansion in Aging Women: Implications for osteoporosis and fractures

Richmond W. Smith Jr.
Richard R. Walker

Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal

Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons

Recommended Citation
Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol28/iss2/17

This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons.
Femoral Expansion in Aging Women

Implications for osteoporosis and fractures

Richmond W. Smith, Jr., MD* and Richard R. Walker, MD*

In femoral radiographs of 2030 aging women, the diameter of the midshaft periosteum increased as cortical thickness declined. Since the cortical area enlarged, periosteal accretion exceeded endosteal resorption. Since the section modulus increased more than did cortical area, the ratio of flexural failure resistance to crush resistance increased, in apparent contrast to the changes observed in the femoral neck.

The great extent to which the human skeleton involutes with age is apparent in the high incidence of spontaneous vertebral and femoral fractures in elderly women. In studying the correlation between vertebral and femoral atrophy, we obtained unexpected results with respect to femoral dimensions. The results are reported briefly here.

Standard anteroposterior radiographs of femurs were obtained in a study of 2030 women, aged 45 to 90 years. All were ambulatory outpatients or hospital personnel; none had skeletal disease, and each entered the survey voluntarily. Cortical thickness and the periosteal diameter of the left femur were measured with a transparent plastic rule. Measurements to the nearest 0.5 mm were made at the point along the shaft where, in the anteroposterior projection, cortical thickness is maximal and femoral diameter is minimal. This position, roughly pear-shaped in cross-section, approximates the mid-shaft** and corresponds closely to section 40 of Koch (1). Cortical thickness, as used here, represents the sum of the two projected cortices. To test the reliability of the measurements, 50 replicate readings of randomly selected radiographs were made nine months apart, the sites for measurement being reselected. Reliability for cortical thickness was 0.93 and for diameter, 0.93.

**From the point of measurement to the lowest point on the superior surface of the femoral neck, the mean distance was 19.0 ± 1.5 cm.

† Reprinted with permission from Science 1964;145 (3628):156-57. Copyright 1964 by the American Association for the Advancement of Science.

* Department of Internal Medicine, Division of Endocrinology, Henry Ford Hospital

This study was supported by funds from the USPHS, Division of Accident Prevention under contract SApH 77270
Femoral Expansion in Aging Women

and 1.7 mm to an overall 3.4 mm gain. Changes in cortical thickness were less, with reductions of 1.4 and 1.0 mm for the two oldest groups. By variance analyses of all data, the p value was <<.001 both for diameter and for cortex. Since periosteal diameter increased and cortical thickness decreased, endosteal diameter expanded faster with a gain of 4.4 mm (35%) between the youngest and oldest groups. These progressive increases in diameters result in similar gains in theoretical surface areas, 11% for periosteal and 35% for endosteal. In addition, an overall gain of 74 mm² in cortical area was found to be the net result of 177 mm having been added periosteally while 103 mm were resorbed endosteally. Expressed as rates, the outer accretion of femoral bone was 1.7 times faster than inner resorption. Finally, from gains in periosteal diameter and cortical area, the section modulus increased progressively, totalling 32% for the oldest femurs.

These observations are pertinent to the causality and effects of osteoporosis, which is evidenced so commonly in women beyond middle life by vertebral and femoral fractures. The fractures appear to result from an age-related loss of bone mass, judged from the well-known reductions in cortical and trabecular thickness and from decreasing femoral density (total weight divided by total volume) (2). Reductions in mass of 25 to 50% have been estimated for osteoporotic spines of women in whom rates of calcium accretion have been found normal (3). To explain this discrepancy, increased resorption rates have been proposed (3), but seemingly relevant is our evidence in "averaged" aging femurs that remodeling occurs without apparent net loss of compact bone and that theoretical surface areas substantially increase. From the youngest to oldest groups, vertebral osteoporosis of significant degree increased from 19 to 90% (4). Thus, from mean data only, femurs of largest diameter and surface areas were found in the group with highest incidence of significant vertebral atrophy.

Our measurements were made at the section where the transverse diameter, although minimal, is less than the anteroposterior diameter which is enhanced by the prominent linea aspera. Dimensional changes of similar type and magnitude would not be expected in other sections of the femur with different stress-structural relationships. Indeed, as shown in Table II, the increases in diameter with age were less at sections above midshaft, 1.8 mm at the section (circular) just below the lesser trochanter (section 24 of Koch (1)) and only 0.9 mm at the femoral neck section of minimal diameter.

TABLE I

Dimensions and calculated derivatives for the femoral midshafts of subjects in different age groups.

<table>
<thead>
<tr>
<th>Age</th>
<th>No. of subjects (2030)</th>
<th>Periosteal diameter** (mm)</th>
<th>Cortical thickness** (mm)</th>
<th>Endosteal diameter (mm)</th>
<th>Cross-section cortical area (mm²)</th>
<th>Section modulus (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-49</td>
<td>286</td>
<td>31.32 ± 0.15</td>
<td>18.67 ± 0.17</td>
<td>12.65</td>
<td>644</td>
<td>2935</td>
</tr>
<tr>
<td>50-54</td>
<td>303</td>
<td>31.60 ± 0.15</td>
<td>18.69 ± 0.14</td>
<td>12.91</td>
<td>653</td>
<td>3010</td>
</tr>
<tr>
<td>55-59</td>
<td>501</td>
<td>31.86 ± 0.13</td>
<td>18.17 ± 0.12</td>
<td>13.69</td>
<td>652</td>
<td>3065</td>
</tr>
<tr>
<td>60-64</td>
<td>424</td>
<td>32.12 ± 0.14</td>
<td>17.96 ± 0.14</td>
<td>14.16</td>
<td>653</td>
<td>3129</td>
</tr>
<tr>
<td>65-69</td>
<td>291</td>
<td>32.85 ± 0.16</td>
<td>18.08 ± 0.16</td>
<td>14.77</td>
<td>678</td>
<td>3336</td>
</tr>
<tr>
<td>70-74</td>
<td>162</td>
<td>33.03 ± 0.23</td>
<td>17.32 ± 0.22</td>
<td>15.71</td>
<td>661</td>
<td>3355</td>
</tr>
<tr>
<td>75-90</td>
<td>63</td>
<td>34.74 ± 0.32</td>
<td>17.68 ± 0.37</td>
<td>17.06</td>
<td>718</td>
<td>3875</td>
</tr>
</tbody>
</table>

*Based on group means of observed data.

**Mean ± standard group.
TABLE II

Periosteal diameter of femurs at three sites. The subjects were selected at random from the oldest and the youngest groups.

<table>
<thead>
<tr>
<th>Age group</th>
<th>No. of subjects</th>
<th>Periosteal diameter (mm)*</th>
<th>Midshaft</th>
<th>Subtrochanter**</th>
<th>Femoral neck***</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-49</td>
<td>30</td>
<td>31.03 ± 0.50</td>
<td>34.20 ± 0.52</td>
<td>35.91 ± 0.42</td>
<td></td>
</tr>
<tr>
<td>75-90</td>
<td>30</td>
<td>34.63 ± 0.39</td>
<td>35.95 ± 0.35</td>
<td>36.85 ± 0.39</td>
<td></td>
</tr>
<tr>
<td>Increase</td>
<td></td>
<td>3.60</td>
<td>1.75</td>
<td>.94</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>.001</td>
<td>.01</td>
<td>.10</td>
<td></td>
</tr>
</tbody>
</table>

*Mean ± standard error.
**Lesser; section 24 of Koch (1).
***At section of smallest diameter.

This suggests that flexural stress with bowing, which is maximal at about midshaft, activates the periosteal accretion of bone. Meanwhile, the trabeculated, nontubular and, thus, more rigid femoral neck undergoes a proportionately smaller increase with age. For older femurs at midshaft, gains in section moduli mean increased resistance to flexural forces. This has more significance for subjects in whom skeletal ingredients are diminished, since the resistance of the shaft to flexure can be maintained even with less bone, provided it has been remodeled into a cortex of larger diameter.

However, this entire osteoporotic femur will bow less and store less elastic energy. With resistance to flexural forces being decreased in the neck relative to the shaft, the femoral neck becomes the most vulnerable site for fracture. Similarly, trabeculated, nontubular, rigid vertebrae become prone in later life to compression fractures from minimal flexural forces since there is no compensatory increase in vertebral diameter with age (4).

We have not shown that all femurs participate similarly in structural remodeling which, since mean data only are presented, could represent either a progressively differing population sampled for successive age groups or an increasing rate of "dropping out" of women with smaller femoral diameters. However, these two explanations seem untenable since the diameters of both the metacarpal and lumbar vertebrae remained constant despite significant cortical thinning (4). Whereas the mean diameters of adult radii are unchanged with age (5), rib diameters increase (6). If changes in the tibia and fibula are also found to parallel those of the femur, they may reflect a progressive adaptation to the erect state in which flexural and longitudinal compression forces on leg bones from lifelong weight-bearing decline proportionately less than do predominantly flexural forces on the arms and predominantly compression forces on the spine.

Acknowledgments

Data of this study were analyzed on a computer by Univac, Division of Sperry Rand Corporation, St. Paul, supervised by Leslie Knutson. Valuable suggestions regarding interpretation of data in terms of stress and structure were made by David Keiper, consulting physicist, San Francisco. Constructive reviews of this report were received from Stanley Gam of the Fels Institute, Yellow Springs, Ohio, and G. Donald Whedon of the National Institutes of Health.

References