Current Tests for Tubal Patency: Their Study and Comparison

Asghar Afsari
Robert J. Thompson

Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal

Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons

Recommended Citation
Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol20/iss3/2

This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons.
Current Tests for Tubal Patency
Their Study and Comparison

Asghar Afsari, MD* and Robert J. Thompson, MD**

Two hundred patients have been reviewed in whom culdoscopy or laparoscopy was performed for infertility study. During these two procedures, methylene blue was injected through an endocervical cannula for detection of tubal patency under direct visualization. When compared with 89 patients tested by utero-tubal insufflation and hystero-salpingography, results indicated that direct visualization of the tubes and dye hydrotubation appears to be the most reliable method. HSG proved to be the second most reliable method with a failure rate of 19.2%. The least accurate procedure in this study was UTI with CO₂ gas, where the failure rate was 24.7%. The latter test, however, is the most efficient one for detecting tubal spasm.

Because fertilization takes place in the uterine tubal lumen, patency of the tubes is of great importance. In patients with infertility, a tubal factor is the most frequent problem. While a variety of diagnostic procedures have been advocated to test for luminal patency, the following three techniques have proven to be most practical:

- Utero-tubal insufflation (UTI).
- Hystero-salpingography (HSG).
- Direct visualization of the tubes thru the culdoscope or the laparoscope, during injection of dye (methylene blue) thru the uterine cannula (MBI).

The relative value of these three procedures will be compared here.

Material

We reviewed a total of 200 cases of patients who have undergone culdoscopy or laparascopy in the five years from March 1965 through February 1969. One hundred and eleven of these patients who had either UTI or HSG prior to culdoscopy or laparoscropy have been excluded. All three tests were completed in the remaining 89 patients.

Method

The UTI was performed in the office without sedation, using a Grafax Model insufflator, charged with carbon dioxide gas, (75 to 100 cc of CO₂ for each procedure). Either the Rubin cannula with acorn tip or the Calvin cannula with screw tip was employed. The procedure was not performed in the presence of local infection, uterine bleeding, or possible pregnancy. For alleviation of shoulder pain, which often developed after UTI, the patients were placed in semi knee-chest position with hips elevated over a pillow.
HSG was done in the Radiology Department with correlation of Department of Gynecology and Radiology. The instrument utilized was a suction cap type cannula and the medium, a water soluble contrast material containing 38% iodine (E. R. Squibb Co. — Sinographin)(Figure 1) A scout film was taken prior to application of the cannula. Pelvic examination was routinely performed to evaluate the position of uterus prior to the procedure. In both procedures, careful aseptic technique was carried out. The tests were performed in the phase of preovulation.

At the beginning of this study, direct visualization of pelvic organs was done through a culdoscope. But, since February, 1968, laparoscopy has been employed, using a fibro-optic and light source and laparoscope with a wide angle lens. (Figure 2). Either procedure was performed as the last step of the infertility evaluation and while the patient was hospitalized. The procedure was carried out according to the technique described by Steptoe. When visualization was satisfactory, up to 15 cc of 0.25% methylene blue was injected through an intracervical cannula and the tubes were observed for spillage of the dye.

Results

The group ranged in age between 15-38 years. Culdoscopy was performed on 40 patients (45%) and laparoscopy on 49 patients (54%). For the purpose of comparison, the results of the three procedures will be classified into "compatible" and "incompatible" groups (Table I).

The compatible group, consisting of 23 patients (56.1%), had similar results in all three procedures. Forty-two of these (47.1%) demonstrated tubal patency in all three tests. In three patients (3.3%) the left tube and in 12 patients (24.4%) one of the other tubes was not patent. One of these patients had adhesions and the left tube was not patent.

The HSG was done in the Radiology Department with correlation of Department of Gynecology and Radiology. The instrument utilized was a suction cap type cannula and the medium, a water soluble contrast material containing 38% iodine (E. R. Squibb Co. — Sinographin) (Figure 1). A scout film was taken prior to application of the cannula. Pelvic examination was routinely performed to evaluate the position of uterus prior to the procedure. In both procedures, careful aseptic technique was carried out. The tests were performed in the phase of preovulation.

At the beginning of this study, direct visualization of pelvic organs was done through a culdoscope. But, since February, 1968, laparoscopy has been employed, using a fibro-optic and light source and laparoscope with a wide angle lens. (Figure 2). Either procedure was performed as the last step of the infertility evaluation and while the patient was hospitalized. The procedure was carried out according to the technique described by Steptoe. When visualization was satisfactory, up to 15 cc of 0.25% methylene blue was injected through an intracervical cannula and the tubes were observed for spillage of the dye.

Results

The group ranged in age between 15-38 years. Culdoscopy was performed on 40 patients (45%) and laparoscopy on 49 patients (54%). For the purpose of comparison, the results of the three procedures will be classified into "compatible" and "incompatible" groups (Table I).

The compatible group, consisting of 23 patients (56.1%), had similar results in all three procedures. Forty-two of these (47.1%) demonstrated tubal patency in all three tests. In three patients (3.3%)
Current Tests for Tubal Patency

Figure 2
Laparascopy instrument for visualization and dyhydrotubation.

Discussion

Utero-tubal insufflation, more popularly known as the Rubin test, was first described by I. C. Rubin in 1920. The apparatus has been changed and modified, but the basic concepts remain the same. If there is no leakage around the cervical insufflating cannula, the CO₂ gas will enter the uterine cavity and, after developing sufficient pressure, will pass thru the utero-tubal junction and the tubes to enter the peritoneal cavity. Patency is indicated by a sharp fall in the pressure shown on kymographic paper. The controversy over the source of oscillation recorded on the kymographic paper has persisted for many years. Stable, in 1958, offered evidence that the oscillations result from uterine muscle contractions. Moreover, Sobrero in a comparative study of UTI and HSG in 1961, reported significant disagreement in the
test results: False negative 8.4%, false positive 31%. In another study, Jeffcoate reported 37% false negative and 15% false positive.

Our results with UTI revealed a 24.7% failure rate. Our false negative rate of 15.7%, false positive rate of 4.5% and the tubal spasm rate of 4.5% are in the same range as that reported by Rubin. To eliminate false positive results, the caution mentioned by Rubin and Sweeney should be observed: (a) Checking for leakage in the tubing, the tank and the connections prior to examination; (b) maintaining an initial flow rate of CO₂ gas of not more than 60 cc per minute; and (c) using no dilator or probe in the endocervical canal prior to insufflation.

To eliminate false negative results the cannula should be patent, and rapid insufflation should be avoided; also, the position of the uterus should be evaluated prior to the procedure. It should be mentioned that, despite the definite sources of error in conduction and evaluation of the results, the UTI remains the most reliable test for detection of tubal spasm.

The second method of evaluating tubal patency, the HSG, was first described by Cary and Rubin in 1914. Although the medium Collargol has been changed and the technique altered, the basic concept remains the same. Certain errors in technique have adverse affects on the roentgen pictures and interfere with interpretation: eg, foreign body in the syringe and cannula or use of too little or too much contrast material. In our series, there was a 19.2% failure rate with HSG. If proper technique is not employed, the HSG is no better an indicator of tubal patency than UTI.

Direct visualization of the pelvic organs, either through the culdoscope or the laparoscope, is a valuable diagnostic procedure. Decker and Cherry introduced culdoscopy in 1944. The laparoscopy procedure predates culdoscopy. Recently, there has been revival of

TABLE I
Classification

I. Compatible Group:
 Similar result of the three procedures.

II. Incompatible Group:
 Variable results of the three techniques.
 A) Variable HSG.
 B) Variable UTI.

TABLE II
Compatible Group

<table>
<thead>
<tr>
<th>Method</th>
<th>No.</th>
<th>Cases</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Bilateral tubal patency</td>
<td>42</td>
<td>47.1</td>
<td></td>
</tr>
<tr>
<td>b) Unilateral tubal patency</td>
<td>6</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>c) No patency</td>
<td>2</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>56.1</td>
<td></td>
</tr>
</tbody>
</table>

TABLE III
Incompatible Group, Variable HSG

17 Cases (19.2%)

<table>
<thead>
<tr>
<th>Method</th>
<th>No.</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBI UtI HSG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Bilat.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>b. Bilat.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>c. Bilat.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>d. Unilat.</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV
Incompatible Group, Variable UTI

22 Cases (24.7%)

<table>
<thead>
<tr>
<th>Method</th>
<th>No.</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. False Positive</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>B. False Negative</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>a. Bilateral T. Patent</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>b. Lt. T. Patent</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>c. Rt. T. Patent</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C. Spasm</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Alsari and Thompson
Current Tests for Tubal Patency

Figure 3
Hysterosalpingogram picture.

At the time of the methylene blue injection, tubal spasm is eliminated. Experience has shown that methylene blue does not produce localized peritoneal or tubal inflammation or reaction. Our results have indicated that the direct visualization of the fallopian tubes and MBI is the most accurate and reliable method of diagnosing tubal patency.
References

4. Rubin, IC: *Uterotubal insufflation*, St. Louis, Mosby, 1947

